
End-to-End Lane Marker Detection via Row-wise Classification

Seungwoo Yoo Hee Seok Lee Heesoo Myeong

Sungrack Yun Hyoungwoo Park Janghoon Cho Duck Hoon Kim

Qualcomm Korea YH

{yoos,heeseokl,hmyeong,sungrack,hwoopark,janghoon,duckhoon}@qti.qualcomm.com

Abstract

In autonomous driving, detecting reliable and accurate

lane marker positions is a crucial yet challenging task.

The conventional approaches for the lane marker detec-

tion problem perform a pixel-level dense prediction task

followed by sophisticated post-processing that is inevitable

since lane markers are typically represented by a collection

of line segments without thickness. In this paper, we propose

a method performing direct lane marker vertex prediction

in an end-to-end manner, i.e., without any post-processing

step that is required in the pixel-level dense prediction task.

Specifically, we translate the lane marker detection problem

into a row-wise classification task, which takes advantage of

the innate shape of lane markers but, surprisingly, has not

been explored well. In order to compactly extract sufficient

information about lane markers which spread from the left

to the right in an image, we devise a novel layer, inspired

by [8], which is utilized to successively compress horizon-

tal components so enables an end-to-end lane marker detec-

tion system where the final lane marker positions are sim-

ply obtained via argmax operations in testing time. Experi-

mental results demonstrate the effectiveness of the proposed

method, which is on par or outperforms the state-of-the-art

methods on two popular lane marker detection benchmarks,

i.e., TuSimple and CULane.

1. Introduction

With the explosive growth of the researches and devel-

opments on the computer vision technologies with sensor

fusion, localization and path planning, the advanced driver

assistance system (ADAS) or high-level self-driving system

(SDS) has been widely adopted in recent vehicles such as

Waymo [31], Uber [1], Lyft [2], Mobileye [34], Google

car [27] and Tesla [6]. Especially, recent researches and

projects [9, 6, 34] on the ADAS and SDS are focused more

on cameras than other sensors, e.g. LiDAR, due to the cost,

design, and also big accuracy improvements in the camera-

Figure 1. The E2E-LMD framework for lane marker detection.

based perception systems. Although there are a number

of components related to the ADAS or SDS, such as lane

marker detection, vehicle detection & tracking, obstacle de-

tection, scene understanding, and semantic segmentation,

lane marker detection is one of the key components in cam-

era perception and positioning for several applications, e.g.,

lane keeping/change assist.

A number of researches on lane marker detection have

been proposed [25, 13, 19, 8, 18, 10, 22, 26, 29, 7, 5, 17, 14].

Most conventional lane marker detection methods are based

on two-stage semantic segmentation approaches [23, 16,

12]. In the first stage of these approaches, a network is de-

signed to perform a pixel-level classification to assign each

pixel in an image to the binary label, i.e., lane marker or

not. However, in each pixel classification, the dependen-

cies or structures between pixels are not specifically con-

sidered, and thus additional post-processing is performed in

the second stage to explicitly impose the constraints such as

uniqueness or straightness of the detected lane marker. The

post-processing can be implemented with conditional ran-

dom field, additional networks, or sophisticated CV tech-

niques like RANSAC, but its computational complexity is

not negligible and it should be carefully combined with the

first stage by hand-tuning. Therefore, there approaches are

hard to scale up for various environments and datasets. An-

other lane marker detection methods are generative adver-

sarial network (GAN)-based approaches [19, 10, 21] which

considers additional loss to impose such structural con-

straints.

1

In this paper, we consider a simple end-to-end frame-

work for recognizing lane marker, called E2E-LMD, which

directly predicts the lane marker vertices without any so-

phisticated post-processing step (Figure 1). Here, the lane

marker recognition problem is considered as multiple row-

wise classification tasks for each lane marker type where

features for classification are expressed through a two-stage

module, and the final lane marker positions are simply ob-

tained by argmax operations in testing time. The first-

stage layers successively compress and model the horizon-

tal components for the shared representation of all lane

markers, and the second-stage layers separately model the

each lane marker based on this shared representation to di-

rectly output the lane marker vertices.

In summary, the contribution of this paper can be sum-

marized as follows: 1) We present a novel and intuitive

framework for detecting lane markers. 2) The proposed

method is on par or outperforms the recent state-of-the-

art methods in both benchmark datasets, i.e., TuSimple and

CULane, without complex post-processing. And, finally, 3)

We show that the proposed method can effectively capture

lane marker representation in an efficient manner with ex-

tensive experiments and visualization.

2. Related Work

Most traditional lane marker detection methods are

based on hand-crafted low-level features. In [3], they

proposed the line segment detection using selective Gaus-

sian spatial filters, which is followed by post-processing

steps. Recently, deep learning-based methods are em-

ployed to learn to extract features at various scenes. There

are mainly two approaches based on convolutional neural

networks (CNN): 1) Segmentation-based approach and 2)

GAN-based approach.

The first approaches consider lane marker detection as

a semantic segmentation task [25, 22, 7, 14, 13]. In [22],

the benefits of lane marker segmentation are combined with

a clustering approach designed for instance segmentation.

In [25], they train a spatial CNN (SCNN) with propagat-

ing message as residual for detecting long continuous struc-

ture. In [14], pixel-wise clustering is applied based on

conventional segmentation network. In [7], authors pro-

posed a deep neural network that predicts a weights map

like a segmentation output for each lane marker and a dif-

ferentiable least-squares fitting module for mapping param-

eters for curve fitting. In [13], self-attention distillation

(SAD) is proposed to allow the network to exploit atten-

tion maps within the network itself and complements the

segmentation-based supervised learning.

Second, some methods adopt GAN for lane marker de-

tection tasks. In [10], authors take lane marker labels as

extra inputs and use GAN so that the segmentation maps re-

semble labels to predict the better segmentation outcomes.

In [19], they generate low light conditioned images using

GAN to increase the environmental adaptability of the net-

work.

Other deep learning-based methods make an effort to

solve lane marker detection from different aspects. In [17],

they use extra labels of vanishing point to train the network

to output better structural information. In [5], they consider

the lane marker detection and classification problems as re-

gression problems.

One work close to the proposed method is [8, 18] where

column-wise representation is used to recognize free space

in road scenes. This horizontal representation for detecting

obstacles has been easily utilized for autonomous driving

tasks since it can be efficiently translated to an occupancy

grid representation. Based on the representation, they used

convolutional neural network with simple successive verti-

cal pool layers to regress free space boundaries.

3. Proposed Method

As reviewed in Sec. 2, the lane marker detection prob-

lem has been tackled with various approaches and each of

them has its own pros and cons. However, most of them

are based on semantic segmentation with complex post-

processing which hinders end-to-end training for extracting

lane marker positions. Inspired by recent works [8, 18], we

consider the above problem as finding the set of horizon-

tal locations of each lane marker in an image. Specifically,

we divide an image into rows and obtain a row-wise repre-

sentation for each lane marker using a convolutional neu-

ral network. Then lane marker detection can be thought

as row-wise classification. In other words, contrasted to

the conventional segmentation-based lane marker detection,

the proposed method can directly provide lane marker posi-

tions. More specifically, given an input image X ∈ R3×h×w

where h and w are the image height and width, respectively,

the objective is to find a lane marker li (i = 1, · · · , N)
represented by the set of vertices {vlij} = {(xij , yij)}
(j = 1, · · ·K). Here, N is the number of lane markers in

X which is generally pre-defined, and K is the total number

of vertices that is limited to h due to the row-wise represen-

tation.

The details of the proposed architecture, which is con-

ceptually simple and can be utilized to any segmentation-

based approaches, and its training and inference will be de-

scribed in the following subsections.

3.1. Network Architecture

Architecture Design: We propose a novel architecture

composed of successive shared and lane marker-wise hori-

zontal reduction modules (HRMs), which leads to removing

horizontal components spatially and setting the channel size

as the target width resolution.

(a) The schema of the E2E-LMD (b) The horizontal reduction module (HRM)

Figure 2. The E2E-LMD architecture for lane marker detection. We extend general encoder-decoder architectures by adding successive

horizontal reduction modules for end-to-end lane marker detection. Numbers under each block denote spatial resolution and channels. (a)

Arrows with HRM denote a horizontal reduction module of (b). Arrows with Conv are output convolution with 1 × 1. Dashed arrows

denote the global average pooling with a fully connected layer. (b) HRM is utilized to compress the horizontal representation. r denotes

the pooling ratio for width part. Conv kernel size k is set as 3 except the last HRM layer which set as 1.

The proposed end-to-end lane marker detection (E2E-

LMD) architecture consists of three stages (see Fig. 2(a)).

The first stage is a general encoder-decoder segmentation

network [30] which encodes information of lane markers in

an image and reconstructs spatial resolution. In contrast to

standard semantic segmentation approaches, in our imple-

mentation, we only recover spatial resolution as the half of

an input size to reduce computational complexity.

In the second stage, we successively squeeze the hori-

zontal dimension of the shared representation using HRMs

without changing the vertical dimension. With this squeeze

operation, we can obtain the row-wise representation in a

more natural way. After running shared HRMs, we squeeze

the remaining width of representation by lane marker-wise

HRMs to make single vector representation for each row.

We found that it is required to assign dedicated HRMs on

each lane marker after the shared HRMs for increasing ac-

curacy numbers, since each lane marker has different innate

spatial and shape characteristics. For computational effi-

ciency, however, only the first few HRMs are shared across

lane markers, followed by lane marker-wise HRMs. With

more shared layers we can save computational cost but each

lane marker accuracy might be degraded.

In the last third stage, we have two branches for a lane

marker li: a row-wise vertex location branch and a vertex-

wise confidence branch. These branches perform classi-

fication and confidence regression on the last HRMsfea-

tures where spatial resolution only has the vertical dimen-

sion while the channel size meets the target horizontal res-

olution h′, i.e., h′ = h/2. The row-wise vertex location

branch predicts the horizontal position xij of li per yij
(yij = 0, · · · , h′).

The vertex-wise confidence branch predicts the existence

confidence vcij whether (xij , yij) is valid or not. Follow-

ing [25], we also add a semantic lane marker confidence

branch which produces lane marker-wise existance confi-

dence lci after shared HRMs.

Horizontal Reduction Module: To effectively com-

press the horizontal representation, we utilize residual lay-

ers proposed in [11] (see Fig. 2(b)). Specifically, in the skip

connection, we add a horizontal average pooling layer with

a 1×1 convolution to down-sample horizontal components.

Although pooling operations let the deeper layers gather

more spatial context (to improve classification) and reduce

computational complexity, they still have the drawback of

reducing the pixel precision. Therefore, to effectively keep

and enhance the horizontal representation, inspired by the

pixel shuffle layer of [32, 24], we propose to rearrange the

elements of C × H × W input tensor to make a tensor of

shape rC×H×W/r in the residual branch, which is some-

what a reverse operation of the original pixel shuffle block

in [32] so called the horizontal pixel unshuffle layer. By re-

arranging the representation, we can efficiently move spatial

information to channel. Then we apply a convolution oper-

ation to reduce the increased channel rC to C which not

only reduces computational complexity but also helps to ef-

Input Learned representations in successive layers

Figure 3. Learned representations on decoder and shared

HRM layers1,2,3: We visualize how features are encoded in dif-

ferent depths of our shared HRM layers after decoder. For each

layer (row), we visualize the first three principal components as

RGB values at each spatial locations. We observe that the features

become more distinctive, adapted to specific locations and disen-

tangled in the later layers.

fectively compress lane marker spatial information from the

pixel unshuffle operation.

To further improve the discrimination between lane

markers, we add an attention mechanism by adding Squeeze

and Excitation (SE) block [15]. The SE block helps to in-

clude global information in the decision process by aggre-

gating the information in the entire receptive field and recal-

ibrates channel-wise feature responses which have spatial

information encoded by the horizontal pixel unshuffle layer

(see Fig. 3 and Fig. 4).

To confirm the effectiveness of the proposed architec-

ture, we visualize the learned representation using PCA

(Principal Component Analysis) (see Fig. 3). The visual-

ized results show that the proposed architecture successfully

compress the spatial lane marker information even though

we squeeze the horizontal components in representations.

3.2. Training

The training objective is to optimize total loss L given

by

L = Lvl + λ1Lvc + λ2Llc, (1)

where Lvl, Lvc, and Llc are losses for lane marker vertex

location, lane marker vertex confidence, and lane marker-

wise confidence, respectively. And λ1 and λ2 are weights

for the last two losses.

Lane Marker Vertex Location Loss: As we formu-

lated lane marker detection as row-wise classification on

lane marker’s horizontal position, any loss function for clas-

sification can be used.

Specifically, we tested three loss functions, i.e.,

cross-entropy (CE), KL-divergence (KL), and PL-loss

(PL) [18]. The CE loss LCE
ij for lane marker li at a vertical

position yij is computed using the ground truth location xgt
ij

and the predicted logits fij having W/2 channels.

To train the lane marker vertex location branch using the

KL loss LKL
ij , we first make a sharply-peaked target dis-

tribution of lane marker positions as a Laplace distribution

Laplacegt(µ, b) with µ = xgt
ij and b = 1, and then compare

it with an estimated distribution Laplacepred(µ, b) by

µ = Efij [xji]

= softargmax(xji) =
∑

W/2

softmax(fij) · xij

b = Efij [|xji − Efij [xji]|]

(2)

, similarly with the 2D facial landmark detection algorithm

in [28, 4]. In case of the PL loss, we follow the original for-

mulation of [18] by modeling the probability of lane marker

positions as piecewise linear probability distribution.

For an input image, the total lane marker vertex location

loss is given by

Lvl =
1

N

N
∑

i

1
∑K

j eij

K
∑

j

Ltype
ij × eij (3)

, where type ∈ {CE,KL,PL}, eij denotes whether

ground truth exists or not, i.e., eij = 1 if there is li hav-

ing a lane marker vertex at yij and eij = 0 if not.

Lane Marker Vertex Confidence Loss: The lane

marker vertex existence is a binary classification problem,

thus it can be trained using a binary CE loss LBCE
ij be-

tween single scalar-value prediction at each yij location

of lane marker li and ground truth existence eij . The

loss for an entire image is then computed as Lve =
1

N×K

∑N
i

∑K
j LBCE

ij .

Lane Marker Label Loss: Following [25], we add a

binary CE loss LBCE
i to train the lane marker-wise ex-

istence prediction. The loss is computed using the pre-

dicted N -dimensional vector lci and existence of each lane

li in the ground truth. The total loss is then computed as

Lle =
1

N

∑N
i LBCE

i .

3.3. Inference

In testing time, lane marker vertices can be simply esti-

mated per loss as follows: the argmax operation is used for

the CE or PL loss, and the softargmax operation is used for

the KL loss. As mentioned above, there are three outputs

from the proposed architecture, i.e., horizontal location of

lane marker vertices xij , vertex-wise existence confidence

vcij , and lane marker-wise existence confidence lci. Then

Input Before SE After SE

Figure 4. Learned representations at shared HRM layers2,3 be-

fore/after SE module: We visualize how encoded features are

changed before/after SE block. We observe that after SE block,

lane representations become more discernible to be easily sepa-

rate from each other.

Figure 5. The examples of video frames of (a) TuSimple [33] and

(b) CULane [25]. Ground truth lane markers are shown in various

colored lines.

the final lane marker vlij for li can be obtained by

{vlij} =

{

{(xij , yij)|vcij > Tvc} if lci > Tlc,

∅ else,
(4)

where Tvc and Tlc are the thresholds of vertex-wise ex-

istence confidence and lane marker-wise existence confi-

dence, respectively. Specifically, the sigmoid output of the

vertex-wise and lane marker-wise existence branches is uti-

lized to reject low-confident lane marker vertices and lane

markers, respectively.

4. Experiments

Datasets: We consider two lane marking datasets for

evaluating our method. TuSimple [33] and CULane [25]

are widely used in previous works. Some examples of these

datasets with ground truth are shown in Fig. 5.

1) TuSimple. The TuSimple dataset consists of 6,408

road images on US highways. The resolution of image is

1280× 720. The dataset is composed of 3,626 for training,

358 for validation, and 2,782 for testing called the TuSim-

ple test set of which the images are under different weather

conditions.

2) CULane. The CULane dataset consists of 55 hours

of videos which comprise urban, rural and highway scenes,

and 133,235 frames are extracted from videos. The dataset

is divided into 88,880 frames for training, 9,675 for vali-

dation, and 34,680 for testing called the CULane test set.

The images have a resolution of 1640 × 590. The test set

contains 9 different challenging driving scenarios (“Nor-

mal”, “Crowd”, “Highlight”, “Shadow”, “Arrow”, “Curve”,

“Cross”, “Night” and “No line”).

Evaluation Metrics: For comparing the proposed

method with previous lane marker detection methods, we

used the following evaluation metrics for each particular

dataset:

1) TuSimple. We report the official metric used in [33] as

the evaluation criterion. The accuracy is calculated as the

average correct number of vertices per image: Accuracy =
Ncorrect

Ngt
, where Ncorrect is the number of correctly pre-

dicted lane marker vertices, and Ngt is the number of

ground truth lane marker vertices. Also, we report the false

positive (FP) and false negative (FN) scores.

2) CULane. As in [25], for judging whether the pro-

posed method detects lane markers correctly, we consider

each lane marking as a line with 30 pixel width and compute

the intersection-over-union (IoU) between ground truths

and predictions. Predictions whose IoUs are larger than

0.5 are considered as true positives (TP). Then, we used

F1-measure as the evaluation metric, which is defined as:

F1 = 2×Precision×Recall
Precision+Recall , where Precision = TP

TP+FP

and Recall = TP
TP+FN .

Implementation Details: We resized the image of

TuSimple and CULane to 256 × 512 and set N as 6 and 4
for each dataset. To assign an unique class ID to each lane

marker li, we set labels for each lane marker by ordering

the relative distance from an image center. For example, we

set the host left lane marker in TuSimple to label 0, the host

right lane marker to label 1, and the remaining lane markers

similarly to cover all N lane markers. For optimization, we

used AdamW [20] with gradual warmup and cosine anneal-

ing learning rate schedule with initial learning rate as 8e−4.

The weights λ1 and λ2 for loss function in Eq. 1 were set

as 10 and 1, respectively. The number of shared HRM was

fixed to 3 for all experiments and the number of channel

C was set to 96. Each mini-batch has 14 images per GPU

and we trained using 8 GPUs for 80 epochs on CULane and

140 epochs on Tusimple. Since we only recover the spatial

resolution as the half size of an image, we resampled the

result vertices to meet the original scale. To reduce over-

fitting, we applied Dropout with 0.1 probability after every

HRM. Furthermore, we also applied data augmentation like

random cropping, horizontal flipping, and photometric aug-

mentations. In testing time, we set Tvc, i.e., the threshold

of vertex-wise existence confidence, as 0.6 and Tlc, i.e., the

threshold of lane marker-wise existence, as 0.5 for every

experiment.

4.1. Results

Quantitative analysis: To verify the effectiveness of our

method, we performed extensive comparisons with several

state-of-the-art methods. Following [13], we evaluated mul-

Figure 6. Failed examples from the CULane and TuSimple test

sets.

Table 1. Comparison of different algorithms on the TuSimple test

set.

Algorithm Accuracy FP FN

ResNet-18 [13] 92.69% 0.0948 0.0822

ResNet-34 [13] 92.84% 0.0918 0.0796

LaneNet [22] 96.38% 0.0780 0.0244

EL-GAN [10] 96.39% 0.0412 0.0336

FCN-Instance [14] 96.5% 0.0851 0.0269

SCNN [25] 96.53 % 0.0617 0.0180

R-18-SAD [13] 96.02% 0.0786 0.0451

R-34-SAD [13] 96.24% 0.0712 0.0344

R-18-E2E 96.04% 0.0311 0.0409

R-34-E2E 96.22 % 0.0308 0.0376

R-50-E2E 96.11 % 0.0321 0.0404

ERF-E2E 96.02 % 0.0321 0.0428

tiple backbones, i.e., ResNet-18 (R-18-E2E), ResNet-34

(R-34-E2E), ResNet-50 (R-50-E2E), ERF (ERF-E2E) [29].

As illustrated in Table 1, the proposed method attained

the competitive performance in the TuSimple dataset. No-

table difference compared to other results is low FP ra-

tio, which is obtained without complex post-processing like

RANSAC. Interestingly, a heavier network happens to show

lower accuracy numbers, e.g., R-34-E2E versus R-50-E2E.

The reason would be that the number of the TuSimple train-

ing images is not much enough to avoid the overfitting of

the network.

In Table 3, the proposed method consistently outper-

forms the state-of-the-art methods in various scenarios of

CULane dataset. Especially, the proposed method attained

a better performance when comparing [19], which utilizes

CycleGAN [35] to augment insufficient scenario data.

Qualitative analysis: Fig. 7 shows the localization of

lane markers is successful at night, in the shadows, and

when passing under the tunnel. Fig. 6 shows a few failure

cases. The proposed method often fails when there exists

reflection over the bonnet that makes it try to find a lane

marker and when there are severe curves or occlusions.

4.2. Ablation Experiments

We investigated the effects of different choices of our

proposed method, e.g., the SE block existence and position,

number of shared HRM layers and loss functions.

Table 2. Ablation study on different settings

ERFNet-E2E CULane

Architecture Prec. Recall F-measure

Without SE 75.8 71.1 73.4

Pre-SE 75.7 71.5 73.5

Standard-SE 75.0 71.6 73.3

Post-SE 76.5 71.8 74.0

(a) SE Position: Results on the CULane dataset by changing the

position of SE block in HRM.

R-18-E2E Flops TuSimple
shared ratio Accuracy FP FN

1 1.00 96.06% 0.0316 0.0436
2 0.56 96.05% 0.0325 0.0419
3 0.34 96.04% 0.0311 0.0410
4 0.23 95.99% 0.0337 0.0443

(b) Number of sharing pooling layers: Results on the TuSimple

dataset by changing the number of shared HRMs.

R-18-E2E TuSimple

Loss function Accuracy FP FN

KL-divergence (KL) 95.49% 0.0376 0.0551

PL-Loss (PL) 95.69% 0.0455 0.0482

Cross-Entropy (CE) 96.04% 0.0311 0.0410

(c) Loss function: Results on the TuSimple dataset by changing the loss

function.

Architecture: First, to confirm the pros of including

SE block, we evaluated the effect of SE block position and

existence on HRM layer in Table 2(a). Following the ex-

periments in the original SE paper [15], we consider three

variants: (1) Pre-SE block, in which the SE block is moved

before the horizontal pixel unshuffle layer (see Fig. 2); (2)

Standard-SE block, in which the SE block is after the resid-

ual operation, i.e., after ConvBN in the residual branch; (3)

Post-SE block, in which the SE block is moved after the

summation of identity connection. Interestingly, in contrast

to observations in the original SE paper [15], Post-SE per-

forms much better than other configurations. It seems that

the SE block at the end of the residual branch helps to re-

cover the distinctiveness of lane markers whose information

could be lost when squeezing the channel in the residual

ConvBN layer (see Fig. 4).

The number of shared HRM: As discussed in Sec-

tion 3.1, the number of shared HRMs is an important factor

for the speed-accuracy trade-off. We changed the number

of shared HRMs from 0 to 4 (accordingly the number of

lane marker-wise HRMs varies from 6 to 2), and the results

are summarized in Table 2(b). Note that the batch size of 8

is used in this experiment since the large number of shared

HRMs requires much memory. As shown in Table 2(b), we

can tune the number of shared HRM according to the speed-

accuracy trade-off.

Loss function: To compare loss functions in terms of

effectiveness, accuracy numbers per loss function are sum-

The results of
Figure 7. E2E-LMD using ERFNet as a backbone network on the CULane and TuSimple test images. All rows except the last one show

the CULane test images. Green dots are appropriately sampled for visualization purpose. Best viewed in color.

Table 3. Comparison of different algorithms on the CULane test set. F1-measure is displayed except “Cross” for which only FP is shown.

Category R-18-E2E R-34-E2E R-101-E2E ERFNet-E2E R-18-SAD [13] R-34-SAD [13] R-101-SAD [13] SCNN [25] ERFNet[19]

Normal 90.0 90.4 90.1 91.0 89.8 89.9 90.7 90.6 91.5

Crowd 69.7 69.9 71.2 73.1 68.1 68.5 70 69.7 71.6

Highlight 60.2 61.5 60.9 64.5 59.8 59.9 59.9 58.5 66

Shadow 62.5 68.1 68.1 74.1 67.5 67.7 67 66.9 71.3

Arrow 83.2 83.7 84.3 85.8 83.9 83.8 84.4 84.1 87.2

Curve 70.3 69.8 70.2 71.9 65.5 66 65.7 64.4 71.6

Cross 2296 2077 2333 2022 1995 1960 2052 1990 2199

Night 63.3 63.2 65.2 67.9 64.2 64.6 66.3 66.1 67.1

No line 43.2 45.0 44.9 46.6 42.5 42.2 43.5 43.4 45.1

Total 70.8 71.5 71.9 74.0 70.5 70.7 71.8 71.6 73.1

marized in Table 2(c). Surprisingly, in our experiments,

simple CE loss is preferable than others. The reason would

be that the proposed horizontal reduction module helps

to effectively incorporate spatial information between the

ground truth position and the proximity between neighbors

into a network, which leads to helping general CE loss to

outperform other specially designed loss functions, i.e., KL
and PL losses.

5. Conclusion

In this paper, we proposed a new lane marker detection

method to classify each lane marker and obtain its vertex in

an end-to-end manner. A novel module for effective hori-

zontal reduction has been devised, and with the module, the

state-of-the-art performance is achieved without any com-

plex post-processing. Although we designed the proposed

architecture for the lane marker detection problem, it can be

also used for other tasks, such as general polygon prediction

and semantic/instance segmentation.In order to improve the

proposed architecture in a better way, we plan to search the

reduction module in an automatic manner.

References

[1] https://www.cnbc.com/2020/01/28/ubers-self-driving-cars-

are-a-key-to-its-path-to-profitability.html. 1

[2] https://www.cnbc.com/2019/11/05/lyft-is-developing-self-

driving-cars-at-its-level-5-lab-in-palo-alto.html. 1

[3] M. Aly. Real time detection of lane markers in urban streets.

In IEEE Intelligent Vehicles Symposium, June 2008. 2

[4] Olivier Chapelle and Mingrui Wu. Gradient descent op-

timization of smoothed information retrieval metrics. Inf.

Retr., 13(3):216–235, June 2010. 4

[5] Shriyash Chougule, Nora Koznek, Asad Ismail, Ganesh

Adam, Vikram Narayan, and Matthias Schulze. Reliable

multilane detection and classification by utilizing CNN as

a regression network: Munich. In ECCV Workshop, 2018. 1,

2

[6] Murat Dikmen and Catherine M Burns. Autonomous driv-

ing in the real world: Experiences with tesla autopilot and

summon. In Proceedings of the 8th international conference

on automotive user interfaces and interactive vehicular ap-

plications, pages 225–228, 2016. 1

[7] Wouter Van Gansbeke, Bert De Brabandere, Davy Neven,

Marc Proesmans, and Luc Van Gool. End-to-end lane de-

tection through differentiable least-squares fitting. In ICCV

Workshop, 2019. 1, 2

[8] N. Garnett, S. Silberstein, S. Oron, E. Fetaya, U. Verner, A.

Ayash, V. Goldner, R. Cohen, K. Horn, and D. Levi. Real-

time category-based and general obstacle detection for au-

tonomous driving. In ICCV Workshop, 2017. 1, 2

[9] Noa Garnett, Shai Silberstein, Shaul Oron, Ethan Fetaya, Uri

Verner, Ariel Ayash, Vlad Goldner, Rafi Cohen, Kobi Horn,

and Dan Levi. Real-time category-based and general obsta-

cle detection for autonomous driving. In Proceedings of the

IEEE International Conference on Computer Vision Work-

shops, pages 198–205, 2017. 1

[10] Mohsen Ghafoorian, Cedric Nugteren, Nóra Baka, Olaf

Booij, and Michael Hofmann. EL-GAN: Embedding loss

driven generative adversarial networks for lane detection. In

ECCV Workshop, 2019. 1, 2, 6

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

arXiv:1512.03385, 2015. 3

[12] Aharon Bar Hillel, Ronen Lerner, Dan Levi, and Guy Raz.

Recent progress in road and lane detection: a survey. Ma-

chine vision and applications, 25(3):727–745, 2014. 1

[13] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change

Loy. Learning lightweight lane detection CNNs by self at-

tention distillation. In ICCV, 2019. 1, 2, 5, 6, 8

[14] Yen-Chang Hsu, Zheng Xu, Zsolt Kira, and Jiawei Huang.

Learning to cluster for proposal-free instance segmentation.

In IJCNN, 2018. 1, 2, 6

[15] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In CVPR, 2018. 4, 6

[16] Philipp Krähenbühl and Vladlen Koltun. Efficient inference

in fully connected crfs with gaussian edge potentials. In Ad-

vances in neural information processing systems, pages 109–

117, 2011. 1

[17] Seokju Lee, Junsik Kim, Jae Shin Yoon, Seunghak Shin,

Oleksandr Bailo, Namil Kim, Tae-Hee Lee, Hyun Seok

Hong, Seung-Hoon Han, and In So Kweon. Vpgnet: Vanish-

ing point guided network for lane and road marking detection

and recognition. In ICCV, 2017. 1, 2

[18] Dan Levi, Noa Garnett, and Ethan Fetaya. Stixelnet: A deep

convolutional network for obstacle detection and road seg-

mentation. In BMVC, 2015. 1, 2, 4

[19] Tong Liu, Zhaowei Chen, Yi Yang, Zehao Wu, and Haowei

Li. Lane detection in low-light conditions using an effi-

cient data enhancement : Light conditions style transfer.

arXiv:2002.01177, 2020. 1, 2, 6, 8

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. In ICLR, 2019. 5

[21] Pauline Luc, Camille Couprie, Soumith Chintala, and Jakob

Verbeek. Semantic segmentation using adversarial networks.

arXiv preprint arXiv:1611.08408, 2016. 1

[22] Davy Neven, Bert De Brabandere, Stamatios Georgoulis,

Marc Proesmans, and Luc Van Gool. Towards end-to-end

lane detection: an instance segmentation approach. IEEE

Intelligent Vehicles Symposium, Jun 2018. 1, 2, 6

[23] Davy Neven, Bert De Brabandere, Stamatios Georgoulis,

Marc Proesmans, and Luc Van Gool. Towards end-to-end

lane detection: an instance segmentation approach. In 2018

IEEE intelligent vehicles symposium (IV), pages 286–291.

IEEE, 2018. 1

[24] Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang W. Koh,

Quoc V. Le, and Andrew Y. Ng. Tiled convolutional neural

networks. In NIPS, 2010. 3

[25] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and

Xiaoou Tang. Spatial as deep: Spatial CNN for traffic scene

understanding. In AAAI, 2017. 1, 2, 3, 4, 5, 6, 8

[26] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eu-

genio Culurciello. ENet: A deep neural network architec-

ture for real-time semantic segmentation. arXiv:1606.02147,

2016. 1

[27] Sharon L Poczter and Luka M Jankovic. The google car:

driving toward a better future? Journal of Business Case

Studies (JBCS), 10(1):7–14, 2014. 1

[28] Joseph P Robinson, Yuncheng Li, Ning Zhang, Yun Fu, and

Sergey Tulyakov. Laplace landmark localization. In ICCV,

2019. 4

[29] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo.

ERFNet: Efficient residual factorized convnet for real-time

semantic segmentation. IEEE Transactions on Intelligent

Transportation Systems, 19(1):263–272, Jan 2018. 1, 6

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

Net: Convolutional networks for biomedical image segmen-

tation. In MICCAI, 2015. 3

[31] Daniel L Rosenband. Inside waymo’s self-driving car: My

favorite transistors. In 2017 Symposium on VLSI Circuits,

pages C20–C22. IEEE, 2017. 1

[32] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,

Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

CVPR, 2016. 3

[33] TuSimple. http://benchmark.tusimple.ai/#/t/1. 5

[34] David B Yoffie. Mobileye: The future of driverless cars.

2014. 1

[35] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. arXiv:1703.10593, 2017.

6

