
Dynamic Neural Relational Inference for Forecasting Trajectories

Colin Graber Alexander Schwing

University of Illinois at Urbana-Champaign

{cgraber2, aschwing}@illinois.edu

Abstract

Understanding interactions between entities, e.g., joints

of the human body, team sports players, etc., is crucial for

tasks like forecasting. However, interactions between enti-

ties are commonly not observed and often hard to quantify.

To address this challenge, recently, ‘Neural Relational In-

ference’ was introduced. It predicts static relations between

entities in a system and provides an interpretable represen-

tation of the underlying system dynamics that are used for

better trajectory forecasting. However, generally, relations

between entities change as time progresses. Hence, static

relations improperly model the data. In response to this,

we develop Dynamic Neural Relational Inference (dNRI),

which incorporates insights from sequential latent variable

models to predict separate relation graphs for every time-

step. We demonstrate on several real-world datasets that

modeling dynamic relations improves forecasting of com-

plex trajectories.

1. Introduction

Relations between entities are versatile and appear ev-

erywhere, often without us noticing. For instance, joints

of the human body are constrained in their movement by a

skeleton, team sport players move in practiced formations,

and traffic patterns emerge due to enforced rules and respect

for our peers. Despite distinct temporal dynamics between

entities which emerge in many different situations, it is ex-

tremely challenging to explicitly characterize and recover

them from observed trajectories. This is in part due to the

fact that there are little to no ground truth labels available.

For instance, team sport players often have a hard time spec-

ifying the causes of their reactions.

Due to this difficulty, in recent years a considerable

amount of work has been invested to develop methods

which retrieve those interactions. However, many of those

methods only recover interactions implicitly, e.g., via graph

networks [43, 34, 39, 18, 47, 11, 46] or via attention [32, 3].

Implicitly characterizing and exploiting relations doesn’t

grant much insight into the underlying system, as these

types of approaches lack an explicitly interpretable com-

ponent. To address this concern, recently, neural relational

0 5 10 15 20 25 30

0

5

10

15

20

25

30
0 5 10 15 20 25 30

0

5

10

15

20

25

30
0 5 10 15 20 25 30

0

5

10

15

20

25

30

Frame 2 Frame 21 Frame 46

Figure 1: Predicted motion of dNRI on capture subject #35

(top row) and all predicted joint relations (bottom row). The

illustrated edges represent those connected to the right heel

which change during these three frames.

inference (NRI) has been proposed [22]. NRI is one of the

first methods which produces an interpretable representa-

tion of the relations between entities in the process of pre-

dicting system dynamics. However, importantly, NRI as-

sumes that these relations remain static across an observed

trajectory. This is a significant restriction: in many systems,

entity relations change over time. Using NRI in those cases

will retrieve interactions averaged over time, which doesn’t

accurately represent the underlying system.

To address this concern, we develop ‘dynamic Neural

Relational Inference’ (dNRI), a method which recovers in-

teractions between entities at every point in time. More

specifically, following NRI, we formulate explicit recovery

of the system interactions as a latent variable model: each

latent variable denotes the strength of a relation between

entities. Using the estimated relational strength, we want

to recover the observed trajectory as accurately as possi-

ble. However, different from NRI, the developed system

estimates latent variables at every point in time (see Fig. 1

for an example visualization of these dynamic relations).

Furthermore, we adapt recent advances in sequential latent-

variable models to the NRI framework to learn both a se-

quential relation prior that depends on the history of an in-

put trajectory and an approximate relation posterior which

takes both past and future variable states into account.

We assess the proposed dNRI method on challenging

motion capture and sports trajectory datasets. We show

the developed technique significantly improves recovery of

the observed trajectories when compared against static NRI.

We additionally demonstrate that the model predicts rela-

tions which change across different phases of the trajecto-

ries, which static NRI cannot possibly achieve.

2. Background: Neural Relational Inference

To uncover interactions between entities of a system, it

is common to study a surrogate task: predicting their trajec-

tories across time. Specifically, given N entities, let x
(t)
i

represent the feature vector of entity i ∈ {1, . . . , N} at

time step t, for example position and velocity. The Neu-

ral Relational Inference [22] framework models forecasting

of trajectories xi = (x1
i , . . . ,x

T
i) by first predicting a set of

interactions among the entities. Subsequently, these inter-

actions are used to improve prediction of future trajectories.

The rationale behind this: accurately recovered interactions

permit accurate forecasting.

Formally, interactions between entities take the form of

a latent variable zi,j ∈ {1, . . . , e} for every pair of entities

i and j, where e is the number of relation types being mod-

eled. These relations do not have any pre-defined meaning,

but rather the model learns to assign a meaning to each type.

In order to predict both the latent relation variables zi,j and

the future trajectories of the entities, NRI learns a varia-

tional auto-encoder (VAE) [21, 37]. Its observed variables

represent the entity trajectories x and the latent variables

represent the entity relations z. Following a classical VAE,

the following evidence lower bound (ELBO) is maximized:

L(φ, θ) = Eqφ(z|x) [log pθ(x|z)]−KL[qφ(z|x)‖p(z)], (1)

where φ and θ are trainable parameters of probability distri-

butions. This formulation consists of three primary proba-

bility distributions, which we describe subsequently.

The encoder produces a factorized categorical distribu-

tion of the form qφ(z|x) =
∏

i 6=j qφ(zij |x) as a func-

tion of the entire input sequence x. This is done using

a fully-connected graph neural network (GNN) architec-

ture [40, 28, 12] containing one node per entity. This model

learns an embedding for each pair of entities which is then

used to produce a posterior relation probability for every

relation type being predicted.

Given the distribution provided by the encoder, sam-

ples of the relation are used as input in the decoder. The

sampling procedure needs to be differentiable so that we

can update model weights via backpropagation; however,

standard sampling from a categorical distribution is non-

differentiable. Consequently, we instead take samples from

the concrete distribution [33, 20]. This distribution is a con-

tinuous approximation to the discrete categorical distribu-

tion, and sampling from it proceeds via reparameterization

by first sampling a vector g from the Gumbel(0, 1) distribu-

tion and then computing:

zi,j = softmax((hi,j + g)/τ), (2)

where hi,j are the predicted posterior logits for zi,j and τ is

a temperature parameter that controls smoothness of the dis-

tribution. This process approximates discrete sampling in

a differentiable manner and enables to backpropagate gra-

dients from the decoder reconstruction all the way to the

encoder parameters φ.

The decoder pθ(x|z) uses a sampled set of interactions

z to assist in predicting the future states of the variables x.

To this end, it factorizes in an autoregressive manner, i.e., it

takes the form

pθ (x|z) :=

T
∏

t=1

pθ
(

xt+1|x1:t, z
)

. (3)

Similar to the encoder, the decoder model is based on a

GNN. Unlike the encoder, however, a separate GNN is

learned for every edge type. When running message pass-

ing for a given edge (i, j), the used edge model corresponds

to the prediction made by the input latent variable zi,j . One

can also hard-code an edge type to represent no interaction,

in which case no messages are passed across that edge dur-

ing computation. Kipf et al. [22] experiment with Marko-

vian decoders, in which case the GNN is simply a function

of the previous prediction, and decoders that depend on all

prior states, in which case a recurrent hidden state is up-

dated using the GNN.

The prior p(z) :=
∏

i 6=j p(zi,j) is a uniform indepen-

dent categorical distribution per relation variable. If one

edge is fixed to represent no interaction, the value of the

prior for this edge can be chosen based on the expected spar-

sity of relations for the given problem. This tunes the loss

such that the encoder is biased towards the desired sparsity

level.

The training procedure for NRI consists of the follow-

ing steps: first, the encoder processes the current input x to

predict the posterior relation probability qφ(z|x) for every

pair of entities. Next, a set of relations are sampled from

the concrete approximation to this distribution. Given these

samples z̃, the final step is to predict the original trajectory

x̂2, . . . , x̂T . To improve decoding performance and ensure

that the decoder depends on the predicted edges, Kipf et

al. [22] provide the decoder at training time with ground-

truth inputs for a limited number of steps, e.g., 10, and then

predict the remainder of the trajectory as a function of the

previous predictions. The ELBO described in Eq. (1) con-

tains two terms: first, the reconstruction error, which as-

sumes the predicted outputs represent means of a Gaussian

�

�

�

�−1

(

| ,

)

�

�

�

�−1

�

1:�−1

�

1:�−2

(

| ,

)

�

�

�

�+1

�

1:�+1

�

1:�

(

| ,

)

�

�

�

�

�

1:�

�

1:�−1

(

|�

)

�

�

�

�−1

(

|�

)

�

�

�

�

�

�+1

(

|�

)

�

�

�

�+1

� ̃

�+1

� ̃

�−1

�

̃

�

�

̂

�

(

| ,

)

�

�

�

�

�

1:�−1

�

1:�−1

(

| ,

)

�

�

�

�+1

�

1:�

�

1:�

(

| ,

)

�

�

�

�+2

�

1:�+1

�

1:�+1

�

̂

�+1

�

̂

�+2

Encoder

Decoder

Prior

Figure 2: The computation graph used by dNRI.

distribution with fixed variance σ and consequently takes

the form

−
∑

i

T
∑

t=2

‖xt
i − x̂t

i‖

2σ2
+ const. (4)

Second, the KL-divergence between the uniform prior and

the predicted approximate posterior, which takes the follow-

ing form:
∑

i 6=j

H (qφ (zij |x)) + const. (5)

Here, H represents the entropy function. The constant term

is due to the uniform prior, which leads to marginalization

of one of the encoder terms in the loss.

The NRI formulation assumes the relations among all of

the entities to be static. However, we think this assump-

tion is too strong for many applications – the ways in which

entities interact often changes over time. For instance, bas-

ketball players adjust their positioning relative to different

teammates at different points in time. To address this is-

sue, in the following section, we will describe our ‘dynamic

Neural Relational Inference’ (dNRI).

3. Dynamic Neural Relational Inference

To uncover dynamic interactions and better track enti-

ties for which relations change over time, we develop Dy-

namic Neural Relational Inference (dNRI). Specifically, we

predict a separate relation zti,j for every time step t. This

allows the model to respond to entities whose relations

vary throughout a trajectory, thereby improving its ability

to anticipate future states. Using our dNRI formulation re-

quires tracking the evolution of the relations between enti-

ties across time, which was not needed by static NRI. This

requires a novel encoder, decoder, and prior, which are in-

spired by prior work on sequential latent variable modeling

(see Sec. 5 for details). We discuss these components below

after providing an overview of our proposed approach.

3.1. Overview

Predicting separate relations at every time step requires

rethinking the purpose of each of the model components.

As discussed in Sec. 2, the prior is effectively a tunable

component of the loss function. In contrast, to make the

prior more useful in a sequential context, we now require

it to predict the relations between entities at every point in

time given all of the previous states of the system.

In static NRI, the encoder predicts a single edge config-

uration covering an entire set of input trajectories. In con-

trast, here, we task the encoder with understanding the state

of the system at every point in time based on both the past

and the future. This “information” is passed from the en-

coder to the prior during training due to a KL divergence

term of the loss function. This change hence encourages

the prior model to better anticipate future relations.

As a result of sequential relation prediction, the decoder

is now more flexible too: it can use different models at dif-

ferent points in time based on how the system changes. All

of these changes lead to a more expressive model that im-

proves prediction performance. An overview of the compu-

tation graph which we use for dNRI is provided in Fig. 2.

We now describe each of its components in detail.

3.2. Decoder

Our dNRI formulation permits to use any decoder also

developed for static NRI. Importantly however, we obtain

additional flexibility. The primary difference in this stage

is that the relation variable inputs z now vary per time step.

Formally, the decoder model hence factorizes as follows:

pθ (x|z) :=
T
∏

t=1

pθ
(

xt+1|x1:t, z1:t
)

. (6)

In practice, this amounts to selecting a model for every edge

at each time step instead of using the same model through-

out the sequence. This allows the decoder to adjust its pre-

dictions based on the state of the system, improving its abil-

ity to model dynamic systems.

3.3. Prior

Since we expect entity relations to vary at each time step,

it is important to capture these changes in the prior distri-

bution. For this, we learn an auto-regressive model of the

prior probabilities of the relation variables, where at each

time step t the prior is conditioned on previous relations as

well as the inputs up to time t. This takes the form:

pφ (z|x) :=

T
∏

t=1

pφ
(

zt|x1:t, z1:t−1
)

. (7)

The prior architecture which we use is as follows: the input

for each time step is passed through the following GNN ar-

�

enc

�

prior

GNN
LSTM

prior

LSTM

enc

�

enc

�

prior

GNN

GNN

�

enc

�

prior

GNN

GNN

�

dec

GNN

Encoder & Prior Decoder

�

�+1

(

| ,

)

�

�

�

�−1

�

1:�−1

�

1:�−2

(

|�

)

�

�

�

�−1

(

| ,

)

�

�

�

�+1

�

1:�

�

1:�

�

�

�

�−1

�

̂

�+2

�

̂

�+1

�

̂

�

(

| ,

)

�

�

�

�+2

�

1:�+1

�

1:�+1

(

| ,

)

�

�

�

�

�

1:�−1

�

1:�−1

�

dec

�

dec

� ̃

�+1

�

̃

�

� ̃

�−1

LSTM

prior

LSTM

prior

LSTM

enc

LSTM

enc

(

| ,

)

�

�

�

�

�

1:�

�

1:�−1

(

|�

)

�

�

�

�

(

| ,

)

�

�

�

�+1

�

1:�+1

�

1:�

(

|�

)

�

�

�

�+1

Figure 3: The three model components of dNRI. The inputs are fed through a fully-connected GNN to produce an embedding

for every pair of entities at every time step. These are aggregated using a forward LSTM to encode the past history of entity

relations and a backwards LSTM to encode the future history of entity relations. The prior is computed as a function of only

the past history, while the approximate posterior is computed as a function of both the past and future. A set of edge variables

are sampled from the approximate posterior, and these are used to select edge models for the decoder GNN. The decoder

evolves a hidden state using this GNN and the previous predictions and predicts the state of the entities at the next time step.

chitecture to produce an embedding per edge per time step:

ht
i,1 = femb

(

xt
i

)

(8)

v → e : ht
(i,j),1 = f1

e

([

ht
i,1,h

t
j,1

])

(9)

e → v : ht
j,2 = f1

v





∑

i 6=j

ht
(i,j),1



 (10)

v → e : ht
(i,j),emb = f2

e

([

ht
i,2,h

t
j,2

])

(11)

This architecture implements a form of neural message

passing in a graph, where vertices v represent entities i and

edges e represent relations between entity pairs (i, j). Ev-

ery model f is a multilayer perceptron (MLP), and each h

represents intermediate hidden states over the entities or re-

lations during computation. The output of this computation

is the embedding ht
(i,j),emb

, which captures the state of the

relations between entities i and j at time t.
Each of these embeddings is fed into an LSTM [17]. In-

tuitively, this LSTM models the evolution of the relations

between entities across time. Finally, another MLP trans-

forms the hidden state at each time step into the logits of

the prior distribution. These final two steps are formally

specified as follows:

ht
(i,j),prior = LSTMprior

(

ht
(i,j),emb,h

t−1
(i,j),prior

)

,

(12)

pφ(z
t|x1:t, z1:t−1) = softmax

(

fprior

(

ht
(i,j),prior

))

. (13)

Fig. 3 provides an illustration of the prior model. Note

that, in lieu of passing the previous relation predictions to

the prior as input, we encode the dependence of the prior

on the relations for previous time steps in the hidden state

h(i,j),prior .

3.4. Encoder

The role of the encoder is to approximate the distribu-

tion of relations at each time step as a function of the en-

tire input, as opposed to just the past input history. As de-

scribed by Krishnan et al. [24] and Fraccaro et al. [10], the

true posterior distribution over the latent variables pθ(z|x)
is a function of the future states of the observed variables

x. Thus, a key component of our encoder is an LSTM that

processes the states of the variables in reverse. We re-use

the relation embedding ht
(i,j),emb

described previously and

pass these representations through a backward LSTM. The

final approximate posterior is then obtained by concatenat-

ing this reverse state and the forward state provided by the

prior and passing the result into a MLP. The encoder is also

illustrated in Fig. 3, and is formally described via:

ht
(i,j),enc=LSTMenc

(

ht
(i,j),emb,h

t+1
(i,j),enc

)

, (14)

qφ

(

zt(i,j)|x
)

=softmax
(

fenc

([

ht
(i,j),enc,h

t
(i,j),prior

]))

. (15)

Note that the encoder and prior models share parameters, so

we use φ to refer to the parameters of both of these models.

Since the model components of dNRI have changed from

static NRI, the training and inference procedures also re-

quire modifications. These will be discussed next.

3.5. Training/Inference

To train the parameters φ and θ of the encoder/prior and

decoder, we proceed as follows: the input trajectories x are

passed through the GNN model to produce relation embed-

dings ht
(i,j),emb

for every time t and every entity pair (i, j).
These representations are input into the forward/backward

LSTMs, and the prior pφ(z|x) and approximate posterior

qφ(z|x) are computed. We then sample from the approxi-

mate posterior to get predicted relations z̃. Given these, we

then predict the trajectory distribution pθ(x|z̃). Unlike in

the static NRI case, we always provide ground-truth states

to the decoder as input during training, as we observed that

providing ground-truth for a fixed number of steps and then

using predictions as input for the rest of the trajectory per-

formed worse for dNRI. Finally, we calculate the ELBO:

the reconstruction error is computed following Eq. (4), and

the KL divergence is computed as

T
∑

t=1



H
(

qφ
(

ztij |x
))

−
∑

z
t
ij

qφ
(

ztij |x
)

log pφ
(

ztij |x
1:t, z1:t−1

)



 .

(16)

At test time, we are tasked with predicting future states

of the system. This means that we cannot utilize the en-

coder to predict edges, as we do not have the proper infor-

mation about the future. Therefore, given previous predic-

tions x1:t, we compute the prior distribution over relations

pφ
(

z1:t|x1:t, z1:t−1
)

. We sample from the prior to obtain

relation predictions z̃t, and use this as well as our previ-

ous predictions to estimate the next state of the variables

pθ
(

xt+1|x1:t, z̃1:t
)

. This process continues until the entire

trajectory is predicted.

4. Experiments

To show dNRI’s strengths compared to static NRI, we

provide experimental results on synthetic particle, human

motion capture, basketball player, and traffic trajectory

datasets. To show the operation of our models, we addition-

ally visualize sample trajectories and predicted relations.

Unless otherwise specified, we compare the following

models and architectures: for the dNRI encoder/prior GNN,

femb, f1
e , f1

v , and f2
e are all two-layer MLPs with 256 hid-

den/output units and ELU activations. The LSTM models

used by the prior and the encoder use 64 hidden units. Both

fprior and fenc are 3-layer MLPs with 128 hidden units and

ReLU activations. The static NRI encoder consists of the

exact same GNN architecture with the exception that the

input into femb consists of the entire input trajectory. In

this case, the encoder logits are produced by passing hemb

through a 3-layer MLP with 256 hidden units and a number

of output units equal to the number of relation types being

modeled. This is equivalent to the MLP encoder described

by Kipf et al. [22], except we add an additional MLP to the

output of the GNN. We use the recurrent decoder described

by Kipf et al. [22] in Eqs. 13-17 and in C.5 for both static

and dynamic NRI. Addditionally, every model hard-codes

the first edge type to represent no interaction.

For evaluation purposes, models are provided with n ini-

tial time steps of input and are tasked with predicting some

number of future steps. When evaluating the static model,

we use two different inference procedures: the first, labeled

as ‘Static NRI’, uses the provided initial n time steps of in-

0 10 20
Step

0.000

0.001

0.002

0.003

0.004

0.005

M
SE

Static NRI
dNRI

Figure 4: Synthetic data trajectory prediction errors and re-

lation prediction visualization.

put to predict relation types; these relations are then used

for decoding the entire end of the trajectory. The second

inference procedure, labeled as ‘Static NRI, “Dynamic” In-

ference’, re-evaluates the relation predictions using the most

recent n trajectory predictions.

In addition to the NRI-based models, we study addi-

tional simple baselines: SingleLSTM predicts the trajec-

tory for each independently using an LSTM with shared

parameters. JointLSTM predicts the trajectories for all of

the entities jointly using an LSTM, i.e., both the inputs

and outputs are the concatenated states of all entities. FC-

Graph uses the same decoder architecture as dNRI, but as-

sumes a fully-connected graph with one edge type at ev-

ery time step. Further details and prediction visualizations

can be found in the Appendix. Code used to implement

these models and run these experiments can be found at

https://github.com/cgraber/cvpr_dNRI.

4.1. Synthetic Physics Simulations

The purpose of these experiments is to evaluate the abil-

ity of dNRI to recover ground-truth dynamic relations. For

this we consider a synthetic dataset constructed to contain

dynamic relations. Each trajectory consists of three par-

ticles: the first two (red) move with a constant velocity in

some direction. The third (blue) is initialized with a random

velocity, but is additionally “pushed” away by the other par-

ticles whenever the distance separating them is less than 1.

Our findings are summarized in Fig. 4. Static NRI, with

average relation prediction F1 of 27.1, is unable to model

the dynamic relations, and performs worse than dNRI,

which has average relation prediction F1 of 54.3.

4.2. Motion Capture Data

Next we study motion capture recordings from several

subjects taken from the CMU motion capture database [8].

We run experiments on two subjects: the first, #35, is the

same subject evaluated by Kipf et al. [22] and consists of

walking trajectories. The second, #118, consists of trials

where the subject stands stationary for a differing amount

of time and then jumps forward. For the former subject, we

follow Kipf et al. [22]: train using sequences of length 50

0 20 40
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

M
SE

FCGraph
SingleLSTM
JointLSTM
Static NRI
S. NRI, "Dyn." Inf.
dNRI

(a) #35, 2 relation types

0 20 40
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

M
SE

FCGraph
SingleLSTM
JointLSTM
Static NRI
S. NRI, "Dyn." Inf.
dNRI

(b) #35, 4 relation types

0 10 20 30 40
Step

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

M
SE

FCGraph
SingleLSTM
JointLSTM
Static NRI
S. NRI, "Dyn." Inf.
dNRI

(c) #118, 2 relation types

0 10 20 30 40
Step

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

M
SE

FCGraph
SingleLSTM
JointLSTM
Static NRI
S. NRI, "Dyn." Inf.
dNRI

(d) #118, 4 relation types

Figure 5: Trajectory prediction errors on motion capture data. Results are averaged across 5 initializations, with shaded area

representing standard deviation.

d
N

R
I

S
ta

ti
c

N
R

I
S

.
N

R
I

(D
y

n
.)

Frame 2 Frame 21 Frame 46

Figure 6: Sample predictions for dNRI (top row), static

NRI (middle row), and static NRI with “dynamic” inference

(bottom row) on a test trajectory for motion capture subject

#35 using 4 relation types. The red, solid skeleton repre-

sents the ground-truth state, and the blue, dotted skeleton

represents model predictions.

and evaluate on sequences of length 99 by providing the first

50 frames and predicting the following 49 frames. Due to

the lack of regular motion in the trials for subject 118, how-

ever, we cannot evaluate in the same way – the initial sta-

tionary period varies per trial and provides no information

about the jumping motion. Instead, we evaluate as follows:

after providing the models with the initial 50 frames of a

given trial, we save the current encoder/prior/decoder states

and predict the next 40 frames. We then restore the previ-

ous states, provide the model with the next step of input,

and then predict another 40 frames. This process continues

until the end of the trial is reached. We then average the

errors for every number of steps, between 1 and 40, since

ground-truth states were provided to the model. Separate

models are trained to predict two and four relation types.

Fig. 5a and Fig. 5b display the prediction errors for sub-

ject #35. The dNRI models are able to predict future trajec-

tories better than both the static NRI models and the simpler

baselines. As demonstrated in Fig. 6, the dNRI model is

d
N

R
I

S
ta

ti
c

N
R

I
S

.
N

R
I

(D
y

n
.)

Figure 7: Sample predictions for dNRI (top row), static

NRI (middle row), and static NRI with “dynamic” inference

(bottom row) on a test trajectory for motion capture subject

#118 using 4 relation types. The red, solid skeleton repre-

sents the ground-truth state, and the blue, dotted skeleton

represents model predictions. Each frame is predicted 20

time steps after the most recent ground-truth was provided.

able to predict many frames into the future of the walk cy-

cle without straying too far from the ground-truth skeleton.

In contrast, the static NRI model makes significant errors

much earlier, reaching a point where significant deformi-

ties in the skeleton appear. A visualization of some of the

predicted edges for this trajectory are shown in Fig. 1. We

observe that, relative to the ‘heel’ of the skeleton, different

relation types are active when picking it up, moving it for-

ward, and placing it back down. This indicates that different

models are useful during these three phases of movement.

Fig. 5c and Fig. 5d display the prediction errors for sub-

ject #118. Once again, the dNRI models outperform the

static NRI models in predicting the future, while performing

comparably to the other baselines. However, unlike these

baselines, dNRI aids with prediction interpretation, i.e., re-

lation prediction. Fig. 7 shows four predicted time steps for

the static and dynamic models, each of which is the 20th

step of prediction after the most recent ground-truth states

were provided. All models are able to capture the general

5 10 15
Step

0.000

0.005

0.010

0.015

M
SE

FCGraph
SingleLSTM
JointLSTM
Static NRI
S. NRI, "Dyn." Inf.
dNRI

Figure 8: Prediction errors (left) and sample trajectory predictions (right 3) on basketball data. From left to right, these plots

represent ground-truth, static NRI, and dNRI (ours). The first 40 frames are provided to the models (transparent), and the

models are tasked with predicting the final 9 frames (solid).

0 5 10 15 20 25 30

0

5

10

15

20

25

30
0 5 10 15 20 25 30

0

5

10

15

20

25

30
0 5 10 15 20 25 30

0

5

10

15

20

25

30
0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 9: Edge predictions corresponding to dNRI predic-

tions in Fig. 7. The displayed edges represent those con-

nected to the left hand which change during these frames.

jumping motion, but dNRI much more accurately tracks the

locations of the leg and hip joints. Fig. 9 visualizes edges

used to make these predictions. The relations predicted by

the model during the jump preparation phase differ from

the relations predicted while the subject is in the middle of

jumping. The static model cannot select different relations

between different movement phases, and therefore is less

flexible than the dynamic model.

4.3. Basketball Data

We next study basketball player trajectory data [53].

Each trajectory contains the 2D positions and velocities of

the offensive team, consisting of 5 players. They are pre-

processed into 49 frames which span approximately 8 sec-

onds of play. All models are trained on the first 40 frames of

the training trajectories; at evaluation time, the models are

provided with either the first 30 or 40 frames of input and

are tasked with predicting the remaining frames. We train

models predicting two relation types.

Fig. 8 displays the prediction errors on the test data for

these experiments. On this data, dNRI significantly outper-

forms the static NRI model in predicting the future trajec-

tory of the players. Fig. 8 also presents a sample player

trajectory from the validation dataset, and Fig. 10 displays

the predicted edges during the third and 45th time steps.

Figure 10: Sample predicted edges for basketball data. The

top row represents static NRI, and the bottom row repre-

sents dNRI (ours).

The static model mispredicts the general path of the red

and blue players, while dNRI is able to capture the cor-

rect movement direction. This may be a consequence of

the predicted edges: the static model does not predict a re-

lation between the orange player and either the red or the

blue player, and therefore the model does not use the path

of the orange player to inform their trajectories. In contrast,

the dynamic model predicts a relation between these players

at the beginning of the trajectory, which informs the initial

movement of these entities. In the later frame, the dynamic

model no longer predicts these relations, indicating they are

not useful to predict the motion of these entities at this time.

4.4. Traffic Trajectory Data

Finally, we study the newly-introduced inD traffic

dataset [5]. This dataset consists of recorded vehicle, bicy-

cle, and pedestrian trajectories at traffic intersections. Dif-

ferent from the other studied datasets, the number of entities

being tracked varies over time as they enter/leave the area.

0 10 20 30 40
Step

0.00

0.02

0.04

0.06

0.08

0.10

M
SE

FCGraph
dNRI (4 edge)

Figure 11: Trajectory predic-

tion errors on inD dataset.

Consequently, RNN models

or static NRI are not ap-

plicable: they assume pres-

ence of the same entities at

all times. The data con-

tains 36 recordings; we use

19/7/10 for train, validation,

and test. For evaluation, we

divide each recording into

sequences of 50 steps. For

each entity that is present

in the sequence, we provide

the model with ground-truth

position and velocity for the first 5 steps it is present, after

which the model forecasts the remainder of its trajectory.

Fig. 11 presents results on this data for dNRI, trained

with 4 relations, against an FCGraph baseline. dNRI, which

has the ability to model multiple types of interactions be-

tween different entities, outperforms FCGraph by a margin.

5. Related Work

Related to our developed ‘dynamic Neural Relational In-

ference’ (dNRI) is the recently introduced static NRI [22].

NRI is an unsupervised model which explicitly represents

and infers interactions purely from observational data. For

this, a variational auto-encoder model [21, 37] is formulated

where the latent code represents the underlying interaction

graph in the form of an adjacency matrix. Both the en-

coder and reconstruction models are based on graph neural

nets [40, 28, 12]. Different from our dNRI, this static ver-

sion assumes that the interaction remains identical across

time. While this assumption is valid for some systems, it is

violated most of the time. We address this concern by devel-

oping a model that predicts separate relations at every point

in time. Additionally, an independent uniform prior per la-

tent variable is used, whereas we learn a data-dependent se-

quential prior. Other recent work has attempted to extend

NRI in other ways, e.g., by using factorized graphs [49] or

including additional structural priors [27]. These extensions

are orthogonal to our approach.

Many prior works have attempted to learn the dynamics

of various types of systems. These include physical sys-

tems, using data from simulated trajectories [4, 16, 6, 35,

31] or generated video data [48, 46], human motion [1, 25,

15, 50, 51, 38], and simulated or real agents [44, 19, 52].

Different from our work, these methods either know/assume

the underlying graph structure or infer interactions implic-

itly. Attention mechanisms [32, 3, 41, 42] can also be

viewed as uncovering the interactions of systems, and they

have been used previously as a component of graph neu-

ral networks [34, 18, 47, 11, 46, 36]. However, different

from these works, we explicitly infer interactions over the

latent graph structure. There have been attempts to discover

relations in other settings as well, including causal reason-

ing [14] and computational neuroscience [29, 30].

A recent line of work has investigated sequential ver-

sions of latent variable models that extend the variational

auto-encoder to sequential data. Deep Kalman filters [24],

though motivated as an extension to Kalman filters with

nonlinear transition/observation functions, learn an autore-

gressive approximate posterior over the latent state vari-

ables within a VAE framework which is a function of both

past and future observation states. Other related works are

motivated as introducing stochastic variables into recurrent

neural net models. These include VRNN [7], which learns

a smoothing prior/approximate posterior which is the func-

tion of past inputs at every time step, SRNN [10], whose

prior/approximate posterior are a function of the entire in-

put at every time step, and Z-Forcing [13], which uses a

similar prior/approximate posterior but provides the pre-

dicted latent variables as input to the decoder. Aneja et

al. [2] apply a similar model to the task of image caption-

ing, but they use separate hidden states for the encoder and

decoder. We differ from these approaches in several ways:

most importantly, our latent variables have an explicit in-

terpretation that represent relations between entities, while

theirs do not have a direct interpretable meaning. In ad-

dition, we apply our model to predict the future of a pro-

vided input trajectory, while their models are used to an-

alyze the structure of text/speech and to generate realis-

tic samples from the training distribution. Similarly, other

works which predict trajectories using latent-variable ap-

proaches (e.g., [26, 9, 23, 45]) differ in that the learned la-

tent variables represent the state of individual entities or a

scene rather than interactions. Several of these works aug-

ment the ELBO with additional auxiliary losses to improve

performance. A similar loss may be able to improve the

performance of dNRI, which we leave to future work.

6. Conclusions

We introduced Dynamic Neural Relational Inference,

extending the NRI framework to systems where the rela-

tions between entities are expected to change across time.

We demonstrated that modeling dynamic entity relations

leads to better performance across various tasks. In the fu-

ture, we will investigate whether we can adapt additional

methods used by recent sequential latent variable models,

such as auxiliary loss functions, to further improve perfor-

mance.

Acknowledgements. This work is supported in part

by NSF under Grant No. 1718221 and MRI #1725729,

UIUC, Samsung, 3M, Cisco Systems Inc. (Gift Award CG

1377144) and Adobe. We thank Raymond Yeh for visual-

ization code, Yurii Vlasov for the helpful discussions, and

Cisco for access to the Arcetri cluster.

References

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,

and S. Savarese. Social lstm: Human trajectory prediction in

crowded spaces. In Proc. CVPR, 2016. 8

[2] J. Aneja, H. Agrawal, D. Batra, and A. Schwing. Sequential

latent spaces for modeling the intention during diverse image

captioning. In Proc. ICCV, 2019. 8

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine trans-

lation by jointly learning to align and translate. In Proc.

ICLR, 2015. 1, 8

[4] P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K.

Kavukcuoglu. Interaction networks for learning about ob-

jects, relations and physics. In Proc. NIPS, 2016. 8

[5] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and

L. Eckstein. The ind dataset: A drone dataset of naturalis-

tic road user trajectories at german intersections. In arXiv

preprint arXiv:1911.07602, 2019. 7

[6] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum.

A compositional object-based approach to learning physical

dynamics. In Proc. ICLR, 2017. 8

[7] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and

Y. Bengio. A recurrent latent variable model for sequential

data. In Proc. NIPS, 2015. 8

[8] CMU. Carnegie-mellon motion capture database, 2003. 5

[9] N. Deo and M. M. Trivedi. Convolutional social pooling for

vehicle trajectory prediction. In Proc. CVPRW, 2018. 8

[10] M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther.

Sequential neural models with stochastic layers. In Proc.

NIPS, 2016. 4, 8

[11] V. Garcia and J. Bruna. Few-shot learning with graph neural

networks. In Proc. ICLR, 2018. 1, 8

[12] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.

Dahl. Neural message passing for quantum chemistry. In

Proc. ICML, 2017. 2, 8

[13] A. Goyal, A. Sordoni, M.-A. Côté, N. R. Ke, and Y. Bengio.

Z-forcing: Training stochastic recurrent networks. In Proc.

NIPS, 2017. 8

[14] C. Granger. Investigating causal relations by econometric

models and cross-spectral methods. Econometrica, 1969. 8

[15] A. Gupta, J. Johnson, F. Li., S. Savarese, and A. Alahi. Social

gan: Socially acceptable trajectories with generative adver-

sarial networks. In Proc. CVPR, 2018. 8

[16] N. Guttenberg, N. Virgo, O. Witkowski, H. Aoki, and R.

Kanai. Permutation-equivariant neural networks applied

to dynamics prediction. arXiv preprint arXiv:1612.04530,

2016. 8

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Computation, 1997. 4

[18] Y. Hoshen. Vain: Attentional multi-agent predictive model-

ing. In Proc. NIPS, 2017. 1, 8

[19] B. Ivanovic and M. Pavone. The trajectron: Probabilistic

multi-agent trajectory modeling with dynamic spatiotempo-

ral graphs. In Proc. ICCV, 2019. 8

[20] E. Jang, S. Gu, and B. Poole. Categorical reparameterization

with gumbel-softmax. In Proc. ICLR, 2017. 2

[21] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. In Proc. ICLR, 2014. 2, 8

[22] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel.

Neural relational inference for interacting systems. In Proc.

ICML, 2018. 1, 2, 5, 8

[23] V. Kosaraju, A. Sadeghian, R. Martı́n-Martı́n, I. Reid, H.

Rezatofighi, and S. Savarese. Social-bigat: Multimodal tra-

jectory forecasting using bicycle-gan and graph attention

networks. In Proc. NeurIPS, 2019. 8

[24] R. G. Krishnan, U. Shalit, and D. Sontag. Deep Kalman

Filters. In https://arxiv.org/abs/1511.05121, 2015. 4, 8

[25] H. M. Le, Y. Yue, P. Carr, and P. Lucey. Coordinated multi-

agent imitation learning. In Proc. ICML, 2017. 8

[26] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and

M. Chandraker. Desire: Distant future prediction in dynamic

scenes with interacting agents. In Proc. CVPR, 2017. 8

[27] Y. Li, C. Meng, C. Shahabi, and Y. Liu. Structure-informed

graph auto-encoder for relational inference and simulation.

In ICML Workshop on Learning and Reasoning with Graph-

Structured Data, 2019. 8

[28] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated

graph sequence neural networks. In Proc. ICLR, 2016. 2, 8

[29] S. Linderman and R. Adams. Discovering latent network

structure in point process data. In Proc. ICML, 2014. 8

[30] S. Linderman, R. Adams, and J. Pillow. Bayesian latent

structure discovery from multi-neuron recordings. In Proc.

NIPS, 2016. 8

[31] I.-J. Liu∗, R. Yeh∗, and A. G. Schwing. PIC: Permutation

Invariant Critic for Multi-Agent Deep Reinforcement Learn-

ing. In Proc. CORL, 2019. ∗ equal contribution. 8

[32] M.-T. Luong, H. Pham, and C. D. Manning. Effective ap-

proaches to attention-based neural machine translation. In

Proc. EMNLP, 2015. 1, 8

[33] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distri-

bution: a continuous relaxation of discrete random variables.

In Proc. ICLR, 2017. 2

[34] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and

M. M. Bronstein. Geometric deep learning on graphs and

manifolds using mixture model cnns. In Proc. CVPR, 2017.

1, 8

[35] D. Mrowca, C. Zhuang, E. Wang, N. Haber, L. Fei-Fei, J.

Tenenbaum, and Daniel L. Yamins. Flexible neural repre-

sentation for physics prediction. In Proc. NeurIPS, 2018. 8

[36] M. Narasimhan, S. Lazebnik, and A. G. Schwing. Out of the

Box: Reasoning with Graph Convolution Nets for Factual

Visual Question Answering. In Proc. NeurIPS, 2018. 8

[37] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic

backpropagation and approximate inference in deep genera-

tive models. In Proc. ICML, 2014. 2, 8

[38] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M.

Gavrila, and K. O. Arras. Human motion trajectory predic-

tion: A survey. arXiv preprint arXiv:1905.06113, 2019. 8

[39] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R.

Pascanu, P. Battaglia, and T. Lillicrap. A simple neural net-

work module for relational reasoning. In Proc. NIPS, 2017.

1

[40] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G.

Monfardini. The graph neural network model. IEEE Trans.

on NN, 2008. 2, 8

[41] I. Schwartz, A. G. Schwing, and T. Hazan. High-Order At-

tention Models for Visual Question Answering. In Proc.

NIPS, 2017. 8

[42] I. Schwartz, S. Yu, T. Hazan, and A. G. Schwing. Factor

Graph Attention. In Proc. CVPR, 2019. 8

[43] S. Sukhbaatar, A. Szlam, and R. Fergus. Learning multiagent

communication with backpropagation. In Proc. NIPS, 2016.

1

[44] C. Sun, P. Karlsson, J. Wu, J. Tenenbaum, and K. Murphy.

Stochastic prediction of multi-agent interactions from partial

observations. In Proc. ICLR, 2019. 8

[45] C. Tang and R. R. Salakhutdinov. Multiple futures predic-

tion. In Proc. NeurIPS, 2019. 8

[46] S. Van Steenkiste, M. Chang, K. Greff, and J. Schmidhuber.

Relational neural expectation maximization: Unsupervised

discovery of objects and their interactions. In Proc. ICLR,

2018. 1, 8

[47] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,

and Y. Bengio. Graph attention networks. In Proc. ICLR,

2018. 1, 8

[48] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu,

and A. Tacchetti. Visual interaction networks: Learning a

physics simulator from video. In Proc. NIPS, 2017. 8

[49] E. Webb, B. Day, H. Andres-Terre, and P. Lió. Factorised

neural relational inference for multi-interaction systems. In

ICML Workshop on Learning and Reasoning with Graph-

Structured Data, 2019. 8

[50] Z. Xu, Z. Liu, C. Sun, K. Murphy, W. T. Freeman, J. B.

Tenenbaum, and J. Wu. Unsupervised discovery of parts,

structure, and dynamics. In Proc. ICLR, 2019. 8

[51] Y. Ye, M. Singh, A. Gupta, and S. Tulsiani. Compositional

video prediction. In Proc. ICCV, 2019. 8

[52] R. Yeh, A. G. Schwing, J. Huang, and K. Murphy. Diverse

Generation for Multi-agent Sports Games. In Proc. CVPR,

2019. 8

[53] Y. Yue, P. Lucey, P. Carr, A. Bialkowski, and I. Matthews.

Learning fine-grained spatial models for dynamic sports play

prediction. In Proc. ICDM, 2014. 7

