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Abstract

Following the recent advances in deep networks, object

detection and tracking algorithms with deep learning back-

bones have been improved significantly; however, this rapid

development resulted in the necessity of large amounts of

annotated labels. Even if the details of such semi-automatic

annotation processes for most of these datasets are not

known precisely, especially for the video annotations, some

automated labeling processes are usually employed. Un-

fortunately, such approaches might result with erroneous

annotations. In this work, different types of annotation

errors for object detection problem are simulated and the

performance of a popular state-of-the-art object detector,

YOLOv3, with erroneous annotations during training and

testing stages is examined. Moreover, some inevitable an-

notation errors in Anti-UAV Challenge dataset is also exam-

ined in this manner, while proposing a solution to correct

such annotation errors of this valuable data set.

1. Introduction

Object detection literature has been developed very

rapidly throughout the last couple of years. After Convo-

lutional Neural Networks (CNNs) become popular, conven-

tional feature extraction methods are replaced with convolu-

tional layers. Based on deep CNN structures, various object

detectors are proposed [8, 7, 24, 9], including one-shot de-

tectors [20, 17, 21, 14].

A typical one-shot detector generally finds all the defined

class objects with their bounding box information and ob-

jectness scores. After this step, some post processing stage

might be employed, such as non-maxima suppression, to

eliminate duplicated results. Since these methods are de-

signed to perform on each image independently, they can be

employed for tracking problems as well without any drift

problem. After recent developments in GPU technology

and efficiency enhancements of one-shot detectors, there are

alternative methods working in near real-time [21, 14] that

made them to be employed them in real-time tracking prob-

lems.

YOLOv3 [22] is a popular state-of-the-art object detec-

tor belonging to one-shot object detector family that works

close to real-time and more accurate compared to the previ-

ous approaches [17, 14]. Moreover, lots of Tensorflow and

PyTorch implemented versions of YOLOv3 are available in

addition to its original version, which is implemented in C,

with an API called Darknet.

Similar to the other CNN-based object detectors,

YOLOv3 also requires a large amount of labeled data for the

training process which requires significant amount of man-

power. Especially for video annotations, labeling a small

number of images by hand and interpolating the intermedi-

ate frames with tracking might be an acceptable idea to save

manpower and time. Unfortunately, since these algorithms

are not perfect, there might be a discrepancy between the

real data and interpolated data which results in annotation

errors.

In this study, YOLOv3 algorithm is firstly trained with

CVPR-2020 Anti-UAV Challenge dataset by fine tuning the

existing weights of the algorithm to detect drone classes.

YOLOv3 is trained for different number of drone classes

and different number of epochs with different amount of

data to figure out the most efficient way of training in terms

of training time and performance. Next, the tracking accu-

racy of YOLOv3 technique is analyzed by considering the

provided annotations.

After selection of the best way for training, some ad-

ditional annotation errors are applied to the dataset in or-

der to create separate new datasets each consisting different

type of errors and some combined ones. Then, YOLOv3 is

trained with each of these new erroneous datasets and the

results are compared in terms of precision, recall and track-

ing accuracy.

Since some incorrect annotations are observed in CVPR-

2020 Anti-UAV Challenge dataset, a novel semi-automatic

approach is also proposed to correct erroneous annotations

to improve the labeling accuracy of this valuable dataset.

Moreover, the accuracy between corrected and original la-

bels are calculated in terms of mean and standard deviation.
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This paper has three main objectives: The first objec-

tive is to reveal the performance of a state-of-the-art de-

tector for small objects which can serve as a baseline for

detection-based tracking methods. The second objective is

to investigate the performance of the detector in the pres-

ence of annotation errors. The final objective of this pa-

per is to come up with a semi-automatic method to correct

such annotation errors that are already present in CVPR-

2020 Anti-UAV Challenge dataset.

The rest of the paper is organized as follows: Firstly,

related work on deep learning-based object detectors and

training with noisy data are presented. Section 3 and 4 are

dedicated to training of YOLOv3 with Anti-UAV Challenge

dataset and semi-automatic annotation correction. In Exper-

iments section, the results for original, noisy and corrected

datasets are compared. Conclusions of the experimental ev-

idence are presented in the last section.

2. Related Work

2.1. Deep Learning­based Object Detection

In the literature, deep learning-based object detectors are

mostly classified into two classes: Two-stage (region pro-

posal based) and one-stage detectors [12, 16]. On the

other hand, there are few-shot learning algorithms which are

mostly used for object counting or segmentation [27, 29].

R-CNN [8] can be considered as the first two-stage de-

tector proposed for object detection. This algorithm shows

that a deep learning-based object detector can rapidly in-

crease the performance in PASCAL-VOC dataset [4]. Gir-

shick et al. [7] then proposed a faster version of R-CNN,

namely Fast R-CNN. Instead of extracting features from

each region proposal separately, Fast R-CNN perform the

feature extraction on entire image and propagate them to

the region of interest (RoI) pooling layer. Ren et al. [24]

later proposed Faster R-CNN, which improves region pro-

posal architecture. Fast R-CNN uses selective search to find

related region proposals, which decreases detection time

dramatically. Meanwhile, Faster R-CNN introduces a com-

pletely new structure, denoted as Region Proposal Network

(RPN) for generating proposals. RPN is a fully convolu-

tional structure which predicts region proposals in differ-

ent scales or sizes, whereas Fast R-CNN consists fully con-

nected layers which weakens the network considerably. The

idea behind feature mapping on RPN is visually presented

in Figure 1 (b). He et al. [9] introduced Mask R-CNN as an

extension of Faster R-CNN to create a framework for object

instance segmentation. In Mask R-CNN method, ResNet-

FPN [13] (feature pyramid network) is utilized for the fea-

ture extraction backbone and such an approach helps the

algorithm to achieve higher accuracy with reduced compu-

tation time. FPN structure is presented in Figure 1 (d).

As a pioneering one-stage object detector, Redmon et

al. [20] proposed YOLO (You Only Look Once)algorithm

which works as a real-time application. The reason for its

real time performance is due to the fact that instead of do-

ing selective search for thousands of region proposals, as in

Fast R-CNN, YOLO simply predicts less than 100 bound-

ing boxes for each image. Another one-stage object detec-

tor, SSD (single shot detector) [17] is proposed by Liu et al.,

works as a multiple class object detector, which determines

class scores and bounding boxes from a fixed set of bound-

ing boxes of different sizes and scales. SSD combines ideas

from RPN of Faster R-CNN and YOLO; moreover, it also

adds multiscale convolutional layers for feature extraction

to increase detection speed while preserving accuracy.

Redmon et al. [21] later improved their work YOLO with

a newer version, YOLOv2 which utilizes a completely new

feature extractor backbone, called Darknet19, since it con-

sists 19 convolutional layers. In YOLOv2, fully connected

layers are removed and convolutional layers are used to pre-

dict bounding boxes. In 2018, RetinaNet [14] is proposed

by Lin et al. as another one-stage object detector. The main

novelty of RetinaNet algorithm is reducing the class imbal-

ance effect between foreground and background of each ob-

ject which causes two-stage object detectors having higher

precision than the one-stage ones. In order to gain robust-

ness against class imbalance, Lin et al. proposed a new loss

function, namely focal loss, which reduces the weight of

easy examples during training.

Redmon et al. [23] further improved their algorithm into

a new version, namely YOLOv3. YOLOv3 enables multi-

class detection by using logistic loss function instead of

softmax layer, since there could be possible cases for which

an object belong to more than one class. Based on fea-

Figure 1. Feature pyramid alternatives. (a) Most straight forward

solution since every size has its own network. Therefore, the net-

work is very slow. Used in [1]. (b) One prediction at the end of

the network. Gradients might vanish for small objects. Used in

[10, 7, 24]. (c) Different predictions for different layers but pre-

vious layer prediction cannot use deeper layer information. Used

in [17] (d) Feature pyramid network. Taken from [13] where this

method is also proposed.



ture pyramid network, which is illustrated in Figure 1 (d),

YOLOv3 gives three different level of detection for three

various sized objects.

In order to compete with trackers, in this study only one

shot detectors are considered that work in real-time or near-

real-time. According to the results in [12], on MS COCO

dataset [15] YOLOv3 achieves 57.9% mAP, meanwhile

RetinaNet has 61.1% mAP, meanwhile YOLOv3 operates

nearly 4 times faster than RetinaNet. Moreover, YOLOv3

is a better alternative for small objects (hence with drones),

since it uses multi-scale detection. It provides nearly real

time object detector with good performance potential on

small objects, YOLOv3 is selected for the erroneous anno-

tation experiments.

2.2. Training with Erroneous Annotations for Ob­
ject Detection

Labeling errors about the training data is already exam-

ined in the object detection literature. Frenay et al. [5] de-

fined annotation errors as an independent stochastic process

which may or may not be introduced intentionally. The

authors have done a detailed survey that includes learning

in presence of labeling noises, such as some probabilistic

models which are Bayes-optimal classifiers [19]. Moreover,

they included some semi/weakly supervised methods [2]

that prevent mislabelled instances from affecting detection

performance considerably. Moreover, they examined some

noise-cleansing algorithms, such as detection of mislabelled

instances by using class confidence metrics [26].

Rolnick et al. [25] argues that introducing label noise

into a training set reduces the performance of CNNs, al-

though it is not as remarkable as the multi-layer percep-

tron networks. In addition to this argument, the authors also

stated that more deeper networks, such as ResNet [11], are

less affected from such a noise. Moreover, the authors con-

clude that to attain the same accuracy level, the training set

with higher rate of noisy labels need to be larger.

Noisy labels can also be a problem for weakly super-

vised object segmentation tasks. Lu et al. [18] introduces

a superpixel noise reduction algorithm which is based on a

sparse learning model. Next, with this cleaned labels, an it-

erative superpixel label prediction/appearance model is cre-

ated. Using this method, the authors increased total per-

pixel accuracy by 5 to 15% in comparison to the best other

method [28].

In one of the most related and recent research [3],

the authors trained their SSD-based framework with KITTI

dataset [6] and artificial annotation errors which are addi-

tional boxes, missing boxes and shifted boxes. A typical

visual of a sample annotation error on KITTI dataset is pre-

sented in Figure 2. The performance of SSD with or with-

out annotation errors are also reported as shown in Table 1.

According to the results, additional boxes decreases perfor-

mance, that decrease are not related with the noise prob-

ability. Missing and shifted boxes on the other hand, de-

creases precision further with increasing noise probability,

with similar rates. Upon all of the noise types, combined

labeling noise affects the network most, as expected.

Figure 2. Simple example of noisy labeling on KITTI dataset. First

image shows real ground truth labeling while the latter one shows

some noises [3].

Table 1. Performance on KITTI dataset in terms of average preci-

sion with different types of noises with varying levels. [3].

Noise Probability

Noise Type 0.0 0.25 0.5

No Noise 0.629 - -

Additional boxes - 0.560 0.587

Missing Boxes - 0.593 0.518

Shifted Boxes - 0.577 0.502

Combined - 0.457 0.317

3. Performance Metrics

Since Anti-UAV Challenge dataset is aimed for the track-

ing problem, the performance metric for this challenge is

announced as the average intersection over union based on

the assumption that there is at most one output object on

each frame. However, in this paper a detection algorithm

is studied; therefore, additional performance metrics are re-

quired. Hence, for this purpose hit rate and number of false

alarms are also evaluated as the additional performance

metrics. If a detection output has IoU larger than 0.5 for the

annotated object, then this result is counted as a hit (Pascal

criteria). In case of zero IoU, the decision is counted as false

alarm. Finally, for non-zero IoU smaller than 0.5, no addi-

tional penalty is applied as the annotated object is missed

and penalty is already included in the hit rate. No detection

output for no annotation, i.e. true rejection, is not counted.

For rest of the paper, comparison results are presented in

terms of false alarms per minute and hit rate, in addition to

the tracking accuracy metric given in Anti-UAV Challenge,



TA which is defined as:

TA =
1

T

T∑

t=1

IoUt ∗ vt ∗ pt + (1− pt)(1− vt) (1)

where T is number frames, IoUt is intersection over union,

vt ∈ {0, 1} is visibility flag, and pt ∈ {0, 1} is prediction

flag at frame t.

Since the object detector YOLOv3 might generate more

than one detection result on a single frame, tracking accu-

racy metric in Eq. 1 cannot penalize additional false alarms.

Therefore, this metric is also slightly modified so that the

false alarms reduce the accuracy. We define this modi-

fied tracking accuracy as follows to penalize additional false

alarms:

MTA =

∑T

t=1
IoUt ∗ vt ∗ pt + (1− pt) ∗ (1− vt)∑T

t=1
max(vt, pt) + (1− pt) ∗ (1− vt)

(2)

This modified tracking accuracy is equal to original tracking

accuracy as long as the number of detection per frame is

limited to one, but each additional false detection reduces

the tracking accuracy.

4. Training YOLOv3 with Anti-UAV Dataset

Modified Network: YOLOv3 network is pretrained to

detect 80 different classes, while the input image is di-

vided into grids on three different scales. For each grid

cell in each scale, YOLOv3 generates a vector containing

the objectness score, class probabilities and bounding box

for three alternative anchor boxes. Therefore, for each cell

the length of the output vector is 3x(1+80+4)=255. For

drone detection, we have trained YOLOv3 only for one-

and three-class alternatives resulting in output vectors of

length 3x(1+1+4)=18 and 3x(1+3+4)=24, respectively. For

the one-class case, the network is trained only with thermal

images to detect drones. For three-class case, the network

is trained with RGB day, RGB night and thermal images

which correspond to three different drone classes. The per-

formance of these two alternatives are compared to under-

stand whether there is a significant difference between one

class and three class cases or not.

Dataset: For the thermal image dataset, ”test-dev” part

of Anti-UAV Challenge dataset is used. RGB videos are

also included for three-class scenario to examine whether

the including them increases the accuracy or not. The

videos are divided randomly as training and validation set

with weights of 70% and 30%, respectively.

Training: During the training, different dataset sizes and

different epoch numbers tested for one- and three-class al-

ternatives. Since for each annotation error, simulation of

the network should be trained again, precision/training time

efficiency is considered for comparison. The results of 25,

50, 100th epochs with full dataset, half dataset which is ob-

tained by getting one frame and skipping the next one, and

one quarter dataset which is obtained by getting one frame

and skipping the next three, are also compared.

As tabulated in Table 2, the trained network produces

quite similar results for one-class and three-class cases for

the full dataset, whereas training time is extended twice for

the three-class scenario. Hence for the rest of the paper, we

only focused on one-class case. Moreover, at 100th epoch,

false alarms are increased due to some memorizing or over-

fitting. Therefore, for the rest of the paper, only 25th and

50th epochs are compared. As presented in Table 3, the

most efficient performance is on 50th epoch for half dataset.

Since data from the adjacent video frames are quite redun-

dant, removing half of the dataset does not decrease perfor-

mance of the network. On the other hand, using only quar-

ter of the dataset decreases the performance. However, it is

difficult to deduce whether this result is due to either losing

data variety or number of samples in the set. To sum up,

for the rest of the paper, the network is trained for one-class

only with the half of the thermal images for 50 epochs.

Table 2. Performance comparison of YOLOv3 on Thermal Test Set

when trained only with thermal data (one-class) vs Thermal+RGB

data (three-classes) in terms of Hit Rate (%) and False Alarm (per

minute)

# Epoch 25 50 100

HR FA HR FA HR FA

Thermal 97.5 2.4 97.1 2.2 97.3 3.5

Thermal+RGB 96.9 2.3 97.4 1.7 97.9 4.3

Table 3. Performance comparison of YOLOv3 on Thermal Test

Set for different number of epochs and different dataset sizes in

terms of Hit Rate (%) and False Alarm (per minute)

# Epoch 25 50

HR FA HR FA

Full dataset 97.5 2.4 97.1 2.2

1/2 dataset 95.7 2.4 97.5 2.4

1/4 dataset 93.9 2.7 95.1 2.1

5. Annotation Errors in Anti-UAV Dataset

In order to assess the behavior of YOLOv3 on Anti-UAV

Challenge dataset better, we have carefully inspected the

outputs of the algorithm, especially the frames on which

the algorithm fails, i.e. frames with low IoU, miss or

false alarm. After this inspection, it can be easily noticed

that there are significant amount of gross annotation errors,

some of which are shown in Figure 3.

Since the dataset is composed of consecutive video

frames, and only some of them have significant annota-

tion errors, most of the time, it might be possible to re-

cover those annotation errors by using temporal data and



Figure 3. Some annotation errors in Anti-UAV dataset are

showed in green bounding boxes and their corrected versions are

showed in red bounding boxes. (a) Taken from 213th frame

of IR 20190925 130434 1 4, meanwhile (b) is taken from 620th

frame of IR 20190925 130434 1 9.

classical methods. Conventional template matching meth-

ods, such as cross correlation or phase correlation are quite

effective with a high pointing accuracy for the short time

periods, i.e. only a few frames. Even if the recent learning-

based methods outperform such fundamental methods, in

general, it should be reminded that template matching meth-

ods have high pointing accuracy performance as long as the

pose changes and changes in background are not significant.

As Anti-UAV Challenge dataset contains 30fps videos, the

pose changes between consecutive frames can be ignored,

and the changes in background could be eliminated man-

ually. Moreover, even if the annotations are erroneous, as

long as the annotation error is small with respect to the ob-

ject size, those shifts do not affect template matching meth-

ods as the most of the template is still covered by the object

of interest.

In order to find the position of an object box (defined on

frame k) at frame k+1, we search the neighborhood of an-

notated object center on frame k+1 with cross correlation.

Let uk+1 be displacement between annotated object center

on frame k + 1 and the matching point of the template de-

fined on frame k. This difference should have three compo-

nents: annotation error on frame k, wk; annotation error on

frame k+1, wk+1; and the error of the matching algorithm

vk+1. For the first frame, there are two unknowns (annota-

tion errors in x and y axes) and each new frame introduces

four new unknowns (annotation and matching errors on x

and y axes), resulting in a underdetermined linear system.

During our initial attempts, we observe that minimum-norm

solution of such an underdetermined system tends to assign

most of the displacements between consecutive frames to

matching errors. If the search range is large enough and

pose change is not significant, the error of matching algo-

rithm is usually small but it can cause some drift. In order to

avoid the drift, we accumulate the displacements, fit a line

to this cumulative displacement, and remove the resulting

trend from the cumulative.

During the experiments, we have observed that the

search range is not large enough for some frames, but

increasing search range might result in additional errors;

therefore, we perform the annotation correction in two

steps for the same search range (20 pixels). After this

automatic correction, visual results of original annotations

and automatically corrected annotations compared by a hu-

man operator, and better performing one is selected manu-

ally. Human operators preferred to use automatically cor-

rected annotations for 66 videos over 100 thermal videos

in dataset. For those 66 videos, the first and the second

order statistics of difference between original annotations

and corrected annotations on x- and y-axes are presented

in Table 4. When the corrected annotations are investi-

gated, the annotation errors are mostly due to box shifts

which are explained in Section 6. Therefore, the numeri-

cal values in Table 4 mainly correspond to parameters of

shifted boxes. Corrected annotations and correction algo-

rithm for thermal images of AntiUAV dataset are avali-

able at github.com/aybora/CVPR2020-Anti-UAV-OGAM-

Correction/

Table 4. Mean and standard deviations of difference and normal-

ized difference with respect to width and height of bounding boxes

between the center values of given and corrected annotations of 66

videos.

µx σx µy σy

Diff. 0.0970 2.729 0.0102 1.720

Norm. Diff 0.0022 0.0559 0.0015 0.0579

6. Experiments

For data annotation, researchers generally either label

the objects one-by-one for each image, or they make the la-

beling between some period of frames (e.g. labeling each

10th frame) and interpolate the bounding box values be-

tween the labeled frames by using a reliable tracker, es-

pecially for video annotation. Therefore, annotation error

sources can be classified into two types: human-based and

tracker-based faults. In the next part, both kinds of error

sources are examined and their simulation results are pre-

sented. The performance of YOLOv3 with such simulated

annotation errors is compared with error-free (original an-

notations) and corrected annotations mentioned in Section

4, and reported in the next part of the Section.

6.1. Simulations of Various Annotation Errors

Additional boxes: This type of error includes an extra

box which does not contain any target. An additional box

due to human fault should have a similar appearance with



true objects and temporal consistency as a human tends to

repeat the fault in consecutive frames. However, additional

boxes due to tracker faults is due to either lack of object is

visible/invisible decision mechanism, which generates ran-

dom results without any temporal consistency or an erro-

neous decision of tracking algorithm which results in addi-

tional boxes having a similar appearance to true objects with

temporal consistency. Therefore, in this study two types of

additional boxes are generated: a) additional boxes at ran-

dom positions without temporal consistency b) additional

boxes initiated on one frame and tracked through consecu-

tive frames to achieve temporal consistency.

In order to insert P% additional boxes without tempo-

ral consistency, P% for the frames selected randomly and

a box having a random position and random size is added.

The position of the box is sampled from uniform distribu-

tion which covers the whole image, where as the size of the

box is selected from a Gaussian distribution, whose mean

and variance is set to mean and variance of object size in

whole dataset.

Temporally consistent additional boxes should also have

a similar appearance to true objects. To insert P% tem-

porally consistent additional boxes, for every 100 frames,

we pick candidate additional boxes at random positions for

the first (100 - P ) frames. Then, for simulating the visual

similarity to true targets, candidate additional box with the

highest variance is selected as the true objects have a differ-

ent appearance from background which results in high vari-

ance. In order to simulate temporal consistency, selected

additional box on the seed frame is tracked for P frames

with correlation tracker.

Missing boxes: A missing box error is simply due to

the unavailability of the annotation of a true object. Com-

pletely random missing boxes are not expected, either due

to human or tracker fault. Labeling people usually misses

the objects due clutter or occlusion which is temporally con-

sistent in general. Trackers have a similar behaviour, when

they miss the target on one frame, they tend to miss the

object in consecutive frames. To generate missing boxes

with P%, for every 100 frames, labeling of first (100 - P )

frames is left as it is and the annotations are removed for the

next P frames to achieve temporal consistency. To examine

whether this temporal consistency has a significant effect or

not, temporally independent missing boxes are also simu-

lated by selecting P% of the frames independently for each

video.

Shifted boxes: A shifted box error is a slightly translated

version of the true object box. As human eye cannot detect

the object box very precisely in pixel or subpixel level, an-

notated boxes might be shifted by a few pixels. Trackers

have a similar behaviour; even if they mark the true target,

resulting bounding box might be shifted by a few pixels.

Human errors can be assumed to have a zero mean Gaussian

distribution. Tracker errors might be biased due to the drift

behaviour of the tracker; however, in this work this effect is

discarded. The shifted boxes are generated by adding zero

mean Gaussian noise with the specified variance to original

boxes without changing the size of the box.

Sample visuals for different types of annotation errors

are presented in Figure 4.

6.2. Performance of YOLOv3 with Simulated An­
notation Errors

For all of the experiments presented in this section, the

same training and validation sets are utilized. The simulated

annotation errors are only applied to the training sets, and

YOLOv3 is trained with erroneous annotations for each ex-

periment independently. For the corrected annotation exper-

iments, the network is trained with corrected annotations,

whereas the results are evaluated both with original and cor-

rected annotations of validation set.

Effect of additional boxes: In the first experiment ad-

ditional boxes with 25% without temporal consistency are

added to the training set. As shown in Additional Boxes

(25%) column of Table 5, when objectness threshold is fixed

(0.5), hit rate is slightly increased with respect to training

with original annotations, which slightly increases tracking

accuracy and modified tracking accuracy as expected, since

the number of misses decreases. However, the number of

false alarms are increased from 2.4 FA/min to 9.7 FA/min.

Figure 4. Visuals of simulated annotation errors: (a) additional box

(b) missing boxes, (c) shifted box.



This result is probably due to a general increase trend in

objectness scores. When objectness threshold is increased

to fix the number of false alarms (2.4 FA/min for original

annotations), hit rate is dropped by 3.4%, tracking accu-

racy and modified tracking accuracy are dropped by 2.5%

with respect to the original annotations as shown in Addi-

tional Boxes (25%) column of Table 6. It can be concluded

that adding completely random boxes of rate 25% is not

sufficient to create some pattern that causes the network to

learn false positives, it rather forces the network to generate

higher objectness scores, which is also supported by the se-

lected objectness threshold of 0.72 to get the same number

of false alarms.

When additional boxes with 50% without temporal con-

sistency are added to the training set, again the false alarm

rate increases significantly as shown in Additional Boxes

(50%) column of Table 5. However, in this case, hit rate

and tracking accuracy are decreased. Apart from forcing the

network to increase the objectness scores, such a large num-

ber of additional boxes seems to detoriate the generalization

capacity of the network. To fix the number of false alarms

(2.4 FA/min for original annotations) objectness threshold

should be increased to 0.68 as shown in Table 6. In this case

hit rate is dropped by 5.3%, tracking accuracy and modified

tracking accuracy are dropped by 6.6%.

The results for temporally consistent additional boxes of

25% is shown in Tmp.Cons.Add.Box. (25%) columns of Ta-

bles 5 and 6. When compared to Additional Boxes (25%)

column of Table 6, the performance is better for temporally

consistent additional boxes and objectness threshold to fix

the number of false alarms is closer to original threshold.

These results indicate that the network finds it easier to re-

ject these consistent additional false alarms which is not ex-

pected. It can be concluded that the proposed temporally

consistent additional box generation method does not work

as expected and failed to generate generalizeable additional

boxes.

Effect of missing boxes: When missing boxes of %25

without temporal consistency is introduced as the annota-

tion error, hit rate and tracking accuracy decrease as well

as the number of false alarms as shown in Missing Boxes

(25%) column of Table 5. When objectness threshold is

set to fix the number of false alarms, hit rate is decreased

by only 0.3% and tracking accuracy is decreased only by

0.5% as shown in Missing Boxes (25%) column of Table 6.

For the missing boxes without any temporal consistency, the

network is still able to generalize the appearance of the ob-

ject; however, objectness scores tend to decrease.

When missing boxes with temporal consistency is intro-

duced as the annotation error, the detection performance

decreases significantly as shown in Tmp.Cons.Mss.Box.

(25%) and Tmp.Cons.Mss.Box. (50%) columns of Tables 5

and 6. Even for the same rate of missing boxes (25%) per-

formance is degraded significantly. When missing boxes

without temporal consistency is applied, the only effect

is introducing false negatives to the training set; however,

when missing boxes have temporal consistency, apart from

false negatives certain poses of the object are excluded from

training set. It can be concluded that, if one has to make a

decision between temporally consistent false positives and

temporally consistent false negatives in training set; it is

better to choose temporally consistent false positives.

Effect of shifted boxes: For shifted boxes two different

alternatives are evaluated: standard deviation of Gaussian

noise is set to a fixed value (1.5 pixels) to simulate tracker

errors and a 10% of object size to simulate human faults.

As the average size of the objects in Anti-UAV Challenge

dataset is 50 pixels in width, the second one corresponds

to a standard deviation of 5 pixels. As shown in Shifted

Boxes (σ = 1.5) and Shifted Boxes (σ = 10%) columns

of Tables 5 and 6, shifted boxes decrease the performance

significantly. Shifted boxes result in lower objectness scores

in general. When the objectness threshold is set to generate

2.4 FA/min, for the noise of 1.5pixels standard deviation

the detection outputs has 3.6% lower pointing and hit rate is

decreased by 5.1%. It should be remembered that hit rate is

a thresholded version of pointing accuracy, i.e. low pointing

accuracy causes a decrease in IoU and detection result is

recorded as a miss due to low IoU.

Effect of combined errors: Finally, 25% temporally

consistent missing boxes, 25% additional boxes without

temporal consistency and shifted bounding boxes with σ =
10% cases are combined to simulate an extreme annotation

error case. The results can be seen in Combined columns of

Tables 5 and 6. As expected, the performance of YOLOv3

significantly degraded for such an extreme case.

Effect of annotation correction: Up to this point, it is

assumed that the published annotations of Anti-UAV Chal-

lenge dataset is error-free; however, as stated in Section 5,

there are significant annotation errors within the dataset.

The proposed annotation correction method is applied to

whole dataset and for 66 of 100 videos, corrected annota-

tions are preferred by human operators.

When the network is trained with the proposed corrected

annotations and the results are evaluated with the original

annotations, the performance is increased as shown Cor-

rected Training columns in Tables 5 and 6. For the fixed

objectness threshold, false alarm rate is slightly increased as

well as hit rate and pointing accuracy. To make a fair com-

parison, objectness score is set to generate same number of

false alarms with original annotations case. As in Shifted

Boxes(σ = 1.5) case, objectness threshold is obtained quite

close to 0.5, however, this threshold update has no effect on

the other metrics. Even evaluated with the original anno-

tations, training with corrected annotations increase the hit

rate and pointing accuracy. This result supports the argu-



ment that the corrected annotations are better. Therefore, as

a final experiment, performance of the corrected training set

is evaluated with the corrected validation set, whose results

support the conclusion about annotation errors in dataset.

As shown Corrected Training+Val column of Table 6, when

the corrected training set is evaluated with corrected valida-

tion set the highest performance is observed.

Table 5. Performance comparison of YOLOv3 on thermal images

in terms of False Alarms (FA / minute), Hit Rate (HR %), Tracking

Accuracy (TA %) and Modified Tracking Accuracy (MA %) when

different noise types are applied with different probabilities and

objectness threshold is fixed to 0.5

FA HR TA MTA

Original Annotations 2.4 97.5 73.6 73.5

Corrected Training 3.0 98.0 74.8 74.7

Corrected Training+Val 2.9 98.8 76.3 76.2

Additional Boxes (25%) 9.7 97.8 74.9 74.3

Additional Boxes (50%) 18.8 95.6 69.4 68.6

Tmp.Cons.Add.Box.(25%) 5.6 96.5 72.7 72.5

Missing Boxes (25%) 0.3 94.1 71.3 71.3

Tmp.Cons.Mss.Box.(25%) 1.0 83.2 62.5 62.4

Tmp.Cons.Mss.Box.(50%) 0.9 34.7 27.2 27.2

Shifted Boxes (σ = 1.5) 2.2 90.8 68.8 68.8

Shifted Boxes (σ = 10%) 1.1 29.9 23.3 23.3

Combined 2.3 71.2 54.2 54.2

Table 6. Performance comparison of YOLOv3 on thermal images;

Objectness Threshold (TH), Hit Rate (HR %), Tracking Accuracy

(TA %) and Modified Tracking Accuracy (MTA %) when differ-

ent noise types are applied with different parameters for the False

Alarm Rate of 2.4FA/minute

Th HR TA MTA

Original Annotations 0.50 97.5 73.6 73.5

Corrected Training 0.55 98.0 74.8 74.7

Corrected Training+Val 0.55 98.8 76.3 76.2

Additional Boxes (25%) 0.72 94.1 72.1 72.0

Additional Boxes (50%) 0.68 92.2 67.0 66.9

Tmp.Cons.Add.Box.(25%) 0.58 95.6 72.0 72.0

Missing Boxes (25%) 0.40 97.2 73.2 73.1

Tmp.Cons.Mss.Box.(25%) 0.38 90.8 67.9 67.8

Tmp.Cons.Mss.Box.(50%) 0.30 56.0 43.2 43.1

Shifted Boxes (σ = 1.5) 0.48 92.4 70.0 69.9

Shifted Boxes (σ = 10%) 0.30 87.8 64.8 64.7

Combined 0.49 72.8 55.4 55.3

Finally, average IoU between corrected and original an-

notations are compared using Tracking Accuracy metric.

TA is found 86.4% in 66 corrected videos. It can be deduced

that a perfect tracking algorithm which always gives correct

results cannot have a tracking accuracy higher than 86.4%

on CVPR-2020 Anti-UAV Challenge test-dev dataset.

7. Conclusion

In this paper, the performance of a state-of-the-art object

detector, YOLOv3, is evaluated for UAV detection problem

which can also be used as a baseline for detection-based

tracking methods. The YOLO Network is trained with Anti-

UAV Challenge dataset to detect UAVs, and based on the

results, it performs relatively well. While the detection per-

formance is yielding relatively high hit rates and small false

alarms; the tracking performance is not as good as the detec-

tion performance in terms of tracking accuracy or IoU. The

tracking performance can be improved by utilizing the tem-

poral information, even by employing some classical track-

ing techniques, such as a conventional Kalman filter that

takes measurements from YOLO detector.

The performance of YOLOv3 is also tested on Anti-

UAV Challenge dataset with different erroneous annota-

tions, which is a typical problem in practice. The results

are compared with a previous work [3] which is performed

on KITTI dataset. Since small targets are already are quite

difficult to detect, it is observed that the annotation er-

rors degrades the performance much severely than that of

KITTI dataset, especially for missing boxes. Moreover,

the changes in objectness scores are quite noticeable when

those annotation errors exist. Additional boxes increase

the objectness score, while the missing boxes decrease it.

Therefore, for a fair comparison, one of the metrics should

be fixed and the other ones should be compared.

There are some annotation errors in Anti-UAV Challenge

dataset that are observed during the experiments. In order

to correct such erroneous annotations, a correlation tracker

is employed and the given annotations are updated in such a

way that when an annotated object in one frame is searched

in the next frame, the location with highest correlation score

is the center of the annotated object of the next frame. Then,

for each video, corrected annotations and the original ones

are compared by human operators to select the annotation

for that video. After such a correction mechanism, human

operators preferred the corrected annotations for 66 videos

out of 100 sequences.

Finally, it is observed that the corrected annotations

increase both detection performance and tracking perfor-

mance in terms of hit rate, false alarm rate and tracking

accuracy. While the tracking accuracy is calculated 73.6%

in original annotations, it increases up to 74.8%, in case of

the corrected training set and original validation set being

employed. Such a result reveals the success and necessity

of the proposed annotation correction method. However, as

the validation set also contains erroneous annotations and

employed in the performance measurements, the increase

in performance is limited. When the corrected training and

validation sets are also employed, the tracking accuracy in-

creases to 76.3%. Therefore, to achieve fair results, the an-

notations of the challenge set should also be corrected.
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