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Abstract

We present an end-to-end trainable framework for P-

frame compression in this paper. A joint motion vector

(MV) and residual prediction network MV-Residual is de-

signed to extract the ensembled features of motion repre-

sentations and residual information by treating the two suc-

cessive frames as inputs. The prior probability of the la-

tent representations is modeled by a hyperprior autoen-

coder and trained jointly with the MV-Residual network.

Specially, the spatially-displaced convolution is applied for

video frame prediction, in which a motion kernel for each

pixel is learned to generate predicted pixel by applying the

kernel at a displaced location in the source image. Fi-

nally, novel rate allocation and post-processing strategies

are used to produce the final compressed bits, consider-

ing the bits constraint of the challenge. The experimental

results on validation set show that the proposed optimized

framework can generate the highest MS-SSIM for P-frame

compression competition.

1. Introduction

Recently, artificial neural networks (ANNs) have been

applied to solve the image and video compression prob-

lem and a number of works have been proposed [11, 6,

2, 3, 5, 9, 18]. Recent studies in deep learning based im-

age compression methods have achieved significant perfor-

mance improvement and they focus on designing end-to-

end optimized frameworks [1, 15, 11, 6], in which the mod-

ules such as transformation, quantization and entropy es-

timation are optimized jointly. It is therefore not surpris-

ing to see that Deep Neural Networks (DNN) have attracted

attention for solving video compression tasks. Many ap-

proaches [17, 8, 7] were proposed to replace the compo-

nents in traditional video codecs by DNNs. For example,

Liu et al [8] utilized a DNN in the fractional interpolation

of motion compensation, and [7] applied DNNs to improve

performance of the in-loop filter. End-to-end video com-

pression frameworks have also been studied widely and var-

ious approaches have been proposed. For example Wu et al.

presented a framework for predicting frames by interpola-

tion from reference frames, and then the image compression

network of was applied to compress the residual. In 2019,

Lu et al. [9] proposed the Deep Video Compression (DVC)

method, in which optical flow was used to predict the tem-

poral motion, and then two compression subnetworks were

designed to compress the motion and residual. In order to

realize spatial-temporal energy compaction in learning im-

age and video compression, a spatial-temporal energy com-

paction was incorporated into the loss function to improve

the video compression performance in [3]. Meanwhile,

Habibian et al. [5] firstly employed a model that consisted

of a 3D autoencoder with a discrete latent space and an au-

toregressive prior for video compression. In [2], the concept

of Pixel-MotionCNN (PMCNN) which includes motion ex-

tension and hybrid prediction networks was proposed to de-

sign more robust motion prediction moduel. PMCNN can

model spatiotemporal coherence to effectively perform pre-

dictive coding inside the learning network. Different from

these methods which are trained with one loss function ap-

plied on all frames, Yang et al. [18] proposed a Hierarchical

Learned Video Compression (HLVC) method with three hi-

erarchical quality layers and a recurrent enhancement net-

work. The video frames are compressed in the hierarchi-

cal layers 1, 2 and 3 with decreasing quality, using an im-

age compression method for the first layer and the proposed

BDDC and SMDC networks for the second and third layers,

respectively.

In CLIC 2020 P-frame compression challenge, we pro-

pose a novel video compression framework which consists

of a MV-Residual prediction network for video framework

prediction and a post-processing module for visual quality

enhancement. The MV-Residual prediction network is ca-

pable of estimating motion vectors and residual information

simultaneously. Moreover, the techniques such as hyper-

prior base rate estimation, soft quantization and resource

allocation which were proposed by Balle et al. and Mentzer

et al. [1, 10] have also been utilized to improve the com-

pression performance.

1



Figure 1. Illustration of the proposed architecture. Input data is fed into the MV Encoder-decoder network and the hyperprior network

works after encoding. Details for hyperprior autoencoder is shown in the dotted frame, convolution parameters are denoted as number

of filter kernel height kernel width / down or upsampling stride, where ↓ indicates downsampling and ↑ indicates upsampling. AE, AD

represent arithmetic encoder and arithmetic decoder. OP operation stands for SDC-Net. [12, 19]

2. End-to-end Optimized Video Compression

with MV-Residual Prediction

2.1. Overview of the Proposed Model

The proposed model is based on our CVPR 2019 CLIC

framework in Low-rate compression [19]. Fig 1 provides an

overview of our end-to-end video compression architecture,

which can be optimized in an end-to-end manner. The brief

summarization on the working process is introduced as fol-

lows:

Step1. Data preprocessing. In this year’s competi-

tion, the validation and test sets are subsets of the train-

ing set. Thus, any unnecessary modifications to the train-

ing data would not benefit the final result. To gain better

performance and get rid of any unnecessary loss, we simply

up-sampled the given pictures with format of YUV420 to

YUV444 as reference frame and target frame. The optical

flow is generated with pretrained PWC-Net [14].

Step2. MV Encoder-decoder network. In order to en-

code the motion information, we design an auto-encoder

style CNN for better encoding. In this step, after a series of

convolution operations and nonlinear transformations, rep-

resentations of the motion will be generated. Then, the la-

tent feature is quantized and fed into a hyperprior autoen-

coder to obtain prior probability, which is fully discussed in

Section 2.3.

Step3. Motion estimation. An OP operation is designed

to obtain the prediction based on the motion vector calcu-

lated by the previous network. To avoid blurry reconstruc-

tion, we utilized SDC-net [12] as the OP operation, which is

fully differentiable and thus allows our model to train end-

to-end. More information is provided in Section 2.2.

Step4. Post processing. With reconstruction obtained

by summing residual and prediction, we employ a ResNet

style network to optimize our result to get final output.

Step5. Variable rate. In order to make full use of every

bit space available, a rate control module [4] is utilized to

fit our model to variable compression rates with a single set

of weights. A rate control parameter, Lagrange multiplier

is used as a conditional input for our end-to-end model, and

contributes to our loss function for better optimization.

2.2. Spatially­displaced Convolution

Given the reference frame and decoded motion vector

produced by previous stage, a simple way to estimate mo-

tion is to calculate vector-based transformation. However,

as discussed in [12], such operation will lead to insufficient

representation of the motion and end in blurry results. Fol-

lowing [12], we use SDC-net to estimate motion:

It+1 = T (G(I1:t, F2:t), It), (1)

where T is realized with SDC operating on the reference

frame It and Fi refers to decoded optical flow. G is a

fully convolutional network which takes in a sequence of

past frames I1:t and outputs pixel-wise separable kernels

Ku,Kv In this way, predictions of multiple frames will be

extended naturally by recirculating new inputs.

2.3. Rate Estimation Module

We model each latent ŷi as a Laplacian distribution with

mean and scale parameters µi, σi convolved with a unit uni-



Figure 2. Illustration of Spatial Displaced Convolution.

form distribution. This ensures a good match between en-

coder and decoder distributions of both the quantized la-

tents. Based on our solution in [19], both the hyperprior as

well as the causal context of each latent ŷi are designed to

predict the Laplacian parameters. Furthermore, the rate es-

timation module is a hyperprior network H with parameter

Θh. The predicted Laplacian parameters are functions of

learned parameters Θh:

pŷ(ŷ|ẑ,Θh) =
∏

i

(Lap(µi, σ
2
i ) ∗ U(−

1

2
,
1

2
))(ŷi), (2)

where µi, σ = hd(ẑ; Θh) is the output of hyperprior

network.

Hyperprior Network H: The subsampled feature y

is fed into the hyperprior encoder which summarizes the

distribution of standard deviations in z = he(y). z is then

quantized ẑ = Q(z), compressed and transmitted as side

information. The final layer of hyperprior network must

have exactly twice as many channels as the bottleneck, so

as to predict two values: the mean and scale of a Laplacian

distribution for each latent. As to the distribution of ẑ, we

model it as a non-parametric and fully factorized density

model because there doesn’t exist prior knowledge for ẑ, ,

similar to the strategy used in [1]:

pẑ|ψ(ẑ|ψ) =
∏

i

(Pzi|ψi
(ψi) ∗ µ(−

1

2
,
1

2
))(ẑi), (3)

where the vector ψi represents the parameters of each uni-

variate distribution Pzi|ψi
.

Finally, the compression rates are composed of two part:

rateRy of compressed representation ŷ and rateRz of com-

pressed side information ẑ. These rates are defined as fol-

lows:

Ry =
∑

i

−log2(pŷ(ŷ|ẑ,Θh,Θcm,Θep)),

Rz =
∑

i

−log2(pẑi|ψ(ẑ|ψ))
(4)

Figure 3. Illustration of Post Processing. Conv n represents the

convolution operation with the output channel of n, input is recon-

structed pictures.

2.4. Post Processing

In order to further improve the performance of our frame,

a CNN model is used as our post processing after recon-

struction finished. As illustrated in Figure 3, we design the

CNN with four layers and the final output with three chan-

nels responding to three dimensions of YUV444, the same

as the input.

2.5. Optimized Rate Control

Rate-Distortion optimization is a common strategy in

compression algorithms. The rate-control strategy is similar

to our CLIC 2019 solution used [19]. Considering the bits

constraint, a rate control optimization problem is defined to

allocate the bits more effectively for each frame:

maxj∈M

N∑

i=1

MSj(xi, x̂i) st.
∑

i

Rij < Rmax, (5)

where MS represents the MS-SSIM calculated between

original frame xi and the reconstructed frame x̂i. M is the

vector set which contains all possible quality configurations

for the set of frames. N is the frame number. MSj and

Rj are the performances and rates under configuration j.

The best quality configuration is selected for each image

via optimizing Eq (5) in our implementation. The rate

control problem is optimized using dynamic programming

algorithm.

3. Experimental Results

For training, 463686 image pairs are selected. where

each training sample consists of two consecutive frames

with the last frame serving as the ground truth. These im-

ages are random sampled to 256 × 256 pixels to train the

network. Our team have submitted three solutions: Tu-

codec, TUCODEC SSIM, and TucodecVideo. The results



Table 1. Evaluation results on CLIC 2020 P-frame validation datasets.
Methods PSNR MS-SSIM Data Size Decoder Size Decoding Time

TUCODEC SSIM 37.028 0.9969 37870015 112854058 6749

Validation TucodecVideo 37.026 0.9969 37870015 84778538 N/A

Tucodec 37.022 0.9968 37870012 112847016 6954

of the validation sets are reported in Table 1. In our im-

plementations, the cluster number is set as 200 for the soft

quantization and only one distortion measures perceptional

loss are used to train the autoencoder.

L = λD +Ry +Rz, (6)

In TUCODEC SSIM the loss D = 1 − Lmsssim is de-

fined for the perceptional loss where Lmsssim is as defined

in [16]. Then the perceptional loss is combined with the

same GAN setup defined in [13] for network optimization.

Then five rates with λ=20/22/24/26/28 are trained for 5 rate

control. Once the resource allocation is done, MS-SSIM of

0.9969 can be achieved for validation under the constraint

of less than 3,900,000,000 bytes with the model size of

112,854,058 bytes. Since there is not enough time, we

first submitted a version Tucodec, which is only iteration

numbers different from the TUCODEC SSIM. Further,

we quantize the model with 16 bits, it can compress the

model with almost no reduction in accuracy. However, this

model have not decoded successfully on clic server, but it

can run perfectly on our local docker. This model achieve

MS-SSIM 0.9969 for validation with the model size of

84,778,538 bytes.

4. Conclusion

In this paper, a novel deep learning based video

compression framework which contains a MV-Residual

prediction network and a post-processing module is de-

signed for CLIC 2020 challenge. In the MV-Residual

prediction network, the motion vectors and residual infor-

mation are predicted simultaneously. The motion kernels

can be learnt by spatially-displaced convolutions to predict

pixels in the P-frame by applying the kernels at a displaced

locations in the source image. The experiments show

that the MV-Residual prediction network can improve the

compression performance by modeling the spatial corre-

lation between frames accurately. As shown in the results

of the challenges on the validation set, our approaches

TUCODEC SSIM and Tucodec rank the 1st and 2nd place

in P-frame compression challenge for best MS-SSIM.
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