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Abstract

Deep learning has achieved significant advances for

tasks such as image classification, segmentation, and re-

trieval; this advance has not yet been realized on scien-

tific and technical drawing images. Research for techni-

cal diagram image analysis and retrieval retain much less

well developed compared to natural images; one major rea-

son is that the dominant features in scientific diagram im-

ages are shape and topology, no color and intensity fea-

tures, which are essential in retrieval and analysis of nat-

ural images. One important purpose of this review, along

with some challenges and opportunities, is to draw the at-

tention of researchers and practitioners in the Computer Vi-

sion community to the strong needs of advancing research

for diagram image retrieval and analysis, beyond the cur-

rent focus on natural images, in order to move machine vi-

sion closer to artificial general intelligence. This paper in-

vestigates recent research on diagram image retrieval and

analysis, with an emphasis on methods using content-based

image retrieval (CBIR), textures, shapes, topology and ge-

ometry. Based on our systematic review of key research

on diagram image retrieval and analysis, we then demon-

strate and discuss some of the main technical challenges to

be overcome for diagram image retrieval and analysis, and

point out future research opportunities from technical and

application perspectives.

1. Introduction and Motivation

Existing computer vision methods work well for natu-

ral images, but not for binary (black and white) technical

drawing images (see [36, 20, 44] for recent evidence; and

see Figure 1 for diagram image examples). Research on dia-

gram images is much less well developed; major reasons are

as follows: (1) natural images contain much more features

(e.g., color, shape, intensity and texture), whereas techni-

cal diagram images (e.g., patent images) are usually binary

with complex shapes, no color and little texture information

[27, 29, 14, 12, 44, 36, 20]; (2) diagrams (e.g., patent im-

ages) were drawn by different people, the thickness of lines

or the styles of drawings are varied. It will bring much diffi-

culty in the process of contour extraction and accurate com-

parison [29]; (3) As these diagrams are usually from docu-

ments which are scanned to gray and become binary images

by a threshold. Thus the localized zigzag noises are a bottle

neck for diagram images analysis using existing methods

[36, 20]; (4) diagram images often contain not only tradi-

tional visual parts in computer vision community but also

annotation curves and arrows, along with labels such as text

and numbers [31]. See diagram image examples in Figure 1

for an intuitive sense of the challenges.

Strong needs for advances in diagram image retrieval

and analysis (DIRA) remain over two decades [28, 21, 11,

46, 29, 31, 17, 44, 40, 19]. For example, patent image re-

trieval plays an essential role in patent search and can fur-

ther be combined with text-based image retrieval for accu-

rate patent search, as images are an important element in

patents and many experts use images to analyze a patent or

to check differences between patents. Patent image search

is one of the example domain for strong needs of advance

in DIRA, many other domain applications can be enhanced

by the advance in DIRA (detailed in Section 3.2.2). But up

to now, this area of research is still lag much behind com-

pared with those for natural images. One important goal of

this review is to draw the attention of researchers and prac-

titioners in the Computer Vision community to challenges

and opportunities in diagram image domains, beyond cur-

rent dominant focus on natural images, in order to move

machine vision closer to artificial general intelligence.

Here, we provide a road map to the rest of the paper.

Section 2 covers a systematic review on the state of the art

methods for DIRA, specifically, CBIR-based (Section 2.1),

texture-based (Section 2.2), shape-based (Section 2.3),

topology and geometry-based (Section 2.4). Section 3

focuses on demonstrating some challenges (Section 3.1)

and discussing potential opportunities (Section 3.2) in both

technical (Section 3.2.1) and applications (Section 3.2.2)

perspectives. The paper concludes in Section 4. For read-

ability, we provide a list of abbreviations in Appendix A.
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(a) An industrial designs diagram image

from [4]

(b) A patent image from [2] (c) A zoomed-in detail from (b).

Figure 1. Diagram image examples. Note the zigzag noise generated from scanning (see (c)) – commonly used computer

vision techniques such as smoothing filters do not help to remove such type of noises because of the binary/grayscale nature

of such types of images.

2. The State of the Art Methods for DIRA

In this section, we investigate the state of the art methods

for DIRA, with a focus on approaches using CBIR (Sec-

tion 2.1), texture (Section 2.2), shape (Section 2.3), and

topology and geometry (Section 2.4).

2.1. CBIR­based methods

Color, shape, and texture are commonly used visual fea-

tures in CBIR [43]. Traditional CBIR algorithms do not

work well for diagram images (e.g., patent images), which

are mostly binary with little texture and complex shape.[29],

research on diagram image retrieval is not well developed.

Adaptive hierarchical density histogram (AHDH) [42] is

one of the few effective methods proposed for patent dia-

gram image retrieval. AHDH treats an image as a plane and

the main idea is to calculate the distribution of black pixels

on the white plane [11]. AHDH uses pyramid decomposi-

tion to extract both local and global distribution of density.

The hierarchical decomposition of the image is generated

by calculating the hierarchical geometric centroids. Specif-

ically, AHDH calculates the centroid of the image plane,

and then divides the image plane into four regions based on

the centroid and calculates the distribution of black pixels in

each region that serves as the local density estimation. This

process is iterative, and the AHDH is finally obtained by

concatenating the density features and the quantized relative

density features [29, 11, 19]. AHDH uses the L1 distance to

measure the similarity between an query image and images

from a database [11]. AHDH is efficient and effective; it is

able to deal with large binary image databases [19]. How-

ever, AHDH is not capable of sub-image retrieval and is not

rotation invariant [11] (those challenges and opportunities

are detailed in Section 3.1.1 and 3.2).

Similar to AHDH, a method using hierarchical oriented

gradient histogram (HOGH) was proposed in [29]. HOGH

extracts the local and global gradient distribution of an im-

age as HOGH considers gradient distribution on different

scales of image, whereas AHDH only focuses on the dis-

tribution of pixels. Specifically, HOGH division is based

on the geometrical centroid of an image (i.e., the division

varies according to the distribution of the black pixels of

an image). The division process is illustrated in Figure 5.

HOGH can be used for binary patent images containing

very complex line drawings, which cannot be easily seg-

mented into shapes. But like AHDH, HOGH is not rotation

invariant.

2.2. Texture­based methods

To our knowledge, little research has been done using

texture for binary and/or diagram image retrieval and analy-

sis. Among many texture based methods for image retrieval

[32, 7], local binary patterns (LBP) is a simple and power-

ful texture based method [30, 23], and most importantly it

is computationally efficient. Thus, we have ran experiments

using LBP for diagram images (detailed in Section 3.1.2).

2.3. Shape­based methods

The primary feature can be used for DIRA is shape,

however, due to the challenges in diagram images, existing

shape descriptors would often fail.



One of the most dominant descriptors for binary image

retrieval is shape context (SC) [29]. SC is a descriptor for

finding correspondences between point sets (i.e., binning of

spatial relationships between points in a Polar coordinates

system). It is efficient and effective matching algorithm,

which proposed and further developed in [8, 9, 10]. SC has

the following advantages: translation and scale invariant,

and robust for small geometric distortion. However, SC is

not robust to rotation [22]. SC was used in [22] for binary

image retrieval with improved rotation invariant by look-

ing for the direction where the most sampling points are

included. Almost all existing SC-based methods ran exper-

iments on data sets that each image only contains a simple

and single object (e.g., hand, rabbit, see Figure 6), however,

diagram images often contain very complex shapes formed

by line drawings instead of one simple object. SC works

well for “clean” shapes (e.g., handwriting, trademarks), but

struggles with noise. Diagrams (e.g., patent images) often

contains heavy zigzag noise (see (c) in Figure 1). Also, SC

algorithm acquires high accuracy with the cost of high com-

putational complexity both in descriptor extraction and im-

age matching. For complex diagram binary images, numer-

ous points are required to make a good representation of an

image and this will lead to high dimensions of features [29].

SC does not work well for diagram images retrieval, see our

experiments detailed in Section 3.1.3.

SC and LBP was combined for shape representation and

classification in [41]. However, all the data sets the authors

ran their experiments are simple and single-shape objects.

For the complex shapes formed by line drawings in diagram

images, this method would fail. Also, the method requires

contour extraction from a given shape. It is challenging to

get the clear contours from diagram images due to the com-

plex shapes formed by line drawings and also due the zigzag

noise in such images.

The region-based shape descriptor (RBSD) was pro-

posed recently in [37] for binary image retrieval. RBSD

requires some image pre-processing such as cropping ob-

ject region, and image resize. RBSD combines the fol-

lowing four features: angular radial histogram feature (AR-

Hist), vertical histogram feature, horizontal histogram fea-

ture, and Zernike moment. Using Zernike moment makes

RBSD rotation-invariant. Euclidean distance (Edist) is used

as the similarity measurement. Edist for each features be-

tween two images are computed. The finalEdist is the sum

of the four Edist. Smaller finalEdist means more similar.

RBSD experiments running MPEG-7 CE Shape-1 Part-B

data set [38] (see Figure 7 for some example images), has

demonstrated good retrieval results. However, RBSD does

not work well for diagram images retrieval, see our prelim-

inary experiments detailed in Section 3.1.3. This is not too

surprising, as the shapes in MPEG-7 data set is much sim-

pler compare with those complex shapes in diagram images.

A shape descriptor using salient keypoints detection is

proposed in [14, 13] for binary image retrieval, named bi-

nary salient keypoints (BSK) descriptor. BSK descriptor

requires contour and key points extraction, after which the

most salient keypoints are automatically detected by filter-

ing out redundant and sensitive keypoints. Finally, for each

keypoint, a feature vector is computed using the distribu-

tion of contour points in its local area. The BSK descrip-

tor is evaluated on several public data sets, including sil-

houette images, handwritten math expressions, hand-drawn

diagram sketches, and noisy scanned logos. Experimental

results demonstrated the effectiveness of the method. The

authors pointed out BSK is reliable when applied on chal-

lenging images such as fluctuated handwriting and noisy

scanned images. Among all of the reviewed shape descrip-

tors in this section, BSK is the one that is promising to

tackle DIRA. However, as the method requires contour and

keypoint detection, challenges will remain when it is ap-

plied to complex diagram images.

2.4. Topology and geometry­based approaches

Topology and geometry based approaches have achieved

success in binary image retrieval, but most of those methods

would fail for diagram image retrieval; some recent image

representation and methods are proposed for diagram image

analysis. These are now reviewed.

A geometry and topology based image retrieval system

is developed for multi-object images in [6], in which an ob-

ject refers to a connected set of foreground or background

pixels and a structured representation called curvature tree

(CT) is used to model both shape and topology of image

objects. The hierarchy of the CT reflects the inclusion re-

lationships between the image objects. To facilitate mea-

suring the similarity based on shape, the triangle-area rep-

resentation (TAR) [5] of each closed boundary of an object

formed by the boundary points is stored at the correspond-

ing node in the CT [6]. TAR is invariant to position, scale,

and rotation, robust against noise and moderate amounts of

deformations, and computationally efficient [5].

The method proposed in [6] has demonstrated effective-

ness on the two data sets: Shape Retrieval Test on MPEG-

7 CE-Shape-1 database [24] and Medical Image Retrieval

Test [34]. Their evaluation is based on human relevance

judgements. However, the method would not work well

for diagram image retrieval due to the following two ma-

jor reasons: (1) TAR needs a closed exterior contour as a

prerequisite. So this method cannot solve the retrieval of

binary diagram images which usually have extricated struc-

ture or open contours [29] (see Figure 1 for examples). (2)

the major limitation of the approach [6] is that it deals pri-

marily with binary shapes, and segmentation of objects in

an image is assumed already done, and the object boundary

is well identified. In practice, noise and partial occlusion



can drastically change the topology of the CT. This is very

challenging for diagram images due to the complex shapes

formed by line drawings (see Figure 1 for examples).

In [33], a binary image is decomposed into a set of closed

contours, and each contour is represented as a chain code.

To measure the similarity between two images, the dis-

tances between each contour in one image and all contours

in the other are computed using string matching. Then, a

weighted sum of the average and maximum of these dis-

tances is the final similarity. Two major advantages of

the methods: (1) encoding closed contours is insensitive to

translation, rotation, and size variations, thus the similarity

measures based on the closed contours are invariant. (2) it

can retrieve partially similar trademark images. However,

this method cannot solve DIRA for the following two rea-

sons: (1) diagram images have extricated structure or open

contours [29]. (2) the method relies on edge detection to

get the borders of the shapes. The state of the art meth-

ods based on edge detection often fail for line detection in

diagram images [20].

Diagram images pose multiple challenges that natural

images do not have. To tackle zigzag noise (see Figure 1

(c)), which is very common in (digitized) diagram images,

a novel image representation called skeleton graph (SG) is

proposed in [48]. SG is a simple yet powerful image rep-

resentation to deal with diagram images. A SG is a topo-

logical graph generated from the skeleton of an image (see

Figure 8 in Appendix B for an illustration). Two major ad-

vantages of SG: (1) SG converts topological information in

a diagram image effectively from raster to vector. Advanced

applications such as diagram image retrieval can be built on

top of the SG representation. (2) SG does not rely on edge

or contour detection, which is an advantage over previous

topology-based method for image analysis. Most existing

patent image retrieval systems rely on edges extracted from

images, the performance of which is often affected by the

quality of edge detection [49]. SG was used in [36] for ef-

fective denoising of persistent zigzag noises (see Figure 1

(c) for such type of noise) from low quality binary diagram

images. Based on SG, a robust straight line segment detec-

tor called TGGLines for low quality binary diagram images

was proposed in [20].

2.5. Other methods

This section provides other methods that do not fall into

the categories introduced above. See details in Appendix C.

3. DIRA Challenges and Opportunities

In this section we show some technical challenges (Sec-

tion 3.1), and then discuss and provide opportunities from

technical and application perspectives (Section 3.2).

3.1. Technical challenges

Color, texture, intensity, and shape are commonly used

features in computer vision and image processing, but for

many diagram images (e.g., patent and industrial design

images), shape and topology are the most important fea-

tures, due to binary/gray-scale nature of those images. We

have experimented multiple methods for diagram images

retrieval and analysis. Below we demonstrate some of the

challenges we have met (Sections 3.1.1 to 3.1.3), followed

by corresponding opportunities in Section 3.2.

3.1.1 AHDH related challenges

As introduced in Section 2.1, AHDH is not rotation invari-

ant and cannot perform sub-image matching (due to space

limit, see Appendix D.1 for detailed illustrations). One

more downside of AHDH, beyond not rotation invariant and

lack of sub-image matching capability, is that it is not ro-

bust. This is illustrated in Figure 2, where the centroid lo-

cations are marked as a red star in each image. Take a close

look at Figure 2 (a) and Figure 2 (b), the centorid location is

shifted, the only difference between the two images are that

(a) has a text label “Fig. 11” (highlighted by the red box),

where in (b) the text is removed. The shifting of the centroid

will cause a different partition and thus will have an signif-

icant impact on the image retrieval results. Edist between

Figure 2 (a) and Figure 2 (b) is 4.2243. Similarly, Figure 2

(c) and Figure 2 (d) are the same shoe but with different dig-

its annotation labels (highlighted in red boxes), and image

in (d) has the text label “Fig.3”. Edist between Figure 2 (c)

and Figure2 (d) is 12.0803. It is not a difficult task for hu-

mans to tell the two pairs of images are very visually similar

but not so for machines. The results of AHDH imply the im-

portance of pre-processing (e.g., removal of annotation text

label and extraction of exterior boundary if any). From our

preliminary experiments of using AHDH for diagram im-

ages, AHDH is not rotation invariant, lack of partial image

matching power, and is very sensitive to text annotations,

which are very common in diagram images.

3.1.2 Texture related challenges

Local binary patterns (LBP) is a simple but powerful ap-

proach to capture local texture structures in images. Thus,

we have applied an improved LBP[30] called rotation-

invariant LBP (RI-LBP) [26] to the patent diagram image

data set[45, 3]. Due to space limitation, see Appendix D.2

for detailed introduction to how LBP and RI-LBP works.

Figure 3 provides the RI-LBP results for two diagram im-

ages from the data set [3]. RI-LBP is indeed rotation-

invariant (see Figure 3 the RI-LBP histograms for the two

images are the same). However, from the results shown in

Figure 4, we can see that the peak occurs at the same po-



(a) Image 1 (b) slight variance from (a)

(c) Image 2 (d) slight variance from (c)

Figure 2. AHDH’s robustness needs to be improved. Note

that (b) is exactly the same as (a), but without the text “Fig.

11” highlighted in red box in (a); (d) is exactly the same

shoe as (c), but (d) has the annotation text “Fig. 3” and

the annotation number highlighted in the two red boxes are

different.

sition with different amplitude, which is caused by the bi-

nary nature of diagram images. Our experiments demon-

strated that it is not effective to use texture feature alone

for diagram image retrieval. LBP does not work well for

diagram images that has little texture. Our experiment re-

sults align well with our brief review about texture-based

method in Section 2.2: few binary/diagram images contain

texture information – the reason why little work has been

developed in the literature using texture-based methods for

binary/diagram image retrieval.

3.1.3 Shape descriptor related challenges

We have done preliminary experiments for diagram images

using two of the shape descriptors for binary image retrieval

that we have reviewed in Section 2.3: (1) shape context

(SC), as it is the dominant shape descriptor for binary im-

age retrieval in the literature, and (2) region-based shape

descriptor (RBSD), as it is a recent shape descriptor. The

(a) Original Image (b) RI-LBP histogram of (a)

(c) Rotated (a) (d) RI-LBP histogram of (c)

Figure 3. RI-LBP results for the (same) Images.

Figure 4. RI-LBP results for diagram images from different

categories.

experiments results are provided below.

Using SC for diagram image retrieval SC is introduced in

Section 2.3. Here, we only provide our preliminary exper-

iment SC results (see Table 1) for diagram image match-

ing. In Table 1, “Std diff” refers Pearson’s chi-squared test,

which is used to count cost matrix ; and “Cos diff” rep-

resents cosine distance. From the last two columns in Ta-

ble 1, the computed shape difference cannot effectively and

correctly measure the visual similarity for the three pairs of

diagram images. The SC-based shape difference tells us the

middle pair of images is much less similar compared with

the bottom pair of images. This is not true. The visual sim-

ilarity rank for the three pairs in Table 1 should be the fol-

lowing: (1) the middle pair of images are the most visually

similar, as the only difference is the text label “Fig. 11” in

image 1, and not in the other; (2) the top pair of images are

visually similar, as the shoe shape is exact the same in the

two images. The only difference is the annotation labels,



including the text notation “Fig. 3” in image 2; (3) the bot-

tom pair of images are apparently not visually similar. We

can see that SC descriptor is confused by text annotation in

diagram images. Thus, SC doesn’t work well for diagram

images retrieval, it needs to be improved.

Using RBSD for diagram image retrieval As the RBSD

shape descriptor (introduced in Section 2.3) is rotation in-

variant and it is for binary image retrieval, we ran some ex-

periments on diagram images using the shape descriptor.

(As the authors of RBSD do not provide code [37], we re-

implemented it.) RBSD results for some images taken from

the two data sets (patent diagram images [3] and MPEG

shapes [38]) are shown in Table 2, where EA, EH , EB , EZ

represents the Edist of angular radial histogram, horizontal

histogram, vertical histogram and Zernike moment respec-

tively; ERBSD is the sum of EA, EH , EB , EZ . From Ta-

ble 2, we can see that ERBSD values cannot effectively and

accurately tell the visual similarity among the three pairs of

patent diagram images (i.e., the top three pairs in the table),

although it does tell the 2nd pair of images is the most sim-

ilar among the three pairs of patent images. RBSD fails to

rank that the top image pair is more similar than the third

pair. (Note that the bottom two pairs are for reference pur-

pose. 4th pair shows the similar images from the MPEG-7

shape data set and the Edist is small, while 5th pair is op-

posite. This demonstrates the RBSD indeed works well for

binary images that only contains a simple and single shape

in each image.) In summary, RBSD shape descriptor cannot

work for patent diagram images. See Appendix D.3 for fur-

ther technical discussion about why RBSD works for shape

images but not for patent diagram images.

3.2. Discussions and opportunities

From our systematic review (Section 2) and from the

challenges demonstrated by our preliminary experiments

(Section 3.1), we see that the methods and similarity mea-

sure metrics for diagram images are lagged far behind those

for natural images. However, this also indicates there is a

very large and novel research space for diagram images both

from methodology and application perspectives. Among

many research opportunities, below we provide some ma-

jor ones we have identified through our systematic review

(Section 2) and based on our preliminary experiments (Sec-

tion 3.1). We group the opportunities into two sets: techni-

cal perspective (Section 3.2.1) and application perspective

(Section 3.2.2).

3.2.1 Opportunities from technical perspective

See below for some potential research opportunities we

have identified from technical perspective.

General directions: Potential general directions to ad-

vance research in diagram images retrieval and analysis in-

cludes but are not limited to: new image representations,

methods and algorithms, and similarity metrics, as well as

psychology inspired conceptual schemes and theories.

Large representative benchmark data sets: From the

review in Section 2, we have seen existing methods are

mainly tested on binary image data sets that often only con-

tain simple and single object shape in each image (e.g.,

MPEG-7 CE-Shape-1 database [24], see Figure 6 for an ex-

ample of such data set), without complex shapes formed by

line drawings (see Figure 1). The research for diagram im-

ages are much lagged behind those for natural images. One

of the main reasons and challenges are lack of large rep-

resentative benchmark data sets. These are challenges and

also opportunities for future research. However, it is not

an easy task to prepare for large real (not synthetic) data

sets for diagram image retrieval. Open a research portal

platform that allows volunteers to “donate” visually similar

diagram images in their domain (e.g., industrial/art design

and patent images) would be a possible solution to gener-

ating large benchmark data sets for DIRA. Some data sets

close to diagram images are provided in Appendix E.

Specific opportunities: Relating the challenges demon-

strated in Section 3.1, we identify the following opportuni-

ties: (1) RI-AHDH: as illustrated in Section 3.1.1, AHDH

is not rotation invariant, and it does not have the power to

perform sub-image (i.e., partial image) retrieval. RI-AHDH

is a promising direction, as the literature has shown the ef-

ficiency and effectiveness of AHDH for diagram patent im-

age retrieval (Section 2.1). (2) Integration of RI-LBP: as

shown in Section 3.1.2, RI-LBP loses its power when using

directly for diagram images. But, as RI-LBP is a powerful

texture-based method for image retrieval, and not all dia-

gram images lack of texture information, we suggest not to

use LBP alone for DIRA, but integrate it with other meth-

ods, such as SC. (3) Extension of SC: SC is the dominant

shape descriptor in the literature for binary image retrieval

(Section 2.3). However, as demonstrated in Section 3.1.3,

SC cannot be directly used for DIRA, it needs to be im-

proved. Some research opportunities include: (1) make SC

less sensitive to annotation labels (e.g., “Fig.3”) that often

appear in diagram images, and (2) improve SC’s compu-

tational efficiency, as the number of key points in diagram

images formed by complex line drawings can be very large

(see the 3rd and 4th and 5th columns in Table 1). (4) Exten-

sion of RBSD: RBSD is a recent shape descriptor for binary

image retrieval (Section 2.3). However, as demonstrated in

Section 3.1.3, it does not work for DIRA. The features used

in RBSD (especially the angular radial histogram, see our

further discussion in Appendix D.3) can be improved to in-

crease its capability for DIRA.

Topology related opportunities: The image represen-

tation called skeleton graph (SG) proposed in [48] (intro-

duced in Section 2.4) has been demonstrated useful and ef-



Table 1. Diagram image matching results using shape context (point-to-point matching).

Image 1 Image 2
Shape extracted

from image 1

Shape extracted

from image 2
Matching

Std

diff

Cos

diff

20.01 0.40

36.93 0.77

22.04 0.48

fective for diagram image analysis (see [36, 20] for recent

successful usage of the image representation for diagram

image analysis). It is promising to develop efficient DIRA

methods that are able to both exact and partial diagram im-

age matching, based on the SG image representation ex-

tracted from diagram images, and then by using matching

based on spatial similarity.

3.2.2 Opportunities from application perspective

Visual similarity based image retrieval for diagram images

has many potential applications, not just for patent image

retrieval. We highlight just a few of these below.

Patent image retrieval: It is a direct and the most com-

plex and challenging DIRA application domain. As patent

images involve in diverse disciplines and different types of

technical drawings that contain not only visual part but also

mixed with text annotation such as figure labels.

OCR and text recognition: Character and diagram im-

ages share some common properties (e.g., characters can be

viewed as line drawings, and are often in binary/grayscale).

Advances in DIRA will improve research and applications

in optical character recognition (OCR) and text recognition.

Industrial and art design: When a designer have a de-

sign draft, the designer will be inspired by visually similar

existing designs (could be designs from different domains)

if a visually similar image retrieval interface available, and

thus better designs can be generated.

Autonomous driving: Advance in DIRA will advance

road Lane line detection in real world complex scenarios,

including dashed lane line. The complexities of road con-

ditions increase in real world situations. All existing au-

tonomous vehicle systems assume that line markings exist,

are clear and, more importantly, are visibly distinct. But in

reality, most roads are in poor condition in different sever-

ity level (e.g., worn road markings, lane marking covered

with dirt, falling leaves). Autonomous vehicles will have

considerable difficulty driving on such roads.

4. Conclusion

Research for DIRA are much less well developed com-

pared with those for natural images. To draw the atten-

tion of researchers and practitioners in the computer vision

community to advance DIRA, we have provided a system-

atic review for DIRA. We have seen most existing meth-

ods, even those methods designed and demonstrated ef-

fective for binary image retrieval (which is closer to dia-

gram images compared with natural images) do not work

well for DIRA, due to the complex shapes formed by line

drawings in diagram images. We also provide some chal-



Table 2. RBSD results for patent diagram images and shape images.

Image 1 Image2 EA EV EH EZ ERBSD

0.27 1.26 1.26 0.29 3.08

0.07 0.65 0.65 0.18 1.55

0.30 0.93 0.93 0.19 2.35

0.88 3.78 3.78 0.21 8.66

1.31 11.83 11.86 0.20 25.17

lenges and thus some identified opportunities, specifically,

CBIR-based method AHDH, texture-based method RI-LBP,

SC and RBSD shape descriptors for binary image retrieval.

Again, through our systematic survey on DIRA, little re-

search has been done for this area, and many challenges

thus opportunities await us ahead.
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A. Abbreviations

In this appendix, we provide the abbreviations (ordered

alphabetically) of terms we used in the paper.



AHDH Adaptive hierarchical density histogram

AR-Hist Angular radial histogram feature

BSK Binary salient keypoints

CBIR Content-based image retrieval

CLP Contextual local primitives

CT Curvature tree

DIRA Diagram image retrieval and analysis

Edist Euclidean distance

EPO European Patent Office

HOGH hierarchical oriented gradient histogram

LBP Local binary pattern

OCR Optical character recognition

SC Shape context

SG Skeleton graph

SVM Support vector machine

TGGLines Topological graph guided lines

TAR Triangle-area representation

RBSD Region-based shape descriptor

RI-AHDH Rotation invariant-AHDH

RI-LBP Rotation-invariant LBP

USPTO United States Patent and Trademark Office

B. Additional illustration figures for Section 2

In this appendix, we provide some additional illustration

figures to help our readers understand the reviewed methods

in Section 2 that cannot fit in the main paper due to space

limitation.

Figure 5. A patent image and its first (in red line) and sec-

ond division (in blue line) based on its hierarchical geom-

etry centroid, from HOGH – an improved AHDH method

(Figure from [29]).

Figure 6. The Kimia-99 shape database for binary image

retrieval (Figure from [22]).

(a) Camel (b) Cattle

Figure 7. MPEG data set examples [38] .

(a) Input image (b) Image skeleton (c) Skeleton graph

Figure 8. An example of skeleton graph image representa-

tion . Figure 8 (a) is the input image. Figure 8 (b) shows the

image skeleton extracted from the input image. Figure 8 (c)

provides the skeleton graph corresponding to the skeleton

present in (b). In the skeleton graph, each node represents

a pixel in the image skeleton, and each edge indicates that

the two pixels it connects are neighbors. (Figure from [20].

The handwritten digit image used in the figure is taken from

the MNIST data set[25].)



C. Other methods for Section 2.5

Local features and descriptors that perform well for natu-

ral images are often unable to capture the content of binary

technical drawings. A local feature representation, called

contextual local primitives (CLP), is proposed in [12]. CLP

is based on detecting junction and end points in diagram

images, then classifying the local primitives to local prim-

itive words, and finally establishing the geodesic connec-

tions of the local primitives. The authors of CLP exploited

the granulometric information of the binary patent images

they ran experiments on, in order to set all the necessary

parameters of the involved mathematical morphology op-

erators and window size for the local primitive extraction.

This makes the whole framework parameter free. However,

this also indicates the CLP will not work well for other tech-

nical drawings beyond binary patent images. CLP is scale

invariant and to a certain extent rotation invariant, but lacks

affine invariance.

United States Patent and Trademark Office (USPTO)

hosted a-month-long online competition in which partici-

pants developed algorithms to detect figures and diagram

part labels. Competition-based graphics recognition algo-

rithms for detecting figures and part labels that are com-

monly appear in patent images (e.g., “FIG. 2”), are pro-

vided in [39]. This is very important to improve research

for DIRA, as those labels pose a big challenge for most of

existing methods (see Section 3.1).

D. Additional technical details

In this appendix, we provide some additional technical

details beyond the main body page limit to help our read-

ers understand well the challenges for the methods we have

experimented for DIRA (i.e., those demonstrated in Sec-

tion 3.1).

D.1. AHDH technical details

AHDH uses the visual feature vectors that consider

the geometry and the pixel distribution of patent diagram

images[42]. AHDH requires pre-processing (e.g., noise

reduction, coordinate calculation, normalization). Next,

the adaptive geometric centroid is computed from the pre-

processed images. The image is then partitioned into four

sub-regions based on the whole image centroid. For each

partitioned sub-region, extracted density features, including

density, relative density and quantized relative density, is

concatenated as a feature vector.

Figure 9 illustrates how a 1-level partition of AHDH

works to distinguish images (a) and (b) provided in the top

row. Images (c) and (d) are the partitioned results corre-

sponding to (a) and (b) respectively. We can see the two im-

ages share the same centroid location for the 1-level parti-

tion. The sub-regions are marked as sub1, sub2, sub3, sub4

(a) Image 1 (b) Image 2

(c) Partitioned (a) (d) Partitioned (b)

Figure 9. An illustration of AHDH (1-level partition and

geometric centroid calculation.)

in clockwise starting from the top-left sub-region.

Density: The distribution of the black pixels for each

sub-region. For example, density for Figure 9 (a) is

0.25, 0.25, 0.25, 0.25 and 0.5, 0, 0.5, 0 for Figure 9 (b).

Relative density: The ratio of the density of each sub-

region to the percentage of that sub-region’s area. For

example, the relative density feature for Figure 9 (a) is

1, 1, 1, 1 (note that for each sub-region, 0.25/0.25 = 1) and

2, 0, 2, 0 for Figure 9 (b), note that 0.5/0.25 = 2 for sub1,

and 0/0.25 = 0 for sub2.

Quantized relative density: It is treated as a higher-level

binary classifier. The two class names are“F ” and “E”, de-

pending on the relative density. A sub-region is classified as

“E” if the relative density is < 1, otherwise, the sub-region

is marked as “F ”. For example, the quantized relative den-

sity feature vector for Figure 9 (a) is FFFF and FEFE

for Figure 9 (b). The concatenation of quantized relative

density is then converted to a decimal value ranging from 0

to 15.

The final concatenated density feature vector is

[0.25, 0.25, 0.25, 0.25, 1, 1, 1, 1, 15] for Figure 9 (a) and

[0.5, 0, 0.5, 0, 2, 0, 2, 0, 10] for Figure 9 (b), which can be

fed into a machine learning classier such as support vector

machine (SVM). Edist measure (for 1-level AHDH feature

vector) was used to calculate the similarity between the two

images. Edist for the two images in the top row of Figure 9

is 5.4083.

AHDH is not rotation invariant, as extracted fea-

ture vectors of one image and its rotated version can



(a) Original image (b) Rotated (a)

(c) Partitioned (a) (d) Partitioned (b)

Figure 10. An illustration of AHDH not rotation invariant.

We can see the location of the geometric centroid for the

original image and for its rotated varies significantly.

vary substantially (see Figure 10 for an illustration).

The centroid location shifts when an image is ro-

tated, and this results in the first level partition will

be completely different. In Figure 10, for 1-level

AHDH, the extracted feature vector of Figure 10 (a)

is [0.3755, 0, 0.249, 0.3755, 2.0131, 0, 3.9231, 1.9718, 13]
and [0.5, 0, 0, 0.5, 7.0002, 0, 0, 1.387, 9] for Figure 10 (b).

Edist for the top row image pair in Figure 10 is 7.5297.

Also, AHDH cannot be used for partial image matching.

For example, the image shown in Figure 9 (b) is a sub-image

of the image in Figure 9 (a), but AHDH cannot tell this.

D.2. LBP and RI­LBP technical details

LBP considers intensity value of each pixel and its 8

neighbors’ (window size: 3*3). Based on the intensity dif-

ference, a binary value (0 or 1) is re-assigned to each of the

surrounding pixels. Taking current pixel p as an example,

let vp be intensity value of p, n be one of p’s surround-

ing neighbors with intensity value as vn, if vn > vp, vn
is re-assigned to 1, otherwise vn is re-assigned to 0. After

re-assigning the values of p’s 8 neighbors, the re-assigned

intensity values of p’s neighbors are concatenated, and then

converted to a decimal value v′p, where v′p ranges from 0 to

255. vp is updated to v′p. Note that the concatenation order

does not matter, as long as it keeps consistent for all pixel

value calculation.

However, LBP is not rotation invariant. RI-LBP was pro-

posed in [26]. Uniform patterns are used to reduce the LBP

dimension from 256 to 59. A uniform is a local binary pat-

tern that contains at most two 0 to 1 or 1 to 0 transitions.

Figure 11. Fifty-eight defined sub-uniform patterns. Bit

values of 0 (black circle) and 1 (white circle) in the output of

the operator (from [26]). Labeled positions of a pixel’s eight

neighbors are in clockwise order and the top-left neighbor

is labeled as 1.

Each uniform pattern has different sub-uniform patterns.

Figure 11 provides all the possible sub-uniform patterns,

where W denotes the position of 1 to 0 transition, M de-

notes the number of neighboring pixels with value as 1, and

U represents uniform pattern. After the sub-uniform pattern

of each pixel is determined, a histogram of the sub-uniform

patterns is generated. In order to be rotation invariant, for

each of the uniform patterns (M = 1, 2, .., 7), the sub-

uniform pattern with the maximum statistical value from

the histogram (i.e., the dominant-orientation sub-uniform)

is moved to the first column, and the other bins are circu-

larly shifted, after which 9 histograms of sub-uniforms are

concatenated (in the order of M1,M2, ...M7,M8,M0) to

generate RI-LBP features.

D.3. RBSD technical details

The main difference between patent diagram images and

MPEG shapes is that patent images consists of complex

line drawings and MPEG shapes has more details than

lines. The Figure 12 shows an example of binary mask

operation on the image for AR-Hist feature extraction,

where Result 1 to Result 3 correspond to the operation with

binary mask (r1, θ1) to (r3, θ3). AR-Hist features doesn’t

work for patent image because one type patent images

(such as shoes in this case) from the same angle share

similar shapes. The AR-Hist is similar for 2 different types

of shoes as shown in Figure 12 (b) and (c).



(a) Examples of binary masks

(b) A binary mask operation example for Figure 2 (a)

(c) A binary mask operation example for Figure 2 (d)

(d) A binary mask operation example for Figure 7 (b)

Figure 12. Illustrations of binary mask Operation for patent

diagram images and shape images from MPEG-7 data set.

E. DIRA related data sets

To advance research in DIRA, below we list some exist-

ing data sets that are close to diagram images:

• Canadian industrial designs database [4]: the

database contains industrial design diagrams, the

database is updated daily.

• CLEF-IP 2011 collection [35, 18]: a data set created as

a test collection for four tasks: prior art search, patent

classification, image-based prior art search, and image

classification [40], where the last two tasks are relevant

to diagram images.

• Two data sets from the Multimedia Knowledge and so-

cial media analytics laboratory (MKLab): one con-

tains 2000 binary images from 2000 patent images ex-

tracted from patent documents provided by the Eu-

ropean Patent Office (EPO)[2]; and the other con-

tains 1042 patent images (with different image size)

extracted from around 300 patents from EPO and

USPTO. This data set was manually annotated with 8

concepts of different types of shoes’ designs [3].

• Line Drawings of 3D Shapes [15, 16, 1]: the data

set contains the initial and registered drawings from

artists.

• Fashion-MNIST [47]: a data set contains 28x28

grayscale images of 70,000 fashion products from 10

categories (7,000 images per category). The training

set has 60,000 images and the test set 10,000 images.


