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Abstract

The use of interactive systems has been found to be a

promising approach for content-based image retrieval, the

task of retrieving a specific image from a database based

on its content. These systems allow the user to refine the

set of results iteratively until the target is reached. In order

to proceed with the search efficiently, conventional meth-

ods rely on some shared knowledge between the user and

the system, such as semantic visual attributes of the images.

Those approaches demand the images to be semantically

labeled and introduce a semantic gap between the two par-

ties’ understanding. In this paper, we explore an alterna-

tive approach to interactive image search where feedback

is elicited exclusively in visual forms, therefore eliminating

the semantic gap and allowing for a generalized version of

the method to operate on unlabeled databases. We present

Syntharch, a novel interactive image search approach which

uses synthesized images as options for feedback, instead of

asking textual questions to gain information on the relative

attribute values of the target image. We further demonstrate

that by using synthesized images rather than real images

retrieved from the database as feedback options, Syntharch

causes less confusion to the user. Finally, we establish that

our proposed search method performs similarly or better in

comparison to the conventional approach.

1. Introduction

In recent years, the rapidly growing volume of search-

able images calls for more and more efficient methods to

retrieve one target image from a large pool of images. The

task has been formalized as content-based image retrieval

(CBIR) and the techniques have been implemented as ap-

plications across multiple domains, including web image

search [19, 3], e-commerce [31, 43], health care [10, 42],

etc. The search focuses on the visual content rather than

textual metadata such as labels, description, or the context;

however, the search query generated by the user usually
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Figure 1. Syntharch elicits attribute feedback by synthesizing pairs

of options and then employs user responses to re-rank images in

the database and to refine the search space.

takes a textual form. Therefore, the challenge is to estab-

lish a mapping between the user’s high-level concept and

the machine’s low-level representation of the image; this is

sometimes referred to as a “semantic gap.”

To complicate matters further, when a large number

of similar images are present in the database, more fine-

grained queries are needed in order to reach the target im-

age. A classical approach for this refining process is to al-

low the user to interact with the retrieval system in order to

provide additional information regarding the target image

iteratively [35]. For each iteration of the interactive search,

the system accepts some form of feedback, but its efficiency

is still hindered by the semantic gap.

Relative attributes can help ameliorate this challenge by

transforming the machine’s low-level image representation

to high-level semantic attributes. These can be expressed in

textual form and understood easily by the user [23, 15, 17].

In particular, the user can provide feedback on how some

attribute of an image differs from that of the target im-

age. However, this approach introduces the burden for the

system to understand high-level semantic attributes known

to the user. This presents two drawbacks. First, the ver-

bal representations of the attributes (e.g. how “ornamental”

and “formal” a piece of apparel is) can be ambiguous and

might vary among users and cause confusions [16]. Sec-



ond, attributes may be correlated as discussed in [4], so

when asked to provide feedback about a particular image,

the user may have trouble decorrelating these attributes and

hence may provide feedback that is confusing to the system.

To address these two challenges of interactive image

search, we propose Syntharch, a new way to close the se-

mantic gap using visual-only feedback on high-level prop-

erties of synthetically generated images. We first produce a

multidimensional space Y, and generate images that corre-

spond to points in this space. Each dimension corresponds

to an image property akin to an attribute, but not necessar-

ily human-nameable. We show pairs of synthesized images

that differ in attribute values are presented to the user as op-

tions, and ask her to choose one which more closely resem-

bles the user’s desired target (see Figure 1). Using the ob-

tained feedback, we narrow down the search region within

Y. We re-rank the images, and use this narrower region to

generate the next two images for feedback.

In contrast to prior attribute-based work [17, 22], our

method does not rely on textual requests for feedback, e.g.

“Is the image you are looking for more or less pointy than

this one?” This means that the dimensions for feedback

need not be nameable, which addresses the first challenge

above. In addition, rather than using images from the

dataset for feedback, we use synthetically generated images

for which we have direct control over the properties they

exhibit. By only changing one dimension at a time (and

keeping others fixed) in the generated images on which we

solicit feedback, we cope with the second challenge above.

In this project, we use a vocabulary of attributes as the

space Y. Each image is represented as a normalized at-

tribute vector in this space, along with a latent vector from

space Z. We train a generator that interpolates smoothly

along a spectrum of attribute values. Each attribute vec-

tor, along with a latent vector describing low-level charac-

teristics of a particular image A, can be transformed into

another image B using this generator. This new image B

observes the low-level visual appearance of the original im-

age A, except for attributes which may have been modified.

Once the attribute space and the generator are learned, we

proceed with the interactive search and use synthesized im-

ages produced by the generator as options to gain relevance

feedback and to approach to the target image in the attribute

space. During the search, we maintain a search space to de-

termine the attribute vectors for the A-B image pairs. Each

choice within a pair indicates that the target is closer to the

chosen image than the other in Y. This information, in turn,

allows us to update the search space accordingly.

We show our approach improves search effectiveness

compared to two baselines, which either use only real im-

ages for feedback, or use a different mechanism to select

images for feedback. In the long term, Syntharch opens the

potential for this interactive image search approach to op-

erate on unlabeled databases, given a method to learn dis-

criminative relative attributes in an unsupervised fashion.

2. Related Work

Interactive Image Search The image search system we

propose is an interactive system, meaning that instead of

providing one fixed set of results given a search query, the

system allows for user interactions to refine the results, im-

proving the accuracy of the search and correcting faulty as-

sumptions over time. This idea has been studied for over

two decades and is a popular approach for the content-based

image retrieval task [34, 5, 35]. Early approaches, most no-

tably those adopted by web image search engines, utilize

low-level features such as color, dimension, and shape as

image descriptors [34, 32, 19]. In recent years, relevance

feedback has been shown to be more effective and accom-

modating to high-level concepts [29, 5, 6, 2, 17, 41]. By

incorporating relevance feedback, search systems can itera-

tively gain information on the user’s desired target results,

and correct mistakes due to the semantic gap.

Attribute-Based Search Relative attributes are used to

facilitate the interactive search by allowing comparative

feedback on specific human-nameable properties [33]. For

example, instead of providing binary feedback of whether

some given reference is relevant or not, one can express

their target image as being “more ornamental” or “less for-

mal” than a reference image [17]. To improve efficiency,

[15] proposes searching with a binary search tree for each

relative attribute. While using relative attributes to elicit

user feedback has been a popular approach, all previous

work relying on semantic visual attributes uses some tex-

tual form of feedback, in closed-form, free-form, or nat-

ural language. Our Syntharch approach expresses relative

attributes solely in visual forms, which helps alleviate the

semantic gap. Recently, there have also been explorations

with a larger variety of feedback forms in addition to at-

tributes, including sketches [22] or natural-language dialog

[8]. However, sketches are generally used once to initiate

a search and do not enable interactive search, while dialog

incurs additional overhead to learn the nuances of language.

Conditional Image Synthesis Recently, synthesis of re-

alistic images has been greatly empowered by deep gen-

erative models including variational autoencoders (VAE)

[14, 18, 36] and generative adversarial networks (GAN)

[7, 27, 21, 9, 30]. Conditional generative networks (CGAN)

enable modulation of the output image based on parame-

ters including text [21], images [9, 11], and attribute values

[36, 20, 12, 30, 40]. In particular, [36] suggests using a

variational auto-encoder to estimate the posterior distribu-

tions of the disentangled foreground and background image

to generate the composite full image, and [20] incorporat-

ing an attribute encoder at training time to allow generat-

ing variances of an image with controlled attribute values.
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Figure 2. Syntharch preprocesses each image database with a two-stage training, which enables the interactive search.

Other approaches [12, 30] train adversarial networks and

use a conditional vector as an additional input of the gener-

ator to control the attributes. In Syntharch, the conditional

image synthesis module based on RankCGAN [30] is inte-

grated into a preprocessing module to construct a multidi-

mensional attribute space for image synthesis. Concurrent

work [40] uses image generation to request labels for train-

ing attribute models, outside of any search context; in con-

trast, we solicit feedback on generated images specifically

to improve search results, not attribute models.

Image Editing The task of image editing is an extension

to conditional image synthesis with the capability to “in-

vert” the synthesis process. VAE naturally comes with an

encoder (a variational inference network) that can be used

to estimate the noise vector in some latent representation

space. To control the synthesis result, we can simply mod-

ulate the noise vector accordingly. GAN, as proposed origi-

nally [7] lacks the capability to project real images onto the

latent space for reconstruction, thus researchers have built

encoders on top of the GAN architecture for tasks such as

disentangling latent factors of 3D view synthesis [37] and

text to image synthesis [28]. [25] presented Invertible Con-

ditional GAN (IcGAN), an in-depth analysis of using en-

coders to inverse the mapping of deep CGANs. Building

on top of a conditional DCGAN, they introduced encoder

networks that convert images to latent variables, trained by

random datasets created with the generator. The encoders

therefore allow reconstruction and modification of real im-

ages. In Syntharch, the encoder we built for recovering the

latent noise vector and manipulating image attribute values

is based on the network proposed in IcGAN.

3. Approach

We introduce Syntharch (Synthesis + Search), an inter-

active image search system which leverages conditional im-

age synthesis for collecting more informative feedback. As

shown in Figure 2, the system is comprised of two mod-

ules: a preprocessing module that performs two-stage train-

ing for every image database, and a search module that in-

teracts with a user who wants to retrieve an image from a

preprocessed database. The first stage of the preprocessing

module trains the generator. The output of this generator

is used during the second stage to train an encoder which

maps an image to an estimated representation in the latent

space. The search module produces the questions (feedback

requests) to pose to the user using the learned generator and

encoder. Then, using the collected responses, it ranks the

images to produce the search results.

3.1. Generator Networks

The generator network is adapted from RankCGAN [30],

which is a combination of a conditional GAN (CGAN) and

a RankNet [1]. The generator, the ranker, and the discrim-

inator are trained simultaneously. The CGAN is composed

of two neural networks, generator and discriminator. The

generator G(z, y) takes in a latent noise vector z ∽ N (0, I)
of length 100 and an attribute vector y ∽ U(−1, 1) whose

length equals the number of attributes in the database. The

concatenation of the two vectors serves as the input to the

network. The output tensor (synthesized image) has dimen-

sion of 3x64x64. The discriminator network D(x) takes in

an image tensor x and makes a prediction indicating if the

input image is real. The output layer of D is a single scalar

in (0, 1) capturing the likelihood of input image x being

real.

The second component of our design is RankNet [1]

which uses gradient descent methods for learning ranking

functions. These are then used to estimate pairwise com-

parisons of image attributes and to help in decorrelating

the attributes by splitting them into different dimensions in

the attribute space Y. In particular, we use binary labels

(greater than v.s. less than1) to represent pairwise attribute

comparisons of images in the database. We benefit from us-

ing pairwise comparisons as opposed to exact values when

regulating the ranker because it allows us to formulate the

RankNet loss as a binary cross-entropy loss, similar to that

of the discriminator:

LR(x
(1)
i , x

(2)
i , ci) = −ci log (pi)− (1− yi) log (1− pi) ,

(1)

where pi is the posterior based on the estimated rank score

1The equal case, which rarely occurs, can be combined with either in-

equality of the dichotomy.



pi = sigmoid
(

R
(

x
(1)
i

)

−R
(

x
(2)
i

))

, (2)

and ci is the binary comparison result either given as a sam-

ple label (for real images) or inferred from the y values used

for synthesis (for images produced by the generator).

The particular RankNet we use shares the same structure

as the discriminator, except for the sigmoid function not be-

ing applied to the output layer as we only care about the

pairwise ranking orders. A dedicated ranking layer is ap-

pended to the last hidden layer in parallel for each attribute.

In summary, the RankCGAN networks give us the ca-

pability of learning a multidimensional attribute space for

image synthesis. With a fixed z, by modifying the y in

the attribute space, we can generate images with different

degrees of attribute expression. However, the real images

from the search database are not yet mapped onto this space.

In particular, although the ranker does provide a form of

attribute-value representation, because the training only op-

timizes the ranking order of the prediction in pairs, its out-

put cannot be directly mapped onto distribution U(−1, 1) of

the attribute vector space. This can be addressed by building

an encoder, as presented in Section 3.2.

3.2. Encoder for Image Editing

Given an image, the encoder proposed in IcGAN [25]

can be used to approximate the latent noise vector z and

the attribute vector y. Specifically, we learn two encoders

Ez and Ey , for estimating z and y respectively. At training

time, we use the generator to create a dataset of synthesized

images with uniformly distributed z and y labels. Then, to

optimize the encoder approximations, we learn the weights

which minimize the mean squared error (MSE) loss of

LEz
(x) = Ez∽pz,y′

∽py
||z − Ez(G(z, y′))||22 (3)

LEy
(x) = Ez′

∽pz,y∽py
||y − Ey(G(z′, y))||22. (4)

The encoder has four hidden convolutional layers, each

applied with batch normalization and ReLU. The last con-

volutional layer is flattened, followed by two linear trans-

formations which outputs an estimated vector of y or z.

The learned encoders, together with their generator

counterparts, allow us to reconstruct images and further

modify their attributes, as shown in Figure 3. We observe

that while not all the details (e.g. colors and fine patterns)

are fully preserved in the reconstructed images, the general

shape and the style, as dictated by the labeled attributes of

the dataset, are similar in every pair. To edit the attribute

values of an image x, we first obtain the estimated vectors

y = Ey(x), z = Ez(x) from the encoder. Then, while fix-

ing z, we modify y to y′ as described below, then obtain the

edited image x′ = G(z, y′).
Figure 3 shows some of the editing results. Each row is a

group that shows the original image xori, the reconstructed

image xrec = G(Ez(xori), Ey(xori)), followed by four

original reconstructed open +0.5 pointy +0.5 sporty +0.5 comfort +0.5 

original reconstructed open +0.5 pointy +0.5 sporty +0.5 comfort +0.5 

original reconstructed open +0.5 pointy +0.5 sporty +0.5 comfort +0.5 

original reconstructed open +0.5 pointy +0.5 sporty +0.5 comfort +0.5 

Figure 3. Image editing using the encoders and the generator.

edited images, each of which has the attribute value y′(m)

(dimension m of y′) incremented by 0.5 from Ey(xori)
(m).

As an example, in the first group, Ey approximated the

attribute value y = [0.1536,−0.0565, 0.7329, 0.0863],
where each dimension corresponds to an attribute: for

the UT-Zap50K dataset, they are open, pointy, sporty,

and comfort. The attribute vector used for generating the

first edited image labeled “open +0.5” is therefore y′ =
[0.6536,−0.0565, 0.7329, 0.0863].

3.3. Range­Based Search

During the search, we maintain an active search range

rm ⊆ [−1, 1] for each dimension m of the attribute vector

y. Initially, all ranges are set to [−1, 1] since y ∽ U(−1, 1).
As the user provides relevance feedback, the ranges are up-

dated and they are used to determine the y′ vector for syn-

thesizing the feedback options. As shown in Figure 1, each

question asked by Syntharch comprises two generated im-

ages. For each question, we want to elicit information re-

garding a specific attribute, an idea inspired by Attribute

Pivots [15]. In each pair of images, every attribute m ex-

cept for the attribute n we are querying is set to the center

value of its corresponding range, i.e.

y
′(m)
1 = y

′(m)
2 = r(1)m + (r(2)m − r(1)m )/2. (5)

For the attribute n, we divide the range to four equally-

spaced segments and set the attribute value of one of the

images to be at the 1/4 of the range, while that of the other

to be at the 3/4 of the range, i.e.

y
′(n)
1 = r(1)n + (r(2)n − r(1)n )/4 (6)

y
′(n)
2 = r(1)n + (r(2)n − r(1)n ) · 3/4. (7)

We pick 1/4 and 3/4 here because they are the centers of the

two evenly divided portions of the original range. For ex-

ample, at some stage of the search of a database with three



attributes, if the ranges are r1 = [−0.5, 0.7], r2 = [0.2, 0.8],
and r3 = [0.2, 0.6], and that if we want to collect relevance

feedback regarding the second attribute, then the attribute

vectors are y′1 = (0.1,0.35, 0.4), y′2 = (0.1,0.65, 0.4).
Notice that the attribute values for the first and the third

dimensions are intentionally kept the same so that the de-

gree of attribute expression for those two are controlled; at

the same time, for the second dimension, the values are pre-

cisely at 1/4 and 3/4 of the range. By controlling attribute

values in all dimensions except for the one we are querying,

when comparing the image options, the user will be more

likely to provide informative feedback regarding to that par-

ticular attribute. Importantly, this type of fine-grained con-

trol is empowered by our image synthesis idea.

Meanwhile, to generate an image, we also need the la-

tent vector z. To ensure that the synthesized results are re-

alistic, we search for the real image xref from our database

whose estimated attribute vector yref = Ey(xref) is the clos-

est (with the least Euclidean distance) to the center of the

current attribute search space, which also happens to be the

average of the attribute vectors, i.e. (y′1 + y′2)/2 We then

use zref = Ez(xref) as the latent noise vector to synthesize

both images. An alternative approach would be to find xref1

and xref2 where their estimated attribute vectors are the clos-

est to y′1 and y′2 respectively, and then use their estimated

z-vectors for the synthesis. However, because we want to

control the options visually so that they only differ in the

attribute expression, we need to fix the noise vector. There-

fore the two image feedback options are x1 = G(zref, y
′

1)
and x2 = G(zref, y

′

2).
Whenever the user answers a question, we can infer from

their choice the possible range of some attribute of the tar-

get image. Using the y′1 and y′2 values from the example

above, if the user chooses x1 over x2, then we know that

for the second attribute, the target value is likely closer to

r
(1)
2 = 0.15 than r

(2)
2 = 0.45, and therefore the range can

be reduced from [0, 0.6] to [0, 0.3]. If we reduce the search

range in this fashion, we are essentially performing a bi-

nary search on the attribute value range, similar to [15].

However, the performance would then be heavily affected

by any mistakes (noises) in the selection process. To rem-

edy that, we need to add in some tolerance: in the example

above, instead of lowering the upper bound to the middle

point (i.e. center of the range, r
(1)
m /2 + r

(2)
m /2), we want to

pick a value between 1/2 (middle point) and 3/4 (selected

option) of the range to balance range reduction speed and

noise-induced variance. For Syntharch, we decided to use

the value 2/3 (i.e. 2r
(1)
m /3 + r

(2)
m /3). Conversely, in the

event of choosing x2 over x1, we raise the lower bound to

be at 1/3 of the range (i.e. r
(1)
m /3 + 2r

(2)
m /3). In the exam-

ple, we would lower the upper bound to 0.4, i.e. reducing

the search range for attribute 2 from [0, 0.6] to [0, 0.4].
In order to elicit feedback from different attributes, we

use the round-robin approach, suggested by [15], to request

feedback responses for each attribute one-by-one and to re-

duce the search range in all the dimensions iteratively.

3.4. Relevance Prediction

The objective of Syntharch is to retrieve the most rele-

vant results based on the query. For the set of relevance

feedback F = {(rm, f)k}
T
k=1 collected during T search it-

erations, where rm is the search range of attribute m and

f ∈ {1, 2} denotes either x1 or x2 was selected to be more

similar to the target image, we want to produce a ranking of

the database images xi according to their relevance.

For that, we use a probabilistic-based relevance predic-

tion model derived from [15] which further allows for some

mistakes in relevance feedback in addition to our relaxed bi-

nary search constraint. The model can be formulated as the

following: given the set F , for each image xi, we want to

compute its probability of relevance P (relevant | xi,F).
Let Sk,i ∈ {0, 1} represent whether image xi satisfies

the binary search constraint in the k-th iteration of feed-

back. Specifically, if f = 1, then Sk,i = 1 if and only

if y
(m)
i < 2r

(1)
m,k/3 + r

(2)
m,k/3. Similarly, if f = 2 then

Sk,i = 1 if and only if y
(m)
i > r

(1)
m,k/3 + 2r

(2)
m,k/3. We can

now express the probability of relevance for each image xi

as a sum of log probabilities,

P (relevant | xi,F) =

T
∑

k=1

logP (Sk,i = 1 | xi). (8)

Then we can use Platt’s method [26] to estimate the proba-

bilities with the following transform, that the log probability

logP (Sk,i = 1 | xi) equals

1−
1

exp(αm)
(

y
(m)
i −

(

2r
(1)
m,k/3 + r

(2)
m,k/3

)

+ βm

) (9)

if f = 1, and

1

exp(αm)
(

y
(m)
i −

(

r
(1)
m,k/3 + 2r

(2)
m,k/3

)

+ βm

) (10)

if f = 2, where αm and βm are learned from the pairwise

comparison labels as well as the output of Ey on all images.

We run the relevance prediction model on all images af-

ter each iteration and sort the images by their probability of

relevance to get our search results.

4. Experimental Validation

To evaluate how Syntharch’s contribution advances prior

art for interactive image search, we set up a user study.

4.1. Dataset

We evaluate Syntharch with the UT-Zap50K dataset

[38, 39] consisting of 50,025 catalog images of shoes with 4



relative attributes labels: open, pointy, sporty, and comfort-

able. The attribute labels are provided in the form of 6,751

ordered pairs. Each pair label contains two image indices

i, j for an attribute dimension m, indicating that xi has a

stronger strength in attribute m compared to xj .

4.2. Metric

Similar to previous work [15, 17, 22, 8], we quantify

the search performance (accuracy) by the percentile rank

of the target image’s probability of relevance, as given by

the method described in Section 3.4, over time (iterations).

The percentile rank is defined as the percentage of images

in the search database that are ranked lower than the tar-

get image in the search results. Therefore, the higher the

percentile rank, the closer the target image is to the top of

the search results, and the more accurate the search results

are. After each iteration of every search session, the current

target percentile rank is recorded. By the end of all search

sessions, the average percentile rank is aggregated for each

search iteration for each search method.

4.3. Setup

Each experiment session contains 10 random search tar-

gets, and we run 30 search sessions in total. 10 of the search

sessions use the Syntharch method, 10 of them using the

alternative (baseline) method described in Section 4.5 and

the remaining 10 using the method in Section 4.6. The or-

der of the 30 search sessions (and consequently, that of the

targets) are randomized. All experiment participants are in-

structed to perform the same task: for each search iteration,

given a target image and two option images x1 and x2, se-

lect the option between the two that is closer to the target.

We tell users which image to search for, in order to be able

to precisely measure percentile rank, but no search system is

given this information. For each search session, the search

system asks 12 questions and collects 12 relevance feedback

responses. Each question and answer count as one search it-

eration. If at some stage of the search, the target image is

ranked within the top 20 results of the dataset (i.e. with a

percentile rank of 99.96% for UT-Zap50K), the search ses-

sion will terminate early to move to the next session (if any

remaining). If so, we consider the missing iterations as hav-

ing a percentile rank of 100% when computing the aver-

age. We asked 10 people (mostly undergraduate and grad-

uate students) to complete live experiment sessions for our

user study. From these, we collected search interactions in

300 search sessions (100 sessions per method), with a total

of 3,596 relevance feedback responses.

4.4. Implementation

The preprocessing module for learning of the RankC-

GAN networks and the encoders is implemented in Python

with the PyTorch [24] deep learning framework. As dis-

cussed in Section 3.1, the CGAN (G,D) and RankNet (R)

architecture are built upon RankCGAN [30] and are largely

modified from their open-source repository2. In particu-

lar, we modified their RankCGAN implementation to sup-

port more than two attributes. The encoders (Ey and Ez)

are implemented according to the IcGAN [25] architecture

based on the original Torch implementation3. For train-

ing, we used the recommended configuration with a mini-

batch size of 64 and trained the Adam optimizer [13] with

β1 = 0.5, β2 = 0.999, and a learning rate η = 0.0002. We

trained the RankCGAN networks for 200 epochs, picked the

checkpoint that produced the best synthesis and ranking re-

sults, then used the learned generator to synthesize 100,000

(x, y, z) tuples and trained the encoder networks for 500

epochs. The search module is implemented in Python.

4.5. Hypothesis 1: Benefits of Image Editing

One major difference between our proposed search ap-

proach and recent interactive image search approaches

[33, 17, 22, 8] is the use of exclusive visual feedback ques-

tions. This change itself does not warrant the use of image

editing and synthesis. In particular, one can design a similar

search method that uses retrieved images instead of gener-

ated ones as feedback options. The modified search method

can still use the range-based search and relevance prediction

for ranking, and the only difference would be that rather

than generating x1 = G(zref, y
′

1) and x2 = G(zref, y
′

2), we

simply find x1 and x2 from the database such that Ey(x1)
is the nearest to y′1 and Ey(x2) is the nearest to y′2. The

main disadvantage of this approach is that the images of

each pair might differ in not only their attribute expression,

but also other details that might confuse the user and the

system. Additionally, the distribution of the images might

be sparse in certain regions of the attribute space, such that

the images with the nearest attribute vectors to y′1 and y′2
might be the same, rendering the question ineffective. In

our experiment, we want to validate the benefits of image

editing by comparing the Syntharch method to the method

using retrieved images as options, referred to as retrieved

+ range in Figure 5.

4.6. Hypothesis 2: Benefits of Range­Based Search

In Section 3.3, we described the method of performing

a ranged-based binary search with relaxed constraints. In

our range-based search, we formulate the problem as range

searching in a multidimensional space of visual attributes.

In contrast, [15] considers each attribute independently: a

binary search tree is formed for each individual attribute,

and every tree contains all images in the database. The main

reason we proceed differently is that without textual labels

of the semantic attribute to pay attention to for each search

2https://github.com/saquil/RankCGAN
3https://github.com/Guim3/IcGAN



pointy: 0.5sporty: 0.85comfort: 0.6
0 open-0.4 0.4 0.8

pointy: 0.95sporty: -0.75comfort: -0.4

0.2

Figure 4. Manipulation of the “open” attribute exhibited differ-

ently on the synthesized images in different regions (semantically,

“sports shoes” and “high heels”) of the attribute space.

iteration, the user receives no guidance on the exact detail to

compare against their target image. Therefore, we need the

expression of the attribute that is being queried/modified to

be as close to that in the target image as possible, because

some attribute manipulation might lead to different mani-

festation in different regions of the attribute space. For ex-

ample, as shown in Figure 4, in the UT-Zap50K dataset, the

expression of openness in sports shoes is different from that

in high heels.

To verify the benefit of our search where the ranges are

updated from feedback on all attributes, we implemented

the Attribute Pivots method [15]. Specifically, for each

pivot image xp, we take its estimated vectors yp = Ey(xp)
and zp = Ez(xp). zp is used as-is for generating both op-

tions. For yp, we add or subtract 0.15 (chosen as optimizing

the performance of this method qualitatively) in the attribute

dimension we are modifying; this gives us y′1 and y′2. This

method is labeled synthesis + pivot in Figure 5.

4.7. Main Results

Figure 5 visualizes the mean percentile rank over search

iterations (higher is better). We observe that by the end

of 12 search iterations, the average percentile rank for the

Syntharch is the highest at 72.36%, compared to 70.89%
for the baseline method of using retrieved images as op-

tions (Section 4.5) and 57.13% for using synthesized pivot

images for the search (Section 4.6). We can conclude that

the Syntharch method is more likely to perform better than

both alternative methods by the end of the 12-question

search. Further, across all search iterations, the average

percentile ranks across all search iterations for the Syn-

tharch, retrieved, and pivot methods are 69.71%, 67.85%,

and 54.11% respectively. Therefore, we also establish that

the Syntharch method is more likely to perform better than

the alternative methods for most iterations. This indicates

that both of our hypotheses hold.
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Figure 5. Average percentile rank over iterations by method.

4.8. In­Depth Analysis

As shown in Figure 5, while the rank of the target over

time has the general upward trend for all three methods, that

of the Syntharch method exhibits a more consistent increas-

ing pattern. We argue that in each search session, the per-

centile rank decreases if and only if the user makes a com-

parison contrary to the model, which we refer to as “con-

fusing feedback”, in the sense that the search system will

be confused. On average, we expect users to make more

informative feedback than confusing feedback. However,

when a large quantity of confusing feedback is made across

search sessions, we will observe a decline of average per-

centile rank (e.g. from iteration 8 to 10 in Syntharch, from

iteration 4 to 6 in retrieved + range and from iteration 9

to 11 in synthesis + pivot). To understand the conditions

of receiving confusing feedback, we look at specific search

sessions with aggressive percentile rank declines.

During the search session shown in Figure 6, there is

a sharp declining trend of percentage rank for retrieved +

range starting after iteration 2. Moreover, the Syntharch

method also experiences rank regression starting after itera-

tion 3. When examining the feedback options and the user’s

choices from these three search sessions reconstructed from

the saved log, we observed that during the session with

retrieved + range, the feedback options remain the same

since iteration 4. This is due to the fact that if the previ-

ous choices lead a region of the attribute space that is sparse

with images, regardless of variations in the attribute vec-

tor y, the nearest image will always be the same. Specif-

ically, in iteration 4, y1 = (−1/3,−1/3, 1/3,0.5), y2 =
(−1/3,−1/3, 1/3,−0.5), where the last attribute differs

by | − 0.5 − 0.5| = 1.0, yet we still retrieved the same

image due to the aforementioned reason. When the two im-

ages in the pair are too close to distinguish, users are in-



1 2 3 4 5 6 7 8 9 10 11 12
Search Iteration (# of questions)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ta
rg

et
 R

an
k 

(P
er

ce
nt

ile
)

syntharch (synthesis + range)
retrived + range
synthesis + pivot

Target 19127

x1 x2

x1 x2

target

#4

#4

Session: Syntharch

Session: Pivot

Figure 6. Percentile rank over iterations by method with iteration

4 of the “syntharch” and the “pivot” for one specific search target,

showing issues with the “retrieved” method.
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Figure 7. Percentile rank over iterations by method with iteration 4

and 5 of the “pivot” method for one specific search target, showing

issues with the “pivot” method.

structed to make an arbitrary selection, meaning that they

will provide confusing feedback half of the time. On the

other hand, while both Syntharch and synthesis + pivot ex-

hibit more diversity thanks to the use of the image gener-

ator, when crossing over the sparse region, the synthesized

images are at times less realistic. For example, during iter-

ation 4, the quality of the options are too bad for the user to

provide any informative feedback. In fact, the user indeed

responded with “confusing feedback” during that iteration.

Nonetheless, methods using image synthesis are still better

at eliciting relevance feedback than plain retrieval, and the

percentile rank eventually recovered in this search session

as shown in Figure 6. We think the reason that synthesis

+ pivot is less severely affect by the sparse region in this

example is that its attribute values in each pair differ by a

smaller fixed value of 2 × 0.15 = 0.3, as opposed to 1.0 in

the case of range searching during the first few iterations.

However, synthesis + pivot has its own shortcomings

which make it less effective in more general cases for im-

age search with visual feedback questions. In particu-

lar, during the search session illustrated in Figure 7, this

method suffers harshly at iteration 4 and 5. The feedback

questions and the user’s choices for the two iterations are

shown to the right of the percentile rank plot. At iter-

ation 4, the attribute being considered is “comfort” with

y
(4)
1 = −0.1345 and y

(4)
2 = 0.1655 whereas for the tar-

get image, Ey(x35685)
(4) = −0.6354. Similar to how the

openness of shoes are expressed differently among sports

shoes and high heels (as shown previously in Figure 4), the

expressions of “comfort” of the shoes for the neighborhood

around the target image and that around the pivot image

chosen for the iteration are quite different. In this case,

increasing the attribute value actually changes the overall

shape of x2, making it more visually similar to the target

despite y
(4)
2 being far greater than Ey(x35685)

(4), mislead-

ing the user, judging purely by visual similarity, to select the

option that is farther in the attribute space from the target. A

similar pattern occurred at iteration 5, possibly accounting

for the confusing feedback from the user and inferior search

performance.

To summarize, the study shows that the Syntharch

method outperforms both alternative methods on average.

In particular, using synthesized as opposed to retrieved im-

ages allow Syntharch to have fine control over attributes in

regions of the attribute space that do not have sufficient im-

age samples. At the same time, range searching leads to

attribute expressions that are more likely to be consistent

with those near the target image. Consequently, the com-

bined approach in Syntharch leveraging both image synthe-

sis and range-based search has the best performance of all

three methods tested in the user study.

5. Conclusions

We explored a novel approach for interactive image

search using only visual feedback. Our Syntharch method

incorporates image synthesis and range searching to achieve

better accuracy, as a proof of concept for the new approach.

The user study results confirmed that (1) using image edit-

ing is beneficial over retrieving real images for feedback

options and (2) performing a range-based search in a mul-

tidimensional attribute space over searching in separate bi-

nary search trees lead to better search accuracy. In future

work, we aim to improve image quality results. We will

also explore an alternative search strategy that uses ranges

based on density along an attribute dimension, and experi-

ment with non-nameable, latent attributes for feedback.
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