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Network Architecture

. # output channels
block layer (kernel/stride) standard double half
convolutional 1 convl (5x5/2) 2 4 !
maxpooll (2x2/2) 2 4 1
gated1 - 16 32 8
conv2 (1x1/1) 8 16 4
convolutional2 conv3 (3x3/1) 4 8 2
maxpool3 (2x2/2) 4 8 2
gated2 - 32 64 16
conv4 (1x1/1) 16 32 8
convolutional3 conv5 (3x3/1) 8 16 4
maxpool5 (2x2/2) 8 16 4
gated3 - 64 128 32
convé6 (1x1/1) 32 64 16
convolutional4 conv7 (3x3/1) 16 32 8
maxpool7 (2x2/2) 16 32 8
gated4 - 128 256 64
conv8 (1x1/1) 64 128 32
final avgpool8 64 128 32
fcl9 64 128 32
fcl10 Jt Jt Jt

Table S1: Network architecture. The convolutional blocks have the same architecture for each task, but do not share weights.
The last columns indicate the number of channels in the two architectures used in the experiments.




Training Curves
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(a) Training loss. (b) Validation loss.

Figure S1: Training curves for experiment standard. Note that the scale is different because during testing phase the
mini-batch weights are note evaluated.
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(a) Training loss. (b) Validation loss.

Figure S2: Training curves for experiment half. Note that the scale is different because during testing phase the mini-batch
weights are note evaluated.



training loss score over epochs
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(a) Training loss.
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(b) Validation loss.

Figure S3: Training curves for experiment double. Note that the scale is different because during testing phase the mini-
batch weights are note evaluated.
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(a) Training loss.
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(b) Validation loss.

Figure S4: Training curves for experiment binary. Note that the scale is different because during testing phase the mini-
batch weights are note evaluated.
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Figure S5: Training curves for experiment gates—off. Note that the scale is different because during testing phase the
mini-batch weights are note evaluated.



Melanoma diagnosis confusion matrices
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Figure S6: Confusion matrices of the binary melanoma diagnosis for various experiments. 7 is the threshold chosen for the
7-point checklist method [ 1, 2]. 0: not melanoma; 1: melanoma.
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