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A. Examples of Adaptive Binning

Figure 1 shows the Reliability Diagram of DenseNet on
Cifar10 and Cifar100 datasets before and after model cali-
bration using adaptive binning. It can be seen that the cal-
ibration with temperature scaling significantly reduces the
calibration error. For a more difficult dataset and a cali-
brated model, more bins are used automatically.

(a) Uncalibrated Cifar10 (b) Uncalibrated Cifar100

(c) Calibrated Cifar10 (d) Calibrated Cifar100

Figure 1: Reliability Diagrams of various models.

B Experiment Results of Medical Image Seg-
mentation

Figure 2 shows the experiment results on the Multi-
Modality Whole Heart Segmentation dataset.
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Figure 2: Effect of model complexity on uncertainty estimation in
medical image segmentation.

C. Proofs
C.1 Proof of Theorem 1

Theorem 1. For any two networks A and B of the same ac-
curacy and their uncertainties measured by arbitrary meth-
ods (which can be different for A and B), the curve of A
dominates that of B in the ROC space if and only if the curve
of A dominates that of B in the Risk-Coverage space.

Proof. Proof by contradiction. Since the wrong predictions
are positive samples and correct predictions are negative
samples. Having the same accuracy means that the two net-
works have the same number of positive and negative sam-
ples. Denote TN, TP, FN, FP, TPR, and FPR as true nega-
tive, true positive, false negative, false positive, true positive
rate, and false positive rate respectively. Then we have

coverage =
TN + FN

TN + FN + TP + FP
(1)



risk =
FN

TN + FN
(2)

Suppose the curve of B dominates that of A in the ROC
space but not in the Risk-Coverage space. Then there exists
a point a on the curve of network A and a point b on the
curve of B such that coveragea = coverageb and riska <
riskb.

From coveragea = coverageb, we have TNa+FNa =
TNb + FNb. Since FNa

(TNa+FNa)
< FNb

(TNb+FNb)
, we have

FNa < FNb and TNa > TNb.
Remember that the numbers of positive and negative

samples are equal. Therefore we have FPa + TNa =
FPb + TNb and TPa + FNa = TPb + FNb. Then we
obtain FPa < FPb and TPa > TPb. Then we have
TPRa > TPRb and FPRa < FPRb.

This contradicts the fact that the curve of B is higher
than that of A in the ROC space. The other direction can be
proved in the same way.

C.2 Proof of Proposition 1

Proposition 1. For any bin selection, ˆECE(Pθ,D) =
ECE(Pθ,D) if and only if for any bin Bj , EPθ,D(c|rk)[c] ≥
rk for all rk ∈ Bj or EPθ,D(c|rk)[c] ≤ rk for all rk ∈ Bj .
Otherwise, ˆECE(Pθ,D) < ECE(Pθ,D).

Proof. For clarity, we reuse n, Bj and Dj as the num-
ber of bins, the range of bin, and the sample set where
j = {1, . . . , n}. Note that here the bin selection no
longer needs to be a uniform partition. In order to make
ECE(Pθ,D) meaningful, we assume there are enough sam-
ples and EPθ,D(c|rk)[c] is a solvable value. Denote the num-
ber of different values of r as m and these different values
of r as rk where k = {1, . . . ,m}. Then we partition D to
m bins Dk = {xi|ri = rk} so that each bin only has one
unique r value. The ground truth ECE can be written as:

ECE(Pθ,D) =
1

|D|

m∑
k=1

|Dk||EPθ,D(c|rk)[c]− rk| (3)

Then we have

ˆECE(Pθ,D) =
1

|D|

n∑
j=0

|
∑
xi∈Dj

ci −
∑
xi∈Dj

ri| (4)

=
1

|D|

n∑
j=0

|
∑
rk∈Bj

|Dk|(EPθ,D(c|rk)[c]− rk)|

Note that∑
rk∈Bj

|Dk|(EPθ,D(c|rk)[c]− rk) ≤
∑
rk∈Bj

|Dk|
∣∣∣(EPθ,D(c|rk)[c]− rk)

∣∣∣
and they are equal if and only if for any bin Bj ,
EPθ,D(c|rk)[c] ≥ rk for all rk ∈ Bj or EPθ,D(c|rk)[c] ≤ rk
for all rk ∈ Bj . Together with Equation 3, we conclude the
proof.

C.3 Proof of Proposition 2

Proposition 2. The uncertainty estimation r is perfect for
both selective prediction and confidence calibration if and
only if, for all samples r ∈ {0, 1}, EPθ,D(c|r=0)[c] = 0, and
EPθ,D(c|r=1)[c] = 1.

Proof. Given r ∈ {0, 1}, EPθ,D(c|r=0)[c] = 0,
and EPθ,D(c|r=1)[c] = 1, it follows trivially that
EPθ,D(r)[|EPθ,D(c|r)[c] − r|] = 0 and ra > rb for any
ca = 1, cb = 0.

On the other side, if EPθ,D(r)[|EPθ,D(c|r)[c]−r|] = 0, we
have EPθ,D(c|r)[c] = r. If there exists a xi that ri ∈ (0, 1),
then we EPθ,D(c|ri)[c] ∈ (0, 1).

Consequently, |{x|c = 0, r = ri}| > 0 and |{x|c =
1, r = ri}| > 0. Then for any two samples xa ∈ {x|c =
1, r = ri} and xb ∈ {x|c = 0, r = ri}, we have
ca = 1, cb = 0 and ra = rb that contradict with the
fact that ra > rb for ca = 1, cb = 0. Therefore, xi ∈
{0, 1}. Using EPθ,D(c|r)[c] = r, it follows immediately that
EPθ,D(c|r=0)[c] = 0, and EPθ,D(c|r=1)[c] = 1.


