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A. Examples of Adaptive Binning

Figure 1 shows the Reliability Diagram of DenseNet on
Cifar10 and Cifar100 datasets before and after model cali-
bration using adaptive binning. It can be seen that the cal-
ibration with temperature scaling significantly reduces the
calibration error. For a more difficult dataset and a cali-
brated model, more bins are used automatically.
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Figure 1: Reliability Diagrams of various models.

B Experiment Results of Medical Image Seg-
mentation

Figure 2 shows the experiment results on the Multi-
Modality Whole Heart Segmentation dataset.
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Figure 2: Effect of model complexity on uncertainty estimation in
medical image segmentation.

C. Proofs
C.1 Proof of Theorem 1

Theorem 1. For any two networks A and B of the same ac-
curacy and their uncertainties measured by arbitrary meth-
ods (which can be different for A and B), the curve of A
dominates that of B in the ROC space if and only if the curve
of A dominates that of B in the Risk-Coverage space.

Proof. Proof by contradiction. Since the wrong predictions
are positive samples and correct predictions are negative
samples. Having the same accuracy means that the two net-
works have the same number of positive and negative sam-
ples. Denote TN, TP, FN, FP, TPR, and FPR as true nega-
tive, true positive, false negative, false positive, true positive
rate, and false positive rate respectively. Then we have

TN+ FN
TN+ FN+TP+FP

¢y

coverage =



) FN
risk = TN FN 2)

Suppose the curve of B dominates that of A in the ROC
space but not in the Risk-Coverage space. Then there exists
a point a on the curve of network A and a point b on the
curve of B such that coverage, = coveragey and risk, <
risky.

From coverage, = coveragey, we have TN, + F'N, =
TNy + FNy. Since oyt 285y < w1 ayy» We have
FN, < FNyand TN, > TNj.

Remember that the numbers of positive and negative
samples are equal. Therefore we have F'P, + TN, =
FP,+ TNy and TP, + FN, = TP, + FNp. Then we
obtain FP, < FP, and TP, > TP, Then we have
TPR, > TPRpyand FPR, < FPRy.

This contradicts the fact that the curve of B is higher
than that of A in the ROC space. The other direction can be
proved in the same way. O

C.2 Proof of Proposition 1

Proposition 1. For any bin selection, ECE(Pyp) =
ECE(Py p) if and only if for any bin Bj, Ep, ,(cr)[c] >
i for all i, € Bj or Ep, ,(cjry) [l < & for all vy, € By
Otherwise, ECE(Py p) < ECE(Pyp).

Proof. For clarity, we reuse n, B; and D; as the num-
ber of bins, the range of bin, and the sample set where
{1,...,n}. Note that here the bin selection no
longer needs to be a uniform partition. In order to make
ECE(Py p) meaningful, we assume there are enough sam-
ples and Ep, ;,(¢|r,)[c] is a solvable value. Denote the num-
ber of different values of r as m and these different values
of r as ry, where k = {1,...,m}. Then we partition D to
m bins Dy = {x;|r; = ri} so that each bin only has one
unique 7 value. The ground truth ECE can be written as:

ECE(Py,p) = Z Di|lEp, picirpldl =] (3)
k=1

Then we have

ECE(Py,p) = |D|Z| S Y ml @
j=0 =z;€D; z,€D;
|D| Z' Z | D ( EPe D((‘|Tk)[c] —7k)]
Jj=0 rpEB;
Note that
> IDrI(Epy perpld =) < Y \Dkl‘(EPQ,Dw\rk)[C]*m
ryE€B; ryE€B;

and they are equal if and only if for any bin Bj,
EPG,D(C|7'k)[C] > rg forall ry, € Bj or EPG,D(C|T'k)[C] <7k
for all r;, € B;. Together with Equation 3, we conclude the
proof. O

C.3 Proof of Proposition 2

Proposition 2. The uncertainty estimation r is perfect for
both selective prediction and confidence calibration if and
only if, for all samples r € {0,1}, Ep, ,(cjr=0)lc] = 0, and
Ep, p(elr=1)[c] = 1.

Proof. Given r € {0,1}, Ep, p(cr=0)lc] = 0,

and Ep, (cr=p)[c] = 1, it follows trivially that

EP@D \WEP, p(elmlc] —r|] = 0and r, > r, for any
=1,¢=0.

On the other side, if Ep, () [[Ep, p(c|r)[c] —7[] = 0, we
have Ep, ,(c|rlc] = 7. If there exists a z; that r; € (0, 1),
then we EPg,D(c\r,ﬂ,)[C} S (0, 1).

Consequently, [{z|c = 0,r = r;}| > 0 and [{z|]c =
1,7 = r;}| > 0. Then for any two samples z, € {z|c =
l,r = r}and 2, € {z|c = 0,r = r;}, we have
ce = 1, ¢, = 0 and r, = r, that contradict with the
fact that r, > r, for ¢, = 1, ¢, = 0. Therefore, z; €
{0,1}. Using Ep, ,(c|ry[c] = , it follows immediately that
EPG,D(Cl"":O) [C] =0, and EPQ7D(c\r:1)[C] =1. O]
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