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1. Training Details of Concept Proof

These four networks are trained on the NYUv2 dataset
[2] with AWGN and the real noise SIDD dataset for 50
epochs. The learning rate is initialized as 10~ and decays
to 2 x 10~ after 30 epochs. For all the three datasets, a
crop size of 80 x 80 is employed during training.

2. Fusion of approximate clean gradient

As discussed in Section 4.2, fusing the approximate
clean gradient is different from fusing the clean one. One
might doubt whether fusing in the early layer is also the
most effective way when it comes to the approximate gradi-
ent. In this part, we implement an experiment similar to the
one in Section 3.2 with approximate gradient fused.

We use DnCNN as the naive denoise method. SKD-
nCNN is employed as the main denoise block, the same
as the experiment in Section 3.2. We also train 50 epochs
with 1072 as the initialized learning rate which decays to
2 x 10~* after 30 epochs. A crop size of 80 x 80 is applied.
We show the results in Fig. 1.

Although the improvements on these three datasets by
GradNet-1II are not as high as those with clean image gra-
dient fused (shown in Fig, 3 in the paper), GradNet-II still
boosts +0.33dB, +0.47dB on NYUv2 with 0=15 and 50 and
+1.11dB on SIDD. Comparing with the other three architec-
tures (GradNet-I, GradNet-III, GradNet-1V), GradNet-II is
still the best. The reported results validate that fusing in the
shallow layer is also the most effective way to exploit the
approximate clean gradient.

3. Sobel Filters vs. Grad Filters

One might also question that the pre-defined grad filters
are fixed filters, which can be learned in convolutional net-
works. We agree that the network can learn filters like Sobel
Filter automatically under ideal circumstances. However,
our experiment in proof-of-concept suggests that it’s not so
obvious. Adding the image gradient extracted by a fixed fil-
ter (we use Sobel Filter as an example here) can be treated
as adding a prior to the network, which can boost the de-
noising performance. If a network can learn Sobel Filter or
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Figure 1: Fusing approximate gradient to different layers
the same way as Fig. 2 shows in the paper. The approximate
clean image is obtained by DnCNN. The results verify that
GradNet-1I is also the most effective architecture when it
comes to approximate gradient.

other filters which are better than Sobel Filter automatically,
the performance of adding Sobel Filter explicitly will be not
higher than the original network in the optimization process.
During training, the gradient-based update of parameters of
our network is easy to fall in local optimal instead of find-
ing the global optimal. Adding a fixed filter layer like Sobel
Filter can help to jump out of local optimality to some ex-
tent.

4. Mathematical Expressions of the Details of
GradNet

Image gradient fusion. Suppose y € R7*W is the
contaminated input image. Let & to be the naive denoised
image. Let ¢(-) denotes the function that the naive denois-
ing perform, then the edge and texture extraction operation
can be expressed as G(&) = G(¢(y)).

The Main branch. As illustrated in Fig. 4 in the paper,
the main branch of GradNet includes feature extraction, de-
noise and reconstruction blocks.

Feature extraction block. This feature extraction layer
is composed of a convolutional layer ¢(-) which is followed
by a ReLU layer 7(-) , denoted as fo = 7(c(y)). Then we
concatenate the gradient of the naive denoised image G (&)
with the extracted features as the input of the main denois-



Noisy BM3D 30.89dB

TNRD 30.06dB

DnCNN 31.56dB  PRIDNet 31.54dB CBDNet 31.06dB  GradNet 32.17dB

Figure 2: An example from the DnD dataset [3]. Zoom-in is needed to check the details. GradNet reserves fine scale details

while removing noise, without generating artifacts.
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(a) Noisy 20.11dB  (b) DnCNN 28.75dB  (c) FFDNet 21.68dB (d) CBDNet 28.44dB (e) GradNet 34.10dB

(f) Clean

Figure 3: An example from the SIDD validation dataset [1]. FFDNet fails to remove all the noise. CBDNet leaves some
artifacts while removing noise. DnCNN changes the color of the image while denoising. Both quantitative and qualitative

results of GradNet outperform other methods to a great extent.

ing block go = fo @ G(&), where & is the concatenation
operator.

MSKResnet as the denoise block. As shown in Fig. 5,
MSKResnet cascades several residual modules with a long
skip connection. Each of the residual modules contains sev-
eral ResUnits with short skip connection, a medium skip
connection, and an attention module.

The particular operation in ResUnit, denoted by R(-),
can be expressed as

P =RE) =7tz (c(FH)) + £5), O

where £ and f}_, are the input and output of the (i+1)-th
ResUnit in the k-th residual module.

Suppose there are m ResUnits in each residual module
and the input to the k-th residual module is f¥, the output
fk after a sequence of operations of ResUnits is

£k = R Ra(RA(£F))). )

m

We use an attention module after the concatenation of
fland £k ie., f& @ fF, in the k-th residual module.
The attention module we use consists of an average pool-
ing layer ¢(-), a shrinkage convolutional layer ¢p(-) fol-
lowed by ReLU 7(-), and a reconstruction convolutional
layer ¢y (+) with Sigmoid o () as the activate function. Sup-
pose f& @ fk € ROXHXW where C is the number of

channels and H x W is the size of each feature map. The
size of the feature maps is reduced from C' x H x W to
C x 1 x 1 after average pooling ¢(-).

b(fE @ £5) = — iifé“@f,’;, 3)
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fa = olcu(r(cn(o(f5 © fm))), )

where ft’f is the output of the attention module, which is
also the output of the k-th residual module. It is passed to
the (k+1)-th residual module as input fé“ 1

Assume N residual modules are contained in our
MSKResnet, the whole process of this structure can be rep-
resented as

a = Mny(... Ma(Mi(go)))),
N

®)

where gg is the features extracted by feature extraction
layer, M(-) is the residual module and fZX is the features
from the final residual module.

The reconstruction layer. At last, the output of the main
denoising block 2 is passed to a reconstruction layer. The
final denoised image & = c(fN) + .



5. Visual Results

Two visual examples from DnD and SIDD are repre-
sented in Fig. 2 and Fig. 3.
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