
Supplementary Materials: GradNet Image Denoising

Yang Liu1,2, Saeed Anwar1,2, Liang Zheng1, Qi Tian3

Australian National University1, Data61-CSIRO2, Huawei Noah’s Ark Lab3

yang.liu3@anu.edu.au, saeed.anwar@csiro.au, liang.zheng@anu.edu.au, tianqi1@huawei.com

1. Training Details of Concept Proof
These four networks are trained on the NYUv2 dataset

[2] with AWGN and the real noise SIDD dataset for 50
epochs. The learning rate is initialized as 10−3 and decays
to 2 × 10−4 after 30 epochs. For all the three datasets, a
crop size of 80× 80 is employed during training.

2. Fusion of approximate clean gradient
As discussed in Section 4.2, fusing the approximate

clean gradient is different from fusing the clean one. One
might doubt whether fusing in the early layer is also the
most effective way when it comes to the approximate gradi-
ent. In this part, we implement an experiment similar to the
one in Section 3.2 with approximate gradient fused.

We use DnCNN as the naive denoise method. SKD-
nCNN is employed as the main denoise block, the same
as the experiment in Section 3.2. We also train 50 epochs
with 10−3 as the initialized learning rate which decays to
2×10−4 after 30 epochs. A crop size of 80×80 is applied.
We show the results in Fig. 1.

Although the improvements on these three datasets by
GradNet-II are not as high as those with clean image gra-
dient fused (shown in Fig, 3 in the paper), GradNet-II still
boosts +0.33dB, +0.47dB on NYUv2 with σ=15 and 50 and
+1.11dB on SIDD. Comparing with the other three architec-
tures (GradNet-I, GradNet-III, GradNet-IV), GradNet-II is
still the best. The reported results validate that fusing in the
shallow layer is also the most effective way to exploit the
approximate clean gradient.

3. Sobel Filters vs. Grad Filters
One might also question that the pre-defined grad filters

are fixed filters, which can be learned in convolutional net-
works. We agree that the network can learn filters like Sobel
Filter automatically under ideal circumstances. However,
our experiment in proof-of-concept suggests that it’s not so
obvious. Adding the image gradient extracted by a fixed fil-
ter (we use Sobel Filter as an example here) can be treated
as adding a prior to the network, which can boost the de-
noising performance. If a network can learn Sobel Filter or

Variant Study

35.98 35.98 35.99 36.31 36.02 35.85

30.40 30.26 30.40 30.73 30.50 30.05

25.65

36.66
37.51 37.77 37.47

36.68

24

27

30

33

36

39

BM3D DnCNN GradNet I GradNet II GradNet II I GradNet IV
PS

N
R 

(d
B)

NYUv2 𝜎=15 NYUv2 𝜎=50 SIDD

BM3D
DnCNN

GradNet-I

GradNet-II

GradNet-III

GradNet-IV

Figure 1: Fusing approximate gradient to different layers
the same way as Fig. 2 shows in the paper. The approximate
clean image is obtained by DnCNN. The results verify that
GradNet-II is also the most effective architecture when it
comes to approximate gradient.

other filters which are better than Sobel Filter automatically,
the performance of adding Sobel Filter explicitly will be not
higher than the original network in the optimization process.
During training, the gradient-based update of parameters of
our network is easy to fall in local optimal instead of find-
ing the global optimal. Adding a fixed filter layer like Sobel
Filter can help to jump out of local optimality to some ex-
tent.

4. Mathematical Expressions of the Details of
GradNet

Image gradient fusion. Suppose y ∈ RH×W is the
contaminated input image. Let x̂ to be the naive denoised
image. Let ψ(·) denotes the function that the naive denois-
ing perform, then the edge and texture extraction operation
can be expressed as G(x̂) = G(ψ(y)).

The Main branch. As illustrated in Fig. 4 in the paper,
the main branch of GradNet includes feature extraction, de-
noise and reconstruction blocks.

Feature extraction block. This feature extraction layer
is composed of a convolutional layer c(·) which is followed
by a ReLU layer τ(·) , denoted as f0 = τ(c(y)). Then we
concatenate the gradient of the naive denoised image G(x̂)
with the extracted features as the input of the main denois-



Figure 2: An example from the DnD dataset [3]. Zoom-in is needed to check the details. GradNet reserves fine scale details
while removing noise, without generating artifacts.

(a) Noisy 20.11dB (b) DnCNN 28.75dB (c) FFDNet 21.68dB (d) CBDNet 28.44dB (e) GradNet 34.10dB (f) Clean

Figure 3: An example from the SIDD validation dataset [1]. FFDNet fails to remove all the noise. CBDNet leaves some
artifacts while removing noise. DnCNN changes the color of the image while denoising. Both quantitative and qualitative
results of GradNet outperform other methods to a great extent.

ing block g0 = f0 ⊕ G(x̂), where ⊕ is the concatenation
operator.

MSKResnet as the denoise block. As shown in Fig. 5,
MSKResnet cascades several residual modules with a long
skip connection. Each of the residual modules contains sev-
eral ResUnits with short skip connection, a medium skip
connection, and an attention module.

The particular operation in ResUnit, denoted by R(·),
can be expressed as

fk
i+1 = R(fk

i ) = τ(c(τ(c(fk
i ))) + fk

i ), (1)

where fk
i and fk

i+1 are the input and output of the (i+1)-th
ResUnit in the k-th residual module.

Suppose there are m ResUnits in each residual module
and the input to the k-th residual module is fk

0 , the output
fk
m after a sequence of operations of ResUnits is

fk
m = Rm(. . . R2(R1(f

k
0 )))︸ ︷︷ ︸

m

. (2)

We use an attention module after the concatenation of
fk
0 and fk

m , i.e., fk
0 ⊕ fk

m, in the k-th residual module.
The attention module we use consists of an average pool-
ing layer φ(·), a shrinkage convolutional layer cD(·) fol-
lowed by ReLU τ(·), and a reconstruction convolutional
layer cU (·) with Sigmoid σ(·) as the activate function. Sup-
pose fk

0 ⊕ fk
m ∈ RC×H×W , where C is the number of

channels and H ×W is the size of each feature map. The
size of the feature maps is reduced from C ×H ×W to
C × 1× 1 after average pooling φ(·).

φ(fk
0 ⊕ fk

m) =
1

H ×W

H∑
i=1

W∑
j=1

fk
0 ⊕ fk

m, (3)

fk
a = σ(cU (τ(cD(φ(fk

0 ⊕ fk
m))))), (4)

where fk
a is the output of the attention module, which is

also the output of the k-th residual module. It is passed to
the (k+1)-th residual module as input fk+1

0 .
Assume N residual modules are contained in our

MSKResnet, the whole process of this structure can be rep-
resented as

fN
a =MN (. . .M2(M1(g0))))︸ ︷︷ ︸

N

,
(5)

where g0 is the features extracted by feature extraction
layer, M(·) is the residual module and fN

a is the features
from the final residual module.

The reconstruction layer. At last, the output of the main
denoising block fN

a is passed to a reconstruction layer. The
final denoised image x̃ = c(fN

a ) + y.



5. Visual Results
Two visual examples from DnD and SIDD are repre-

sented in Fig. 2 and Fig. 3.

References
[1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S.

Brown. A high-quality denoising dataset for smartphone cam-
eras. In CVPR, June 2018. 2

[2] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from rgbd
images. In ECCV, 2012. 1

[3] Tobias Plotz and Stefan Roth. Benchmarking denoising al-
gorithms with real photographs. In CVPR Workshops, 2017.
2


