
Photosequencing of Motion Blur using Short and Long Exposures
Supplementary PDF

Vijay Rengarajan1∗, Shuo Zhao1, Ruiwen Zhen2, John Glotzbach2, Hamid Sheikh2, Aswin C. Sankaranarayanan1

1Carnegie Mellon University, 2Samsung Research America
∗vangarai@andrew.cmu.edu

In this supplementary PDF, we provide the details of our
neural network architecture, and comparison between infer-
ence approaches based on single and three trained models.
The accompanying video provides all our results.

S1. Comparison of Single and Three Model
Approaches

As mentioned in Sec. 4.2 of the main paper, since our
technique uses recursive decomposition, the inputs to the
network beyond the first level would have at least one noise-
free estimated image. However, our training involves noise
for both the short exposure images. We showed results us-
ing this single-model approach in the main paper. As a
variation to our single trained model, we also trained three
different models (with the same architecture) for the three
cases with two, one, and zero noisy images for the short-
exposure inputs. This is explained in Fig. S1.

We observed no significant difference in our test results
for these two approaches. This can be seen in Fig. S3.
For four levels of decomposition as depicted in Fig. S1, we
show the estimated images Î4, Î12 inferred using Model-1
and Î6 using Model-2 in Fig. S3(b) for Skate and Jellyfish
scenes. The corresponding estimated images using the sin-
gle trained model approach inferred using Model-0 is shown
in Fig. S3(a). We can see no observable difference. The
relative PSNRs between the estimated images of the two
approaches are on the high end showing that both the ap-
proaches performs very similarly, and hence, we used the
single trained model approach for all our results in the main
paper.

S2. Network Architecture
The architecture of our neural network with layer num-

bering is shown in Fig. S2. The details of each layer, viz. in-
put/output channels, filter size, padding, and stride, are pro-
vided in Table S1.

References
[1] Vincent Dumoulin and Francesco Visin. A guide to con-

volution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285, 2016. 2

Figure S1. Single and three trained model approaches. (a) In the
first approach, a single model is trained with two short exposure
noisy images, and the same model is used at inference for all levels
of decomposition even if one or both of the short exposure inputs
are noise-free estimated images from a previous level. (b) In the
second approach three models are trained with two, one, and zero
noisy images as inputs. The respective model is used based on the
number of estimated noise-free images involved for that particular
inference set of inputs. For instance, the estimations of I4 and I12
in (b) use Model-1 since it involves the estimated noise-free I8 as
one of its inputs and the other short-exposure input is noisy, and
the estimation of I6 uses Model-2 since both its short-exposure
inputs I4 and I8 are noise-free.

Figure S2. Network architecture.



Rel. PSNR 43.83dB 40.38 dB 42.14 dB

Î4 (Model-0) Î6 (Model-0) Î12 (Model-0) Î4 (Model-1) Î6 (Model-2) Î12 (Model-1)

Rel. PSNR 43.62dB 40.96 dB 43.70 dB

Î4 (Model-0) Î6 (Model-0) Î12 (Model-0) Î4 (Model-1) Î6 (Model-2) Î12 (Model-1)
(a) Single trained model (b) Three trained models

Figure S3. Comparison of single and three trained models approaches. Both the approaches perform very similarly as shown in (a) and
(b) for the estimation of three images of the sequence depicted in Fig. S1. The relative PSNRs between the two approaches are quite high
denoting this behavior.

Table S1. Layer details of our architecture in Fig. S2

Layer Type chan-in→ chan-out filt, pad, stride
ip1 Conv 3→ 16 7x7, 3, 1
ip2 Conv 3→ 32 7x7, 3, 1
1 ResB 64→ 64 3x3, 1, 1
2 ResB 64→ 64 3x3, 1, 1
3 Conv 64→ 128 3x3, 1, 2
4 ResB 128→ 256 3x3, 1, 1
5 ResB 128→ 256 3x3, 1, 1
6 Conv 128→ 256 3x3, 1, 2
7 ResB 256→ 512 3x3, 1, 1
8 ResB 256→ 512 3x3, 1, 1
9 Conv 256→ 512 3x3, 1, 2

10 ResB 512→ 512 3x3, 1, 1
11 ResB 512→ 512 3x3, 1, 1
12 Conv 512→ 1024 3x3, 1, 2
13 ResB 1024→ 1024 3x3, 1, 1

Layer Type chan-in→ chan-out filt, pad, stride
14 ConvT 1024→ 256 4x4, 1, 2
15 ResB 512→ 512 3x3, 1, 1
16 ResB 512→ 512 3x3, 1, 1
17 ConvT 512→ 128 4x4, 1, 2
18 ResB 256→ 256 3x3, 1, 1
19 ResB 256→ 256 3x3, 1, 1
20 ConvT 256→ 64 4x4, 1, 2
21 ResB 128→ 128 3x3, 1, 1
22 ResB 128→ 128 3x3, 1, 1
23 ConvT 128→ 32 4x4, 1, 2
24 ResB 64→ 64 3x3, 1, 1
25 ResB 64→ 64 3x3, 1, 1

op1 Conv 64→ 3 3x3, 1, 1
op2 Conv 64→ 3 3x3, 1, 1
26 Conv 512→ 256 3x3, 1, 1
27 Conv 256→ 128 3x3, 1, 1
28 Conv 128→ 64 3x3, 1, 1
29 Conv 64→ 32 3x3, 1, 1

Conv - convolutional layer, ConvT - transpose convolutional layer [1].
All convolutional layers are followed by Leaky ReLU. Only op1 and op2 are followed by (tanh()+1)/2.

Structure of Dense Residual Block (ResB)
Layer Type chan-in→ chan-out filt, pad, stride

d1 Conv nchan→ nchan 3x3, 1, 1
d2 Conv nchan→ nchan 3x3, 1, 1
d3 Conv nchan→ nchan 3x3, 1, 1
d4 Conv nchan→ nchan 3x3, 1, 1


