AdaGraph: Unifying Predictive and Continuous Domain Adaptation Through Graphs

Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, Elisa Ricci; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 6568-6577

Abstract


The ability to categorize is a cornerstone of visual intelligence, and a key functionality for artificial, autonomous visual machines. This problem will never be solved without algorithms able to adapt and generalize across visual domains. Within the context of domain adaptation and generalization, this paper focuses on the predictive domain adaptation scenario, namely the case where no target data are available and the system has to learn to generalize from annotated source images plus unlabeled samples with associated metadata from auxiliary domains. Our contribution is the first deep architecture that tackles predictive domain adaptation, able to leverage over the information brought by the auxiliary domains through a graph. Moreover, we present a simple yet effective strategy that allows us to take advantage of the incoming target data at test time, in a continuous domain adaptation scenario. Experiments on three benchmark databases support the value of our approach.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Mancini_2019_CVPR,
author = {Mancini, Massimiliano and Bulo, Samuel Rota and Caputo, Barbara and Ricci, Elisa},
title = {AdaGraph: Unifying Predictive and Continuous Domain Adaptation Through Graphs},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}