Reasoning-RCNN: Unifying Adaptive Global Reasoning Into Large-Scale Object Detection

Hang Xu, Chenhan Jiang, Xiaodan Liang, Liang Lin, Zhenguo Li; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 6419-6428

Abstract


In this paper, we address the large-scale object detection problem with thousands of categories, which poses severe challenges due to long-tail data distributions, heavy occlusions, and class ambiguities. However, the dominant object detection paradigm is limited by treating each object region separately without considering crucial semantic dependencies among objects. In this work, we introduce a novel Reasoning-RCNN to endow any detection networks the capability of adaptive global reasoning over all object regions by exploiting diverse human commonsense knowledge. Instead of only propagating the visual features on the image directly, we evolve the high-level semantic representations of all categories globally to avoid distracted or poor visual features in the image. Specifically, built on feature representations of basic detection network, the proposed network first generates a global semantic pool by collecting the weights of previous classification layer for each category, and then adaptively enhances each object features via attending different semantic contexts in the global semantic pool. Rather than propagating information from all semantic information that may be noisy, our adaptive global reasoning automatically discovers most relative categories for feature evolving. Our Reasoning-RCNN is light-weight and flexible enough to enhance any detection backbone networks, and extensible for integrating any knowledge resources. Solid experiments on object detection benchmarks show the superiority of our Reasoning-RCNN, e.g. achieving around 16% improvement on VisualGenome, 37% on ADE in terms of mAP and 15% improvement on COCO.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Xu_2019_CVPR,
author = {Xu, Hang and Jiang, Chenhan and Liang, Xiaodan and Lin, Liang and Li, Zhenguo},
title = {Reasoning-RCNN: Unifying Adaptive Global Reasoning Into Large-Scale Object Detection},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}