Unequal-Training for Deep Face Recognition With Long-Tailed Noisy Data

Yaoyao Zhong, Weihong Deng, Mei Wang, Jiani Hu, Jianteng Peng, Xunqiang Tao, Yaohai Huang; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 7812-7821


Large-scale face datasets usually exhibit a massive number of classes, a long-tailed distribution, and severe label noise, which undoubtedly aggravate the difficulty of training. In this paper, we propose a training strategy that treats the head data and the tail data in an unequal way, accompanying with noise-robust loss functions, to take full advantage of their respective characteristics. Specifically, the unequal-training framework provides two training data streams: the first stream applies the head data to learn discriminative face representation supervised by Noise Resistance loss; the second stream applies the tail data to learn auxiliary information by gradually mining the stable discriminative information from confusing tail classes. Consequently, both training streams offer complementary information to deep feature learning. Extensive experiments have demonstrated the effectiveness of the new unequal-training framework and loss functions. Better yet, our method could save a significant amount of GPU memory. With our method, we achieve the best result on MegaFace Challenge 2 (MF2) given a large-scale noisy training data set.

Related Material

author = {Zhong, Yaoyao and Deng, Weihong and Wang, Mei and Hu, Jiani and Peng, Jianteng and Tao, Xunqiang and Huang, Yaohai},
title = {Unequal-Training for Deep Face Recognition With Long-Tailed Noisy Data},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}