
Spatio-Temporal Dynamics and Semantic Attribute Enriched

Visual Encoding for Video Captioning

Nayyer Aafaq Naveed Akhtar Wei Liu Syed Zulqarnain Gilani Ajmal Mian

Computer Science and Software Engineering,

The University of Western Australia.

nayyer.aafaq@research.uwa.edu.au,{naveed.akhtar, wei.liu, syed.gilani, ajmal.mian}@uwa.edu.au

Abstract

Automatic generation of video captions is a fundamen-

tal challenge in computer vision. Recent techniques typi-

cally employ a combination of Convolutional Neural Net-

works (CNNs) and Recursive Neural Networks (RNNs) for

video captioning. These methods mainly focus on tailor-

ing sequence learning through RNNs for better caption gen-

eration, whereas off-the-shelf visual features are borrowed

from CNNs. We argue that careful designing of visual fea-

tures for this task is equally important, and present a visual

feature encoding technique to generate semantically rich

captions using Gated Recurrent Units (GRUs). Our method

embeds rich temporal dynamics in visual features by hier-

archically applying Short Fourier Transform to CNN fea-

tures of the whole video. It additionally derives high level

semantics from an object detector to enrich the representa-

tion with spatial dynamics of the detected objects. The final

representation is projected to a compact space and fed to a

language model. By learning a relatively simple language

model comprising two GRU layers, we establish new state-

of-the-art on MSVD and MSR-VTT datasets for METEOR

and ROUGEL metrics.

1. Introduction

Describing videos in natural language is trivial for hu-

mans, however it is a very complex task for machines. To

generate meaningful video captions, machines are required

to understand objects, their interaction, spatio-temporal

order of events and other such minutiae in videos; yet,

have the ability to articulate these details in grammati-

cally correct and meaningful natural language sentences [1].

The bicephalic nature of this problem has recently led re-

searchers from Computer Vision and Natural Language Pro-

cessing (NLP) to combine efforts in addressing its chal-

lenges [3, 4, 5, 30]. Incidentally, wide applications of video

captioning in emerging technologies, e.g. procedure gener-

ation from instructional videos [2], video indexing and re-

trieval [45, 55]; have recently caused it to receive attention

as a fundamental task in Computer Vision.

Early methods in video captioning and description,

e.g. [26, 9] primarily aimed at generating the correct Sub-

ject, Verb and Object (a.k.a. SVO-Triplet) in the cap-

tions. More recent methods [50, 39] rely on Deep Learn-

ing [28] to build frameworks resembling a typical neural

machine translation system that can generate a single sen-

tence [57, 33] or multiple sentences [38, 43, 60] to describe

videos. The two-pronged problem of video captioning pro-

vides a default division for the deep learning methods to

encode visual contents of videos using Convolutional Neu-

ral Networks (CNNs) [44, 48] and decode those into cap-

tions using language models. Recurrent Neural Networks

(RNNs) [16, 14, 22] are the natural choice for the latter

component of the problem.

Since semantically correct sentence generation has a

longer history in the field of NLP, deep learning based

captioning techniques mainly focus on language mod-

elling [51, 34]. For visual encoding, these methods for-

ward pass video frames through a pre-trained 2D CNN;

or a video clip through a 3D CNN, and extract features

from an inner layer of the network - referred as ‘extraction

layer’. Features of frames/clips are commonly combined

with mean pooling to compute the final representation of

the whole video. This, and similar other visual encoding

techniques [33, 51, 18, 34] - due to the nascency of video

captioning research - grossly under-exploit the prowess of

visual representation for the captioning task. To the best of

our knowledge, this paper presents the first work that con-

centrates on improving the visual encoding mechanism for

the captioning task.

We propose a visual encoding technique to compute rep-

resentations enriched with spatio-temporal dynamics of the

scene, while also accounting for the high-level semantic

attributes of the videos. Our visual code (‘v’ in Fig. 1)

fuses information from multiple sources. We process ac-

tivations of 2D and 3D CNN extraction layers by hierar-

chically applying Short Fourier Transform [31] to them,
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Figure 1. The ‘c’ clips and ‘f ’ frames of a video are processed with 3D and 2D CNNs respectively. Neuron-wise Short Fourier Transform

is applied hierarchically to the extraction layer activations of these networks (using the whole video). This results in spatio-temporal

dynamics enriched encodings α and β. Relevant high-level object semantics γ and action semantics η are derived using the intersection

of vocabulary from the language model dictionary with the labels of 3D CNN and an Object Detector. The output features of the Object

Detector are also used to embed spatial dynamics of the scene and plurality of the objects therein. The resulting codes are compressed with

a fully-connected layer and used to learn a multi-layer GRU as a language model.

where InceptionResNetv2 [46] and C3D [48] are used as

the 2D and 3D CNNs respectively. The proposed neuron-

wise activation transformation using whole videos results

in encoding fine temporal dynamics of the scenes. We en-

code spatial dynamics by processing objects’ locations and

their multiplicity information extracted from an Object De-

tector (YOLO [37]). The semantics attached to the output

layers of the Object Detector and the 3D CNN are also ex-

ploited to embed high-level semantic attributes in our vi-

sual codes. We compress the visual codes and learn a lan-

guage model using the resulting representation. With highly

rich visual codes, a relatively simple Gated Recurrent Unit

(GRU) network is proposed for language modeling, com-

prising two layers, that already results in on-par or better

performance compared to the existing sophisticated mod-

els [52, 54, 34, 18] on multiple evaluation metrics. The

main contributions of this paper are as follows. We pro-

pose a visual encoding technique that effectively encapsu-

lates spatio-temporal dynamics of the videos and embeds

relevant high-level semantic attributes in the visual codes

for video captioning. The proposed visual features con-

tain the detected object attributes, their frequency of occur-

rences as well as the evolution of their locations over time.

We establish the effectiveness of the proposed encoding by

learning a GRU-based language model and perform thor-

ough experimentation on MSVD [11] and MSR-VTT [57]

datasets. Our method achieves up to 2.64% and 2.44% gain

in the state-of-the-art on METEOR and ROUGEL metrics

for these datasets.

2. Related Work

Classical methods in video captioning commonly use

template based techniques in which Subject (S), Verb (V),

and Object (O) are detected separately and then joined to-

gether in a sentence. However, the advancement of deep

learning research has also transcended to modern video cap-

tioning methods. The latest approaches in this direction

generally exploit deep learning for visual feature encoding

as well as its decoding into meaningful captions.

In template based approaches, the first successful video

captioning method was proposed by Kojima et al. [26] that

focuses on describing videos of one person performing one

action only. Their heavy reliance on the correctness of

manually created activity concept hierarchy and state transi-

tion model prevented its extension to more complex videos.

Hanckmann et al. [21] proposed a method to automatically

describe events involving multiple actions (seven on aver-

age), performed by one or more individuals. Whilst most of

the prior work was restricted to constrained domains [25, 9],

Krishnamoorthy et al. [27] led the early works of describing

open domain videos. [20] proposed semantic hierarchies

to establish relationships between actor, action and objects.

[40] used CRF to model the relationship between visual en-

tities and treated video description as a machine translation

problem. However, the aforementioned approaches depend

on predefined sentence templates and fill in the template by

detecting entities from classical methods. These approaches

are not sufficient for the syntactically rich sentence genera-

tion to describe open domain videos.
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In contrast to the methods mentioned above, deep mod-

els directly generate sentences given a visual input. For ex-

ample LSTM-YT [51] feed in visual contents of video ob-

tained by average pooling all the frames into LSTM and

produce the sentences. LSTM-E [33] explores the rele-

vance between the visual context and sentence semantics.

The initial visual features in this framework were obtained

using 2D-CNN and 3D-CNN whereas the final video rep-

resentation was achieved by average pooling the features

from frames / clips neglecting the temporal dynamics of

the video. TA [59] explored the temporal domain of video

by introducing an attention mechanism to assign weights

to the features of each frame and later fused them based

on attention weights. S2VT [50] incorporated optical flow

to cater for the temporal information of the video. SCN-

LSTM [18] proposed semantic compositional network that

can detect the semantic concepts from mean pooled visual

content of the video and fed that information into a lan-

guage model to generate captions with more relevant words.

LSTM-TSA[34] proposed a transfer unit that extracts se-

mantic attributes from both images as well as mean pooled

visual content of videos and added it as a complementary

information to the video representation to further improve

the quality of caption generation. M3-VC [54] proposed a

multi-model memory network to cater for long term visual-

textual dependency and to guide the visual attention.

Even though the above methods have employed deep

learning, they have used mean pooled visual features or at-

tention based high level features from CNNs. These fea-

tures have been used directly in their framework in the lan-

guage model or by introducing additional unit in the stan-

dard framework. We argue that this technique under-utilizes

the state of the art CNN features in video captioning frame-

work. We propose features that are rich in visual content

and empirically show that this enrichment of visual features

alone when combined with a standard and simple language

model can outperform existing state of the art methods. Vi-

sual features are part of every video captioning framework.

Hence, instead of using high level or mean pooled features,

building on top of our visual features can further enhance

the video captioning frameworks’ performances.

3. Proposed Approach

Let V denote a video that has ‘f ’ frames or ‘c’ clips. The

fundamental task in automatic video captioning is to gener-

ate a textual sentence S = {W1,W2, ...,Ww} comprising

‘w’ words that matches closely to human generated captions

for the same video. Deep learning based video captioning

methods typically define an energy loss function of the fol-

lowing form for this task:

Ξ(v,S) = −

w∑

t=1

log Pr (Wt|v,W1, ...Wt−1) , (1)

where Pr(.) denotes the probability, and v ∈ R
d is a vi-

sual representation of V . By minimizing the cost defined as

the Expected value of the energy Ξ(.) over a large corpus of

videos, it is hoped that the inferred model M can automat-

ically generate meaningful captions for unseen videos.

In this formulation, ‘v’ is considered a training input,

that makes remainder of the problem a sequence learning

task. Consequently, the existing methods in video caption-

ing mainly focus on tailoring RNNs [16] or LSTMs [22] to

generate better captions, assuming effective visual encod-

ing of V to be available in the form of ‘v’. The represen-

tation prowess of CNNs has made them the default choice

for visual encoding in the existing literature. However, due

to the nascency of video captioning research, only primi-

tive methods of using CNN features for ‘v’ can be found

in the literature. These methods directly use 2D/3D CNN

features or their concatenations for visual encoding, where

the temporal dimension of the video is resolved by mean

pooling [33, 34, 18].

We acknowledge the role of apt sequence modeling for

video description, however, we also argue that designing

specialized visual encoding techniques for captioning is

equally important. Hence, we mainly focus on the operator

Q(.) in the mapping M(Q(V))) → S , where Q(V) → v.

We propose a visual encoding technique that, along harness-

ing the power of CNN features, explicitly encodes spatio-

temporal dynamics of the scene in the visual representation,

and embeds semantic attributes in it to further help the se-

quence modelling phase of video description to generate se-

mantically rich textual sentences.

3.1. Visual Encoding

For clarity, we describe the visual representation of a

video V as v = [α; β; γ; η], where α to γ are themselves

column-vectors computed by the proposed technique. We

explain these computations in the following.

3.1.1 Encoding Temporal Dynamics

In the context of video description, features extracted

from pre-trained 2D-CNNs, e.g. VGG [44] and 3D-CNNs,

e.g. C3D [48] have been shown useful for visual encoding

of videos. The standard practice is to forward pass individ-

ual video frames through a 2D CNN and store activation

values of a pre-selected extraction layer of the network.

Then, perform mean pooling over those activations for all

the frames to compute the visual representation. A similar

procedure is adopted with 3D CNN with a difference that

video clips are used in forward passes instead of frames.

A simple mean pooling operation over activation values

is bound to fail in encoding fine-grained temporal dynamics

of the video. This is true for both 2D and 3D CNNs, de-

spite the fact that the latter models video clips. We address

this shortcoming by defining transformations Tf (F) → α
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Figure 2. Illustration of hierarchical application of Short Fourier

Transform Φ(.) to the activations a
i
j of the j th neuron of the ex-

traction layer for the ith video.

and Tc(C) → β, such that F = {
2D

a1,
2D

a2, ...,
2D

af} and

C = {
3D

a1,
3D

a2, ...,
3D

ac}. Here,
2D

at and
3D

at denote the activa-

tion vectors of the extraction layers of 2D and 3D CNNs

for the tth video frame and video clip respectively. The aim

of these transformations is to compute α and β that encode

temporal dynamics of the complete video with high fidelity.

We use the last avg pool layer of InceptionRes-

netV2 [46] to compute
2D

ai, and the fc6 layer of C3D [48]

to get
3D

ai. The transformations Tf/c(.) are defined over the

activations of those extraction layers. Below, we explain

Tf (.) in detail. The transformation Tc(.) is similar, except

that it uses activations of clips instead of frames.

Let aij,t denote the activation value of the jth neuron of

the network’s extraction layer for the tth frame of the ith

training video. We leave out the superscript 2D for bet-

ter readability. To perform the transform, we first define

1a
i
j = [aij,1, a

i
j,2, ..., a

i
j,f ] ∈ R

f and compute Ψ(1a
i
j) →

ς1 ∈ R
p, where the operator Ψ(.) computes the Short

Fourier Transform [31] of the vector in its argument and

stores the first ‘p’ coefficients of the transform. Then,

we divide 1a
i
j into two smaller vectors 21a

i
j ∈ R

h and

22a
i
j ∈ R

h−f , where h = ⌊ f
2 ⌋. We again apply the op-

erator Ψ(.) to these vectors to compute ς21 and ς22 in p-

dimensional space. We recursively perform the same op-

erations on ς21 and ς22 to get the p-dimensional vectors

ς311, ς312 , ς321, and ς322. We combine all these vectors

as ς(j) = [ς1, ς21, ς22, ..., ς322] ∈ R
(p×7)×1. We also

illustrate this operation in Fig. 2. The same operation is

performed individually for each neuron of our extraction

layer. We then concatenate ς(j) : j ∈ {1, 2, ...,m} to

form α ∈ R
(p×7×m)×1, where m denotes the number of

neurons in the extraction layer. As a result of performing

Tf (F) → α, we have computed a representation the video

while accounting for fine temporal dynamics in the whole

sequence of video frames. Consequently, Tf (.) results in

a much more informative representation than that obtained

with mean pooling of the neuron activations.

We define Tc(.) in a similar manner for the set C of

video clip activations. This transformation results in β ∈
R

(p×7×k)×1, where k denotes the number of neurons in the

extraction layer of the 3D CNN. It is worth mentioning that

a 3D CNN is already trained on short video clips. Hence, its

features account for the temporal dimension of V to some

extent. Nevertheless, accounting for the fine temporal de-

tails in the whole video adds to our encoding significantly

(see Section 4.3). It is noteworthy that exploiting Fourier

Transform in a hierarchical fashion to encode temporal dy-

namics has also been considered in human action recogni-

tion [53, 36]. However, this work is the first to apply Short

Fourier Transform hierarchically for video captioning.

3.1.2 Encoding Semantics and Spatial Evolution

It is well-established that the latter layers of CNNs are able

to learn features at higher levels of abstraction due to hier-

archical application of convolution operations in the earlier

layers [28]. The common use of activations of e.g. fully-

connected layers as visual features for captioning is also

motivated by the fact that these representations are discrim-

inative transformations of high-level video features. We

take this concept further and argue that the output layers

of CNNs can themselves serve as discriminative encodings

of the highest abstraction level for video captioning. We de-

scribe the technique to effectively exploit these features in

the paragraphs to follow. Here, we briefly emphasize that

the output layer of a network contains additional informa-

tion for video captioning beyond what is provided by the

commonly used extraction layers of networks, because:

1. The output labels are yet another transformation of

the extraction layer features, resulting from network

weights that are unaccounted for by extraction layer.

2. The semantics attached to the output layer are at the

same level of abstraction that is encountered in video

captions - a unique property of the output layers.

We use the output layers of an Object Detector

(i.e. YOLO [37]) and a 3D CNN (i.e. C3D [48]) to extract

semantics pertaining to the objects and actions recorded in

videos. The core idea is to quantitatively embed object la-

bels, their frequencies of occurrence, and evolution of their

spatial locations in videos in the visual encoding vector.

Moreover, we also aim to enrich our visual encoding with

the semantics of actions performed in the video. The details

of materializing this concept are presented below.

Objects Information: Different from classifiers that only

predict labels of input images/frames, object detectors can

localize multiple objects in individual frames, thereby pro-

viding cues for ascertaining plurality of the same type of

objects in individual frames and evolution of objects’ lo-

cations in multiple frames. Effective embedding of such

high-level information in vector ‘v’ promises descriptions

that can clearly differentiate between e.g. ‘people running’

and ‘person walking’ in a video.

The sequence modeling component of a video captioning

system generates a textual sentence by selecting words from
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a large dictionary D. An object detector provides a set L̃ of

object labels at its output. We first compute L = D
⋂
L̃,

and define γ = [ζ1, ζ2, ..., ζ|L|], where |.| denotes the car-

dinality of a set. The vectors ζi, ∀i in γ are further de-

fined with the help ‘q’ frames sampled from the original

video. We perform this sampling using a fixed time interval

between the sampled frames of a given video. The sam-

ples are passed through the object detector and its output

is utilized in computing ζi, ∀i. A vector ζi is defined as

ζi = [Pr(ℓi), Fr(ℓi),ν
1
i ,ν

2
i , ...,ν

(q−1)
i ], where ℓi indicates

the ith element of L (i.e. an object name), Pr(.) and Fr(.) re-

spectively compute the probability and frequency of occur-

rence of the object corresponding to ℓi, and νi
z represent

the velocity of the object between the frames z and z+1 (in

the sampled q frames).

We define γ over ‘q’ frames, whereas the used object

detector processes individual frames that results in a proba-

bility and frequency value for each frame. We resolve this

and related mismatches by using the following definitions

of the components of ζi:

• Pr(.) = max
z

Prz(.) : z ∈ {1, ..., q}.

• Fr(.) =
max

z

Frz(.)

N : z ∈ {1, ..., q}, where ‘N ’ is the

allowed maximum number of the same class of objects

detected in a frame. We let N = 10 in experiments.

• νzi = [δzx, δ
z
y ] : δzx = x̃z+1 − x̃z and δzy = ỹz+1 −

ỹz . Here, x̃, ỹ denote the Expected values of the x and

y coordinates of the same type of objects in a given

frame, such that the coordinates are also normalized

by the respective frame dimensions.

We let q = 5 in our experiments, resulting in ζi ∈
R

10, ∀i that compose γ ∈ R
(10×|L|)×1. The indices of co-

efficients in γ identify the object labels in videos (i.e. prob-

able nouns to appear in the description). Unless an object

is detected in the video, the coefficients of γ corresponding

to it are kept zero. The proposed embedding of high level

semantics in γ contain highly relevant information about

objects in explicit form for a sequence learning module of

video description system.

Actions Information: Videos generally record objects

and their interaction. The latter is best described by the

actions performed in the videos. We already use a 3D

CNN that learns action descriptors for the videos. We

tap into the output layer of that network to further em-

bed high level action information in our visual encoding.

To that end, we compute A = Ã
⋂
D, where A is the

set of labels at the output of the 3D CNN. Then, we de-

fine η =
[
[ϑ1, Pr(ℓ1)], [ϑ2, Pr(ℓ2)], ..., [ϑ|A|, Pr(ℓ|A|)]

]
∈

R
(2×|A|)×1, where ℓi is the ith element of A (an action la-

bel) and ϑ is a binary variable that is 1 only if the action is

predicted by the network.

We concatenate the above described vectors α,β,γ and

η to form our visual encoding vector v ∈ R
d, where d =

2×(p×7×m)+(10×|L|)+(2×|A|). Before passing this

vector to a sequence modelling component of our method,

we perform its compression using a fully connected layer,

as shown in Fig. 1. Using tanh activation function and fixed

weights, this layer projects ‘v’ to a 2K-dimensional space.

The resulting projection ‘υ’ is used by our language model.

3.2. Sequence Modelling

We follow the common pipeline of video description

techniques that feeds visual representation of a video to a

sequence modelling component, see Fig. 1. Instead of re-

sorting to a sophisticated language model, we develop a rel-

atively simpler model employing multiple layers of Gated

Recurrent Units (GRUs) [14]. GRUs are known to be more

robust to vanishing gradient problem - an issue encountered

in long captions - due to their ability of remembering the

relevant information and forgetting the rest over time. A

GRU has two gates: reset Γr and update Γu, where the up-

date gate decides how much the unit updates its previous

memory and the reset gate determines how to combine the

new input with the previous memory. Concretely, our lan-

guage model computes the hidden state h<t> of a GRU as:

Γu = σ(Wu[h
<t−1>, x<t>] + bu)

Γr = σ(Wr[h
<t−1>, x<t>] + br)

h̃<t> = tanh (Wh[Γr ⊙ h<t−1>, x<t>] + bh

h<t> = Γu ⊙ h̃<t> + (1− Γu)⊙ h<t−1>

where, ⊙ denotes the hadamard product, σ(.) is sigmoid ac-

tivation , Wq, ∀q are learnable weight matrices, and bu/r/h
denote the respective biases. In our approach, h<0> = υ

for a given video, whereas the signal x is the word em-

bedding vector. In Section 4.3, we report results using two

layers of GRUs, and demonstrate that our language model

under the proposed straightforward sequence modelling al-

ready provides highly competitive performance due to the

proposed visual encoding.

4. Experimental Evaluation

4.1. Datasets

We evaluate our technique using two popular benchmark

datasets from the existing literature in video description,

namely Microsoft Video Description (MSVD) dataset [11],

and MSR-Video To Text (MSR-VTT) dataset [57]. We first

give details of these datasets and their processing performed

in this work, before discussing the experimental results.
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MSVD Dataset [11]: This dataset is composed of 1,970

YouTube open domain videos that predominantly show only

a single activity each. Generally, each clip is spanning over

10 to 25 seconds. The dataset provides multilingual human

annotated sentences as captions for the videos. We experi-

ment with the captions in English. On average, 41 ground

truth captions can be associated with a single video. For

benchmarking, we follow the common data split of 1,200

training samples, 100 samples for validation and 670 videos

for testing [59, 54, 18].

MSR-VTT Dataset [57]: This recently introduced open

domain videos dataset contains a wide variety of videos

for the captioning task. It consists of 7,180 videos that are

transformed into 10,000 clips. The clips are grouped into 20

different categories. Following the common settings [57],

we divide the 10,000 clips into 6,513 samples for training,

497 samples for validation and the remaining 2,990 clips

for testing. Each video is described by 20 single sentence

annotations by Amazon Mechanical Turk (AMT) workers.

This is one of the largest clips-sentence pair dataset avail-

able for the video captioning task, which is the main reason

of choosing this dataset for benchmarking our technique.

4.2. Dataset Processing & Evaluation Metrics

We converted the captions in both datasets to lower case,

and removed all punctuations. All the sentences were then

tokenized. We set the vocabulary size for MSVD to 9,450

and for MSR-VTT to 23,500. We employed “fasttext“ [10]

word embedding vectors of dimension 300. Embedding

vectors of 1,615 words for MSVD and 2,524 words for

MSR-VTT were not present in the pretrained set. Instead

of using randomly initialized vectors or ignoring the out of

vocabulary words entirely in the training set, we generated

embedding vectors for these words using character n-grams

within the word, and summing the resulting vectors to pro-

duce the final vector. We performed dataset specific fine-

tuning on the pretrained word embeddings.

In order to compare our technique with the existing

methods, we report results on the four most popular metrics,

including; Bilingual Evaluation Understudy (BLEU) [35],

Metric for Evaluation of Translation with Explicit Ordering

(METEOR) [7], Consensus based Image Description Eval-

uation (CIDErD) [49] and Recall Oriented Understudy of

Gisting Evaluation (ROUGEL) [29]. We refer to the origi-

nal works for the concrete definitions of these metrics. The

subscript ‘D’ in CIDEr indicates the metric variant that

inhibits higher values for inappropriate captions in human

judgment. Similarly, the subscript ‘L’ indicates the variant

of ROUGE that is based on recall-precision scores of the

longest common sequence between the prediction and the

ground truth. We used the Microsoft COCO server [12] to

compute our results.

4.3. Experiments

In our experiments reported below1, we use Inception-

ResnetV2 (IRV2) [46] as the 2D CNN, whereas C3D [48]

is used as the 3D CNN. The last ‘avg pool’ layer of the for-

mer, and the ‘fc6’ layer of the latter are considered as the

extraction layers. The 2D CNN is pre-trained on the popu-

lar ImageNet dataset [41], whereas Sports 1M dataset [24]

is used for the pre-training of C3D. To process videos, we

re-size the frames to match the input dimensions of these

networks. For the 3D CNN, we use 16-frame clips as inputs

with an 8-frame overlap. YOLO [37] is used as the ob-

ject detector in all our experiments. To train our language

model, we include a start and an end token to the captions to

deal with the dynamic length of different sentences. We set

the maximum sentence length to 30 words in the case of ex-

periments with MSVD dataset, and to 50 for the MSR-VTT

dataset. These length limits are based on the available cap-

tions in the datasets. We truncate a sentence if its length ex-

ceeds the set limit, and zero pad in the case of shorter length.

We tune the hyper-parameters of our language model on the

validation set. The results below use two layers of GRUs,

that employ 0.5 as the dropout value. We use the RMSProp

algorithm with a learning rate 2× 10−4 to train the models.

A batch size of 60 is used for training in our experiments.

We performed training of our models for 50 epochs. We

used the sparse cross entropy loss to train our model. The

training is conducted using NVIDIA Titan XP 1080 GPU.

We used TensorFlow framework for development.

4.3.1 Results on MSVD dataset

We comprehensively benchmark our method against the

current state-of-the-art in video captioning. We report the

results of the existing methods and our approach in Table. 1.

For the existing techniques, recent best performing methods

are chosen and their results are directly taken from the ex-

isting literature (same evaluation protocol is ensured). The

table columns present scores for the metrics BLEU-4 (B-4),

METEOR (M), CIDErD (C) and ROUGEL (R).

The last seven rows of the Table report results of dif-

ferent variants of our method to highlight the contribution

of various components of the overall technique. GRU-MP

indicates that we use our two-layer GRU model, while the

common ‘Mean Pooling (MP)’ strategy is adopted to re-

solve the temporal dimension of videos. ‘C3D’ and ‘IRV2’

in the parentheses identify the networks used to compute

the visual codes. We abbreviate the joint use of C3D and

IRV2 as ‘CI’. We use ‘EVE’ to denote our Enriched Visual

Encoding that applies Hierarchical Fourier Transform - in-

dicated by the subscript ‘hft’ - on the activations of the net-

work extraction layers. The proposed final technique, that

1Due to through evaluation, supplementary material also contains fur-

ther results. Only the best performing setting is discussed here.
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Table 1. Benchmarking on MSVD dataset [11] in terms of BLEU-

4 (B-4), METEOR (M), CIDErD (C) and ROUGEL (R). See the

text for the description of proposed method GRU-EVE’s variants.

Model B-4 M C R

FGM [47] 13.7 23.9 - -

S2VT [50] - 29.2 - -

LSTM-YT [51] 33.3 29.1 - -

Temporal-Attention (TA) [59] 41.9 29.6 51.67 -

h-RNN [60] 49.9 32.6 65.8 -

MM-VDN [56] 37.6 29.0 - -

HRNE [32] 43.8 33.1 - -

GRU-RCN [6] 47.9 31.1 67.8 -

LSTM-E [33] 45.3 31.0 - -

SCN-LSTM [18] 51.1 33.5 77.7 -

DMRM [58] 51.1 33.6 74.8 -

LSTM-TSA [34] 52.8 33.5 74.0 -

TDDF [61] 45.8 33.3 73.0 69.7

BAE [8] 42.5 32.4 63.5 -

PickNet [13] 46.1 33.1 76.0 69.2

aLSTMs [19] 50.8 33.3 74.8 -

M3-IC [54] 52.8 33.3 - -

RecNetlocal [52] 52.3 34.1 80.3 69.8

GRU-MP - (C3D) 28.8 27.7 42.6 61.6

GRU-MP - (IRV2) 41.4 32.3 68.2 67.6

GRU-MP - (CI) 41.0 31.3 61.9 67.6

GRU-EVEhft - (C3D) 40.6 31.0 55.7 67.4

GRU-EVEhft - (IRV2) 45.6 33.7 74.2 69.8

GRU-EVEhft - (CI) 47.8 34.7 75.8 71.1

GRU-EVEhft+sem - (CI) 47.9 35.0 78.1 71.5

also incorporates the high-level semantic information - in-

dicated by the subscript ‘+sem’ - is mentioned in the last

row of the Table. We also follow the same notational con-

ventions for our method in the remaining Tables.

Our method achieves a strong 35 value of METEOR,

which provides a 35.0−34.1
34.1 × 100 = 2.64% gain over the

closest competitor. Similarly, gain over the current state-of-

the-art for ROUGEL is 2.44%. For the other metrics, our

scores remain competitive to the best performing methods.

It is emphasized, that our approach derives its main strength

from the visual encoding part in contrast to sophisticated

language model, which is generally the case for the existing

methods. Naturally, complex language models entail diffi-

cult and computationally expensive training process, which

is not a limitation of our approach.

We illustrate representative qualitative results of our

method in Fig. 3. We abbreviate our final approach as

‘GRU-EVE’ in the figure for brevity. The semantic details

and accuracy of e.g. plurality, nouns and verbs is clearly

visible in the captions generated by the proposed method.

The figure also reports the captions for GRU-MP-(CI) and

GRU-EVEhft-(CI) to show the difference resulting from hi-

erarchical Fourier transform (hft) as compared to the Mean

Pooling (MP) strategy. These captions justify the noticeable

gain achieved by the proposed hft over the traditional MP

Table 2. Performance comparison with single 2D-CNN based

methods on MSVD dataset [11].

Model METEOR

FGM [47] 23.90

S2VT [50] 29.2

LSTM-YT [51] 29.07

TA [59] 29.0

p-RNN [60] 31.1

HRNE [32] 33.1

BGRCN [6] 31.70

MAA [17] 31.80

RMA [23] 31.90

LSTM-E [33] 29.5

M3-inv3 [54] 32.18

mGRU [62] 33.39

GRU-EVEhft-(IRV2) 33.7

Table 3. Performance comparison on MSVD dataset [11] with the

methods using multiple features. The scores of existing methods

are taken from [54]. V denotes VGG19, C is C3D, Iv denotes

Inception-V3, G is GoogleNet and I denotes InceptionResNet-V2

Model METEOR

SA-G-3C [59] 29.6

S2VT-RGB-Flow [50] 29.8

LSTM-E-VC [33] 31.0

p-RNN-VC [60] 32.6

M3-IvC [54] 33.3

GRU-EVEhft+sem - (CI) 35.0

in Table 1. We also observe in the table that our method

categorically outperforms the mean pool based methods,

i.e. LSTM-YT [51], LSTM-E [33], SCN-LSTM [18], and

LSTM-TSA[34] on METEOR, CIDEr and ROUGEL. Un-

der these observations, we safely recommend the proposed

hierarchical Fourier transformation as the substitute for the

‘mean pooling’ in video captioning.

In Table 2, we compare the variant of our method based

on a single CNN with the best performing single CNN

based existing methods. The results are directly taken

from [54] for the provided METEOR metric. As can be

seen, our method outperforms all these methods. In Ta-

ble 3, we also compare our method on METEOR with the

state-of-the-art methods that necessarily use multiple visual

features to obtain the best performance. A significant 5.1%
gain is achieved by our method to the closest competitor in

this regard.

4.3.2 Results on MSR-VTT dataset

MSR-VTT [57] is a recently released dataset. We com-

pare performance of our approach on this dataset with

the latest published models such as Alto [42], RUC-

UVA [15], TDDF [61], PickNet [13], M3-VC [54] and

RecNetlocal [52]. The results are summarized in Table 4.

Similar to the MSVD dataset, our method significantly im-

proves the state-of-the-art on this dataset on METEOR and
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Figure 3. Illustration of caption generated for MSVD test set: The final approach is abbreviated as GRU-EVE for brevity. A sentence from

ground truth captions is shown for reference.

Table 4. Benchmarking on MSR-VTT dataset [57] in terms of

BLEU-4 (B-4), METEOR (M), CIDErD (C) and ROUGEL (R).

Model B-4 M C R

Alto [42] 39.8 26.9 45.7 59.8

RUC-UVA [15] 38.7 26.9 45.9 58.7

TDDF [61] 37.3 27.8 43.8 59.2

PickNet [13] 38.9 27.2 42.1 59.5

M3-VC [54] 38.1 26.6 - -

RecNetlocal [52] 39.1 26.6 42.7 59.3

GRU-EVEhft - (IRV2) 32.9 26.4 39.2 57.2

GRU-EVEhft - (CI) 36.1 27.7 45.2 59.9

GRU-EVEhft+sem - (CI) 38.3 28.4 48.1 60.7

ROUGEL metrics, while achieving strong results on the re-

maining metrics. These result ascertain the effectiveness

of the proposed enriched visual encoding for visual cap-

tioning. We provide examples of qualitative results on this

dataset in the supplementary material of the paper.

5. Discussion

We conducted a through empirical evaluation of the pro-

posed method to explore its different aspects. Below we dis-

cuss and highlight few of these aspects in the text. Where

necessary, we also provide results in the supplementary ma-

terial of the paper to back the discussion.

For the settings discussed in the previous section, we

generally observed semantically rich captions generated by

the proposed approach. In particular, these captions well

captured the plurality of objects and their motions/actions.

Moreover, the captions generally described the whole

videos instead of its partial clips. Instead of only two, we

also tested different number of GRU layers, and observed

that increasing the number of GRU layers deteriorated the

BLEU-4 score. However, there were improvements in all

the remaining metrics. We retained only two GRU layers in

the final method mainly for computational gains. Moreover,

we also tested different architectures of GRU, e.g. with state

sizes 512, 1024, 2048 and 4096. We observed a trend of per-

formance improvement until 2048 states. However, further

states did not improve the performance. Hence, 2048 were

finally used in the results reported in the previous section.

Whereas all the components of the proposed technique

contributed to the overall final performance, the biggest rev-

elation of our work is the use of hierarchical Fourier Trans-

form to capture the temporal dynamics of videos. As com-

pared to the ‘nearly standard’ mean pooling operation per-

formed in the existing captioning pipeline, the proposed use

of Fourier Transform promises a significant performance

gain for any method. Hence, we safely recommend replac-

ing the mean pooling operation with our transformation for

the future techniques.

6. Conclusion

We presented a novel technique for visual encoding of

videos to generate semantically rich captions. Besides cap-

italizing on the representation power of CNNs, our method

explicitly accounts for the spatio-temporal dynamics of the

scene, and high-level semantic concepts encountered in the

video. We applying Short Fourier Transform to 2D and 3D

CNN features of the videos in a hierarchical manner, and

account for the high-level semantics by processing output

layer features of an Object Detector and the 3D CNN. Our

enriched visual representation is used to learn a relatively

simple GRU based language model that performs on-par or

better than the existing video description methods on popu-

lar MSVD and MSR-VTT datasets.
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