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Abstract

Several recent studies have demonstrated the promise

of deep visuomotor policies for robot manipulator control.

Despite impressive progress, these systems are known to be

vulnerable to physical disturbances, such as accidental or

adversarial bumps that make them drop the manipulated ob-

ject. They also tend to be distracted by visual disturbances

such as objects moving in the robot’s field of view, even if the

disturbance does not physically prevent the execution of the

task. In this paper, we propose an approach for augmenting

a deep visuomotor policy trained through demonstrations

with Task Focused visual Attention (TFA). The manipula-

tion task is specified with a natural language text such as

“move the red bowl to the left”. This allows the visual at-

tention component to concentrate on the current object that

the robot needs to manipulate. We show that even in benign

environments, the TFA allows the policy to consistently out-

perform a variant with no attention mechanism. More im-

portantly, the new policy is significantly more robust: it reg-

ularly recovers from severe physical disturbances (such as

bumps causing it to drop the object) from which the baseline

policy, i.e. with no visual attention, almost never recovers.

In addition, we show that the proposed policy performs cor-

rectly in the presence of a wide class of visual disturbances,

exhibiting a behavior reminiscent of human selective visual

attention experiments.

1. Introduction

Many recent researches show the possibility of end-to-

end training of deep visuomotor policies that perform ob-

ject manipulation tasks such as pick-and-place, push-to-

location, stacking and pouring. These systems perform all

the components of the task (vision processing, grasp and
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Figure 1. The robot performs a given command. Our proposed net-

work attends the image regions that matter the most, and is robust

to physical and visual disturbance.

trajectory planning and robot control) using a neural net-

work trained by variations of deep reinforcement learning

and learning from demonstration (supervised learning).

Deep visuomotor policies for manipulator control are

neural network architectures that have as input an obser-

vation composed of an image or video frame and possibly

other sensor data, ot, a task (or goal) specification, g, and

output robot commands, at = π(ot,g). The robot executes

these commands, enacting a change in the external environ-

ment, which creates a new observation ot+1, and the cycle

repeats. Architecturally, most currently proposed systems

follow variations of the generic model of Figure 1, which

posits the existence of a primary latent encoding, z, the re-

sult of the visual processing of the input by a specialized

visual network. This encoding, of dimensionality orders

of magnitude smaller than the input, is then used by the

motor network to generate the next state joint angles com-

mand, a. While most demonstrations (supervised data) had

been made in unstructured but relatively benign environ-
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ments, our own experiments and personal communication

with other researchers had shown that task independent vi-

sual networks for visuomotor policies are highly vulnerable

to physical and visual disturbances. An example of physical

disturbance is the robot arm being bumped such that it drops

the manipulated object. The desired behavior would be for

the robot to immediately notice this, change its trajectory,

pick up the dropped object and continue with the manipu-

lation task. Instead, with an otherwise reliably performing

policy, we notice situations where the robot arm, having lost

the object, continue to go empty-handed through the full tra-

jectory of the manipulation, recovering either much later, or

not at all. A visual disturbance may involve distracting mo-

bile objects appearing in the robot’s field of view. Clearly, if

the visual disturbance prevents the execution of the task, for

instance, by blocking the view of the manipulated object, it

is acceptable for the robot to stop or even cancel the manip-

ulation. There are, however, visual disturbances that should

not prevent the execution of the task: for instance, hands

waving in the visual field of the robot but not covering the

manipulated object or the robot arm. We have found that in

the case of an task independent visual network, even such

visual disturbances cause the robot to behave erratically –

possibly due to the robot interpreting the situation as a state

never encountered before.

In engineered robot architectures such problems can be

dealt by developing explicit models of the possible distur-

bances, which may allow the robot to reason around the sit-

uation. In deep learning systems, one possible brute-force

solution is to gather more training data containing physical

and visual disturbance events; however, data collection for

robotic tasks is time consuming. Also, there are unlimited

visual and physical disturbance scenarios for a single task.

It is impossible for to record demonstrations to cover all

possible scenarios of physical and visual disturbances.

Pay attention! Task dependent visual network: The

principal idea of this paper is that performance benefits can

be obtained if we make the vision system pay attention to

relevant regions of each frame regarding the current task or

user command. Humans are known to exhibit selective at-

tention - when observing a scene with a particular task in

mind, features of the scene relevant to the task are given

particular attention, while other features are de-emphasized

or even ignored. This had been illustrated in the famous

experiments of Chabris and Simmons [1]. In this paper we

propose Task Focused (Visual) Attention (TFA) as an auxil-

iary network to increase the robustness of the robot manip-

ulator network to physical and visual disturbances, without

the need of any additional training data. Thus, our objective

is to create a system that implements a selective visual at-

tention similar to what human perception is doing: we want

the robot to focus on the objects of the scene that are rel-

evant to the current manipulation task. We conjecture that

using TFA, z will better represent the objects and colors that

are the subject of the attention, allowing for more precision

in grasping and manipulation (See Figure 2).

Our Contributions: The contributions of the paper are as

follows: 1- We describe a novel architecture for a visuomo-

tor policy trained end-to-end from demonstrations, which

features a task focused visual attention system. The visual

attention system is guided by a natural language description

of the task and focuses on the currently manipulated object.

2- We show that, under benign conditions, the new policy

outperforms a closely related baseline policy without the

attention model over pick-up and push tasks using a variety

of objects. 3- We show that in the case of a severe phys-

ical disturbance, when an external intervention causes the

robot to miss the grasp or drop the already grasped object,

the new policy recovers in the majority of situations, while

the baseline policy almost never recovers. 4- We show that

the task focused visual attention allows the policy to ignore

a large class of visual disturbances, that interfere with the

task for the baseline policy. We show experimentally that

the system exhibits the “invisible gorilla” phenomenon [1]

from the classic selective attention test. 5- The teacher net-

work for the task focused visual attention can be trained of-

fline, does not require additional training data or pixel level

annotation of objects.

2. Related Work

A deep visuomotor policy for robotic manipulation

transforms an input video stream (possibly combined with

other sensory input) into robot commands by the means of

a single deep neural network. Such a system had been first

demonstrated in [2] using guided policy search, a method

that transforms policy search into supervised learning, with

supervision provided by a trajectory-centric reinforcement

learning method. In recent years, several alternative ap-

proaches have been proposed using variations of both deep

reinforcement learning and deep learning from demonstra-

tion (as well as combinations of these).

Deep reinforcement learning is powerful paradigm

which, in applications where exploration can be performed

in a simulated environment allowing millions of trial runs,

can train systems that perform at superhuman level [3], even

when no human knowledge is used for bootstrapping [4].

Unfortunately, for training visuomotor policies controlling

real robots, it is very difficult to perform reinforcement runs

on these scales. Even the most extensive projects could only

collect several orders of magnitude lower number of exper-

iments: for example, in [5] 14 robotic manipulators were

used over the period of two months to gather 800,000 grasp

attempts. Even this number of experimental tries are unre-

alistic in many practical settings.
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Figure 2. The proposed visuomotor architecture. Given an image captured from the scene and a command sentence provided by the

user, the Encoder (E) produces the Primary Latent Encoding (z). z is the input to the Motor Network, which decides the next state of

the robot joint angles. Also, z is the input to a Generator (G), which produces “Fake” frame and masked frame. A pre-trained Visual

Attention Teacher Module masks the original frame by an spatial attention computed employing the textual input. The Discriminator (D)

must discriminate between real/fake frames and masked frames, and also classify the object and color of the object being manipulated.

Thus, many efforts focus on reducing the number of ex-

perimental runs necessary to train an end-to-end visuomotor

controller. One obvious direction is to learn a better encod-

ing of the input data, which can improve the learning rate.

In [6], a set of visual features were extracted from the im-

age to be used as state representation for a reinforcement

learning algorithm.

Another direction involves the use of learning from

demonstration instead (or in combination with) of rein-

forcement learning. The demonstrations can be performed

in real [7] or simulated [8, 9] environments. Meta-

learning [10] and related approaches promise to drastically

lower the amount of training data needed to learn a specific

task from a class of related tasks (possibly, down to a single

task specific demonstration). However, they still require a

costly meta-learning phase.

An approach that is similar to ours in objective, but dif-

ferent in implementation, is described in [11]. Consider-

ing manipulation tasks, the authors implement two layers

of attention. The first, a task independent visual attention

semantically identifies labels and localizes objects in the

scene. This labeling relies on training on an external la-

beled dataset, thus in this respect the approach is not “end-

to-end”. The second, a task-specific attention is learned by

selecting from the segmented objects, by the task indepen-

dent attention, those objects that contribute most to the cor-

rect prediction of demonstrated trajectories.

Another point concerns the way in which the task is spec-

ified to the robot. Specifying the task in the form of a human

readable sentence is a natural choice [12], as creating such a

command is very easy for a human user. In the general case,

however, translating a command into a task is not yet fea-

sible with an end-to-end learned controller. In this paper,

we assume the existence of the command, but only as an

additional input that helps the creation of the task-focused

attention. Alternative ways of specifying the task are pos-

sible. A purely visual specification was proposed in [13],

where the user identifies a pixel in the image and specifies

where it should be moved. A technique of control based on

visual images was also demonstrated in [14].

One component of our work has its roots in recent work

on visual attention networks. These networks often ap-

pear as components of larger networks, solving problems

like image captioning [15, 16], visual question answer-

ing [17, 18, 19] or visual expression localization [20]. Al-

though the applications are different, the role of attention

networks, i.e., focusing on information-rich parts of the vi-

sual input, remains the same. Our proposed attention mech-

anism is most similar to [17]. However, in our model we

train the attention network with word selection objective.

The objective is to select some regions on a video frame re-

garding a textual input, such that it be able to regenerate the

words in the input sentence just based on the visual features

of selected image regions.

3. Approach

As shown in Figure 2, our architecture contains a Motor

Network and Visual Network.The Motor Network, often

but not always, contains a recurrent neural network and is

trained on a loss that favors the execution of the specified

task, g. This training may take several forms. In the case of

RL we need a source of rewards. If the task is specified by
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Pick up red bowl Push blue box 
from left to right Pick up blue ring

Figure 3. Examples of task focused visual attention. We provide

the command sentence on top of each column. The first row shows

frames from RGB camera and the second row is the same image

masked by the attention, produced by teacher network. We de-

note the first/second row images by x/m in our equations.

demonstrations (our case), the training may be executed in

a supervised fashion using a behavioral cloning loss.

The Visual Network contains an Encoder module that en-

codes the input frame into the Primary Latent Variable, z.

To get a richer representation z, we incorporate two other

modules. First, a teacher network which computes an atten-

tion map and masks the input frame. We train the teacher

network separately (Section 3.1). Second, a GAN network

that takes z as input and generates two reconstructed frames,

the input frame and the masked input frame.

3.1. A Teacher Network for TFA

We consider robot manipulation commands expressed in

natural language such as, “Push the red plate to the left”,

“Push the blue box to the left”, and “Pick up the red ring”.

The goal of the TFA is to identify the parts of the visual

input, where objects relevant to the task appear, that is, to

focus the attention on the red plate, blue box and blue ring

respectively (see Figure 3).

A TFA system could be trained as a supervised learning

model, if we can create a sufficient amount of training data.

However, this would require us to label with attention blobs

on an unrealistically large number of input video frames.

Our approach is to generate our own labels by implement-

ing a teacher network that provides training data for the con-

troller. Our approach fits in the established technique of

student-teacher network training models [21, 22, 23], with

the qualification that the attention teacher only teaches one

particular aspect of the final controller. In the remainder of

this section, we describe the implementation of a teacher

network which computes the TFA as shown in Figure 4.

The proposed approach allows us to train the TFA with-

out pixel level annotations. The principal idea is that the

attention should be on those regions that allow us to recon-

struct the input text based on those regions only. The overall
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Figure 4. Proposed visual attention network. The network uses the

pre-trained VGG19 [24] network’s last convolution layer output

as the visual spatial features. The attention module combines the

spatial and textual features, and assigns one probability to each

spatial region. To train the attention network, first we pool the

visual features by the attention probabilities (weighted average),

and second, we use an auxiliary classifier to reconstruct the input

text’s words based on the pooled visual features.

architecture is described in Figure 4.

We divid the visual field (video frame), x, into k regions.

The visual attention we aim to obtain is a vector of proba-

bilities, pTFA ∈ (0, 1)k, with a probability for each of the

k regions. The higher the probability, the more attention is

paid to the specific region. In general, our goal is to focus

the attention on a small number of regions.

The first step is to encode the text and image inputs.

Text input: Let {v1, v2, . . . , vn} be the textual input with

n words, with one-hot indicators vi ∈ {0, 1}|V |, where V is

the dictionary of the words in our dataset. Thus, a word-to-

vector encoding is employed:

wi = vi ×Wω, (1)

whereWω ∈ R|V |×dv , and dv is the length of encoded word

vectors. To encode a whole sentence, we feed the series

of word vectors to an LSTM. To obtain the text encoding,

we extract the last hidden state of the LSTM, u ∈ Rdh ,

where dh is cell size of the LSTM. We observed better per-

formance by concatenating the LSTM output with a binary

vector indicating objects’ shape and color.

Visual input: We use the last Convolution layer of a pre-

trained VGG19 [24] network to obtain k spatial visual fea-

ture vectors. The resulting spatial visual features have the

form φf ∈ Rk×dφ , where k is the number of spatial regions

and dφ is the length of feature vector for each region.

We combine the textual and visual encodings through a

technique similar to [17]. We learn a mapping on both vi-

sual and text data and combine them through an element-

wise summation:

ψ = tanh(φf ×Wf ⊕ u×Wu), (2)

where Wu ∈ Rdh×dψ and Wf ∈ Rdφ×dψ are mapping

matrices, ⊕ is element-wise summation. ψ ∈ Rk×dψ is the

combination matrix of textual and visual inputs. Note that,

u is a vector, while φf is a matrix. We augment the u vector
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by repeating it for k times. To compute the final attention

probabilities, the model must assign higher scores to a few

spatial regions.

pTFA = softmax(ψ ×Wp), (3)

where Wp ∈ Rdψ×1 is trainable weights vector, which is

used to assign a score to each region. The final pTFA ∈
(0, 1)k is the vector containing attention scores of all k re-

gions’. We use a softmax non-linearity to force the network

to attend to a few number of regions.

Our method does not need any spatial pixel level anno-

tation to compute the attention. The attention in our for-

mulation is a latent variable dependent on the input text

and frame (See Figure 4). The main idea which allows us

to train the attention network, is that from a pooled spa-

tial features weighted by the latent variable attention, pTFA,

we should be able to reconstruct the input text (user com-

mand sentence) words V ∈ {0, 1}|V |. Here, we define the

weighted pooled features u ∈ Rdφ :

u =
∑

i∈k

pTFAiφf i. (4)

Basically, given a video frame and sentence, we force

the network to select a few regions of the input frame, and

reconstruct the input text just based on the selected regions.

As a result, the only way that the network can reconstruct

the original input text, is by selecting the relevant regions of

the frame:

V̂ = σ(τ(u)), (5)

where τ(.) is a multi-layer perceptron. V̂ ∈ (0, 1)|V | con-

tains the predicted set of words. We optimize the entropy

loss function Latt = −Vlog(V̂).
In Figure 3, we show RGB frames and the masked frame

using computed attention pTFA. To mask the RGB frames,

we reshape and re-size pTFA (using bi-linear interpolation) to

the same size of the input frame (x); followed by smoothing

the mask by applying a Gaussian filter on it. We denote the

masked RGB input frame with the attention pTFA by m.

3.2. The visual and motor networks

Our architecture follows the generic architecture for the

visuomotor policy in Figure 1. It consists of a Visual Net-

work sub-module that extracts a primary latent encoding, z,

and a Motor Network that transforms z into actions, which

in our case are joint angle commands (next state of the robot

arms). However, our architecture makes several specific de-

cisions with the aim to take advantage of the available the

text description of the current task and the TFA.

3.2.1 Visual Network

The objective of the Visual Network is to create a compact

primary latent encoding that captures the important aspects

of the current task. An ongoing problem is that the encoding

needs to work within a certain limited dimensionality bud-

get. Intuitively, general purpose visual features extracted

from the image would waste space by encoding aspects of

the image that are not relevant to the task. On the other

hand, focusing only on the attention field may ignore parts

of the image that are important for the task. For instance, in

Figure 3- bottom right masked frame, the robot arm itself is

not visible.

Our proposed architecture for the visual network, shown

in Figure 2, incorporates several techniques that allows it

to learn a representation that efficiently encodes the parts

of the input that are relevant to the current task. The overall

architecture follows the idea of a VAE-GAN [25]: it is com-

posed of an encoder, a generator and a discriminator. The

Primary Latent Encoding (z) is extracted from the output of

the visual encoder (E).

The visual network receives a raw frame x and a one-

hot representation of the user command (input sentence),

denoted by Ic ∈ {0, 1}|V |. In fact, Ic is indicates which

words of the dictionary are appearing in the textual input

command. We assume that z ∼ N (µz, σz), and:

[µz|σz] = E(x, Ic), (6)

where µz , σz ∈ Rdz , and dz is the length of the Primary

Latent Encoding (z). In fact, E is a multi-layer convolu-

tional neural network with a 2dz dimensional vector which

splits into µz and σz .

The generator, (G), takes the Primary Latent Encoding z

as input, and produces two images, a reconstruction frame,

and a reconstructed frame masked with attention (“Fake

Frame” and “Fake masked frame” in Figure 2). Notice that

a novel aspect of our proposed architecture is that the gen-

erator does not only create a reconstruction of the input, x′,

but also an approximation of the faked masked frame, m′.

Unlike traditional GAN discriminators, the discrimi-

nator D employed in our architecture performs a more

complicated classification [26]. Masked and unmasked

frames(m/m′, x/x′) are both inputs to the discriminator,

and it classifies the objects (s) and color (c) of the object

of interest, as well as whether the input was fake or real.

The discriminator has two outputs of lengths of |s|+ 1 and

|c|+1. |s| and |c| are respectively the number of colors and

objects in the vocabulary |V | and the “+1” is for the “fake”

class. We make the set of s and c tags by parsing all the

input sentences (user’s textual commands) in the training.

3.2.2 Motor Network

The motor network in our architecture (see Figure 2) con-

tains both recurrent and stochastic components. It takes

as input the primary latent encoding, z, which is pro-

cessed through a 3-layer LSTM network with skip connec-
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tions [27]. Note that the memory cells of LSTMs get up-

dated through the time by doing the task (frame by frame).

The output of the final LSTM layer is fed into a mixture

density network (MDN) [28]. MDN provides a set of Gaus-

sian kernels parameters namely µi, σi and the mixing prob-

abilities αi(x), all ∈ R|J|, and 1 ≤ i ≤ NG. Here, |J | is

the number of robot joints (specific to the robot) and NG is

the number of Gaussian components. The |J |-dimensional

vector describing the next joint angles is sampled from this

mixture of Gaussians. We provide the detailed architectures

of D, G, E, and motor sub-networks in the Supplementary

Material.

3.3. Loss Function and Training

In this section, we describe the discriminator loss func-

tion LD, and the generator loss function LG. All the pa-

rameters in the Discriminator have been optimized to mini-

mize LD, and parameters of the visual Encoder, Generator,

and Motor network are optimized by the loss value LG in

a GAN training manner. In following, to prevent repetition

of equations, we use the unifying tuples X ′ = (x′,m′) and

X = (x,m) as fake and real data respectively. To clarify,

(x′,m′) = G(z ∼ E(x, Ic)), while x is the real frame from

RGB camera, andm is the masked real frame by the teacher

network (Section 3.1).

3.3.1 Discriminator Loss

If the discriminator D is receiving real data X , it needs to

classify the object and color contained in the user’s textual

command input:

Lreal =− EX ,s∼pdata
[log (PD(s

∣

∣X ))]

− EX ,c∼pdata
[log (PD(c

∣

∣X ))], (7)

where PD is the class probabilities produced by the discrim-

inator for both colors and objects. Similarly, if D receives

X ′, it should classify them as fake:

Lfake =− EX ′∼G[log (PD(|s|+ 1
∣

∣X ′))]

− EX ′∼G[log (PD(|c|+ 1
∣

∣X ′))]. (8)

Finally, ifD receives raw and masked faked frames, gen-

erated by G with the latent representation z ∼ N (0, 1):

Lnoise=− Ez∼noise [log (PD(|s|+ 1
∣

∣G(z)))]

− Ez∼noise [log (PD(|c|+1
∣

∣G(z)))]. (9)

The overall loss of the discriminator is thus LD =
Lreal + Lfake + Lnoise .

3.3.2 Generator Loss

The Generator (G) must reconstruct a real looking frame

and masked frame by attention that contains the object of in-

terest. In fact, G tries not only to look real, but also presents

the correct object in both of its outputs. Hence, it has to fool

the discriminator which tries to distinguish between fake

frames and different objects and colors:

LGD =− EX ′,s∼pG [log pD(s
∣

∣X ′)]

− EX ′,c∼pG [log pD(c
∣

∣X ′)]. (10)

The training of GANs is notoriously unstable. A possi-

ble technique to improve stability is feature matching [29]–

forcing G to generate images that match the statistics of the

real data. Here, we use features extracted by the last con-

volution layer of D for this purpose and we call it fD(x).
The generator must produce outputs that have similar fD
representation to real data. We define the loss term Lfea as

a distance between the real inputs x/m and generated ones

x′/m′ features [26]:

Lfea = ||fD(x)− fD(x′)||2 + ||fD(m)− fD(m′)||2.
(11)

To regularize the Primary Latent Encoding (z), we min-

imize the KL-divergence between z and N (0, 1):

Lprior = DKL(E(x, Ic) || N (0, 1)). (12)

Additionally, a reconstruction error of “fake”

Frame/Masked generated by G is defined by:

Lrec = ||x′ − x||2 + ||m′ −m||2. (13)

Motor Network Loss: The motor loss is calculated ac-

cording to the MDN negative log-likelihood loss formula

over the supervised data based on the demonstrations (be-

havioral cloning loss):

Lmotor = −log

(

NG
∑

i=1

αi(x) · P∼N (µi,σi)(J)

)

. (14)

Finally, we write the Generator loss as LG = LDG +
Lrec + Lprior + Lmotor .

4. Experiments

We collected demonstrations for the tasks of picking

up and pushing objects using an inexpensive Lynxmotion-

AL5D robot. We controlled the robot using a PlayStation

controller. For each task and object combination we col-

lected 150 demonstrations. The training data consists of

joint-angle commands plus the visual input recorded in 10

fps rate by a PlayStation Eye camera mounted over the work

area. The training data thus collected was used to train both

the Visual and the Motor Networks. Note that this robot

does not have proprioception – any collision or manipula-

tion error needs to be detected solely from the visual input.
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Figure 5. An execution of the pushing task with the sentence “Push the red bowl from right to left”. Top row: original input image, middle

row: fake frame generated by the Generator(G), bottom row: fake masked image with TFA generated by G. You can compare the fake

masked frames presented in this figure with attention maps generated by the teacher network in Figure 3. Notice that visual disturbances

such as the hand and the gorilla do not appear in the reconstructed image.
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M
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Method Benign Condition

Just Encoder (%) 20 20 0 40 0 10 15.0 40 10 0 0 12.5 14.0

Traditional VAE (%) 60 60 20 20 50 30 40.0 50 60 30 30 42.5 41.0

(w/o TFA) (%) 70 50 30 40 60 10 43.3 80 60 10 20 42.5 43.0

with TFA (%) 80 80 60 50 80 40 65.0 100 60 30 60 62.5 64.0

With Disturbance

(w/o TFA) (%) 10 10 0 0 0 0 3.3 0 30 0 0 7.5 5.0

with TFA (%) 70 80 60 60 40 40 58.3 90 50 30 50 55.0 57.0

Table 1. The upper half of the table shows the rate of successfully performing the desired manipulation with different sentence commands.

The model with TFA has superior results to a model without it [7]. We also train a version of our model without the Discriminator, named

Traditional VAE. The model trained without D cannot effectively perform the manipulations since the adversarial loss helps to learn rich

Primary Latent Variable (z). Also, in Just Encoder experiment, we just use the Encoder as the visual network. The lower half of the table

shows the rate of successfully performing the desired command, while being disturbed by an external agent. The model with TFA is by far

better than a model without it [7] in all cases.

4.1. Performance under benign conditions

The first set of experiments studies the performance of

the visuomotor controller under benign conditions, that is,

under situations when the robot is given a textual command,

Ic in Sec. 3.2.1, and it is left alone to perform the task in an

undisturbed environment. To compare our approach against

a baseline, we have reimplemented and trained the network

described in [7], which can be used in the same experimen-

tal setup, but it does not feature a task focused visual atten-

tion. Note that the success rates are not directly comparable

with [7], due to the more complex objects used here and the

different camera position and environment of our robot. We

trained the [7] model on our own dataset, tuned its hyper-

parameters and also tried to get the best possible results by

adding all the loss terms explained in Sec. 3.2.

Table 1 compares the performance of the four ap-

proaches for all the tasks, averaged over 10 tries each. We

note that the proposed architecture using “TFA” outper-

forms the “w/o TFA” on all tasks. As an ablation study,

we remove the discriminator and train the system as a tra-

ditional VAE (compared to VAE-GAN). Also, in another

experiment we trained the E just by using the motor net-

work loss without any GAN. We confirm the contribution

of the adversarial loss and the GAN network to produce a
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rich primary latent variable z. We observe that not having

the adversarial loss will reduce the sharpness of the recon-

structed images and fade out the details. Note that the model

without adversarial loss fails to manipulate objects that re-

quire precise positioning like the black dumbbell or the blue

ring, however, it can push the white plate much better as the

plate is a big symmetric object. Please refer to the sup-

plementary materials to compare the reconstructed images

with and without the adversarial loss.

4.2. Recovery after disturbance

In the second series of experiments, we investigate the

controller’s ability to recover from a physical and visual

disturbance. We are comparing the baseline model and our

model which uses TFA. Physically disturbing means to dis-

turbed the robot either by (a) pushing the object just when

the robot was about to pick it up or (b) forcefully taking

away the object from the robot after a successful grasp. For

the push tasks, we bring in one or two hands into the scene

(Figure 5). We make different visual disturbances by bring-

ing in the hand in random positions, waving it, sometimes

covering whole top part of the scene. In some cases we even

put other random objects like a paper gorilla.

Under the described situations we count as success, if the

robot notices the disturbance and recovers by successfully

redoing the task. We remind the audience of the paper that

due to the limitations of the Lynxmotion-AL5D robot, the

only way the robot can detect the disturbance is through its

visual system.

Table 1 shows the experimental results for scenarios with

physical/visual disturbance. We notice that the results here

are drastically better than the baseline. In the absence of

TFA, the recovery rate is close to zero. In most cases, af-

ter loosing the object, the robot tried to execute the manip-

ulation without noticing that it does not grasp the object.

With the help of TFA, however, the robot almost always no-

tices the disturbance, turns back and tries to redo the grasp.

This phenomena is illustrated in our supplementary mate-

rial video. Averaged over all the objects, the recovery rate

is only 5% for the baseline policy in pickup and push tasks,

while it is 57% for the policy with the TFA (see Tables 1).

Note that physical disturbance doesn’t necessarily drop the

robot’s success rate since disturbing the robot occurs only

when it is about to successfully perform the task, therefore

the robot’s success rate with and without the physical dis-

turbance are not comparable. In other words, robot starts

doing the task, a human judge decides if the robot is doing

well and if it is, the human judge starts to disturbing the

robot. We discard any tries that the robot is likely to fail

even without disturbance.

The disappearing gorilla: The proposed architecture al-

lows us to ignore many of the possible visual disturbances.

Experiments comparing the architecture to one without TFA

confirm that this is indeed the case. Another way to study

whether the policy ignores the visual disturbance is to re-

connect the generator during test time as well, and study

the reconstituted video frames (which are a good represen-

tation of the information content of primary latent encod-

ing). Figure 5 shows the input video frames (first row), the

reconstructed video frames (second row) and the generated

masked frames (third row). While the robot was executing

the task of pushing the red bowl to the left, we added some

disturbances such as waving a hand or inserting a cutout

gorilla figure in the visual field of robot. Notice that in

the reconstructed frames, the hand and the gorilla disap-

pear, while the subject matter is reconstructed accurately.

As these disturbing visual objects are ignored by the encod-

ing, the task execution proceeds without disturbance. While

we must be careful about making claims on the biological

plausibility of the details of our architecture, we note that

the overall effect implements a behavior similar to the se-

lective attention experiments1 of Chabris and Simmons [1],

purely as a side effect of an architecture implemented for a

completely different goal.

5. Conclusion

In this paper, we proposed a method for augmenting a

deep visuomotor policy learned from demonstration with a

task focused visual attention model. The attention is guided

by a natural language description of the task – it effectively

tells the policy to “Pay Attention!” to the task and object at

hand. Our experiments show that under benign situations,

the resulting policy consistently outperforms a related base-

line policy. More importantly, paying attention has signif-

icant robustness benefits. In severe adversarial situations,

where a bump or human intervention forces the robot to

miss the grasp or drop the object, we demonstrated through

experiments that the proposed policy recovers quickly in the

majority of cases, while the baseline policy almost never re-

covers. In the case of visual disturbances such as moving

foreign objects in the visual field of the robot, the new pol-

icy is able to ignore these disturbances which in the baseline

policy often trigger erratic behavior.

Future work includes attention systems that can simulta-
neously focus on multiple objects, shift from object to ob-
ject according to the requirements of the task, and work in
severe clutter.
Acknowledgments: This work had been supported in
part by the National Science Foundation under grant num-
bers IIS-1409823 and IIS-1741431. Any opinions, find-
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1https://youtu.be/vJG698U2Mvo
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