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Abstract

We tackle the problem of semantic boundary prediction,

which aims to identify pixels that belong to object(class)

boundaries. We notice that relevant datasets consist of a

significant level of label noise, reflecting the fact that pre-

cise annotations are laborious to get and thus annotators

trade-off quality with efficiency. We aim to learn sharp and

precise semantic boundaries by explicitly reasoning about

annotation noise during training. We propose a simple new

layer and loss that can be used with existing learning-based

boundary detectors. Our layer/loss enforces the detector to

predict a maximum response along the normal direction at

an edge, while also regularizing its direction. We further

reason about true object boundaries during training using

a level set formulation, which allows the network to learn

from misaligned labels in an end-to-end fashion. Experi-

ments show that we improve over the CASENet [36] back-

bone network by more than 4% in terms of MF(ODS) and

18.61% in terms of AP, outperforming all current state-of-

the-art methods including those that deal with alignment.

Furthermore, we show that our learned network can be used

to significantly improve coarse segmentation labels, lending

itself as an efficient way to label new data.

1. Introduction

Image boundaries are an important cue for recogni-

tion [26, 15, 2]. Humans can recognize objects from

sketches alone, even in cases where a significant portion

of the boundary is missing [6, 38]. Boundaries have also

been shown to be useful for 3D reconstruction [23, 21, 39],

localization [35, 31], and image generation [19, 32].

In the task of semantic boundary detection, the goal is to

move away from low-level image edges to identifying im-

age pixels that belong to object (class) boundaries. It can be

seen as a dual task to image segmentation which identifies

object regions. Intuitively, predicting semantic boundaries

is an easier learning task since they are mostly rooted in

identifiable higher-frequency image locations, while region

pixels may often be homogenous in color, leading to ambi-

guities for recognition. On the other hand, the performance

metrics are harder: while getting the coarse regions right
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Figure 1: We introduce STEAL, an approach to learn sharper and more

accurate semantic boundaries. STEAL can be plugged onto any existing

semantic boundary network, and is able to significantly refine noisy anno-

tations in current datasets.

may lead to artificially high Jaccard index [20], boundary-

related metrics focus their evaluation tightly along the ob-

ject edges. Getting these correct is very important for tasks

such as object instance segmentation, robot manipulation

and grasping, or image editing.

However, annotating precise object boundaries is ex-

tremely slow, taking as much as 30-60s per object [1, 9].

Thus most existing datasets consist of significant label noise

(Fig. 1, bottom left), trading quality with the labeling effi-

ciency. This may be the root cause why most learned detec-

tors output thick boundary predictions, which are undesir-

able for downstream tasks.

In this paper, we aim to learn sharp and precise semantic

boundaries by explicitly reasoning about annotation noise

during training. We propose a new layer and loss that can

be added on top of any end-to-end edge detector. It en-

forces the edge detector to predict a maximum response

along the normal direction at an edge, while also regular-

izing its direction. By doing so, we alleviate the problem

of predicting overly thick boundaries and directly optimize

for Non-Maximally-Suppressed (NMS) edges. We further

reason about true object boundaries using a level-set formu-

lation, which allows the network to learn from misaligned

labels in an end-to-end fashion.

Experiments show that our approach improves the per-

formance of a backbone network, i.e. CASENet [36], by

more than 4% in terms of MF(ODS) and 18.61% in terms of

AP, outperforming all current state-of-the-art methods. We
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further show that our predicted boundaries are significantly

better than those obtained from the latest DeepLab-v3 [10]

segmentation outputs, while using a much more lightweight

architecture. Our learned network is also able to improve

coarsely annotated segmentation masks with 16px, 32px er-

ror improving their accuracy by more than 20% IoU and

30% IoU, respectively. This lends our method as an effi-

cient means to collect new labeled data, allowing annota-

tors to coarsely outline objects with just a few clicks, and

generating finer ground-truth using our approach. We show-

case this idea by refining the Cityscapes-coarse labelset, and

exploiting these labels to train a state-of-the-art segmenta-

tion network [10]. We observe a significant improvement of

more than 1.2% in some of the refined categories.

2. Related Work

Semantic Boundary Detection. Learning-based seman-

tic edge detection dates back to [28] which learned a classi-

fier that operates on top of a standard edge detector. In [16],

the authors introduced the Semantic Boundaries Dataset

(SBD) and formally studied the problem of semantic con-

tour detection in real world images. They proposed the idea

of an inverse detector which combined bottom-up edges and

top-down detection. More recently, [36] extended the CNN-

based class-agnostic edge detector proposed in [34], and al-

lowed each edge pixel to be associated with more than one

class. The proposed CASENet architecture combined low

and high-level features with a multi-label loss function to

supervise the fused activations.

Most works use non-maximum-suppression [7] as a

postprocessing step in order to deal with the thickness of

predicted boundaries. In our work, we directly optimize for

NMS during training. We further reason about misaligned

ground-truth annotations with real object boundaries, which

is typically not done in prior work. Note that our focus here

is not to propose a novel edge-detection approach, but rather

to have a simple add-on to existing architectures.

The work most closely related to ours is SEAL [37], in

that it deals with misaligned labels during training. Similar

to us, SEAL treats the underlying ground truth boundaries

as a latent variable that is jointly optimized during training.

Optimization is formulated as a computationally expensive

bipartite graph min-cost assignment problem. In order to

make optimization tractable, there are no pair-wise costs,

i.e. two neighboring ground-truth pixels can be matched to

two pixels far apart in the latent ground-truth, potentially

leading to ambiguities in training. In our work, we infer

true object boundaries via a level set formulation which pre-

serves connectivity and proximity, and ensures that the in-

ferred ground-truth boundaries are well behaved. Moreover,

SEAL is limited to the domain of boundary detection and

needs to have reasonably well annotated data, since align-

ment is defined as a one-to-one mapping between annotated

and inferred ground-truth. In our method, substantial dif-

ferences (topology and deviation) in ground truth can be

handled. Our approach can thus be naturally used to refine

coarse segmentation labels, lending itself as a novel way to

efficiently annotate datasets.

Level Set Segmentation. Level Set Methods [27] have

been widely used for image segmentation [8, 13, 30, 18,

24, 5, 22, 14] due to their ability to automatically handle

various topological changes such as splitting and merging.

Most older work derived different level set formulations

on top of standard image gradient observations, while re-

cent work swapped those with neural network outputs [18].

In [24], the authors proposed a deep structured active con-

tours method that learns the parameters of an active contour

model using a CNN. [20] introduced a method for object

proposal generation, by learning to efficiently place seeds

such that critical level sets originating from these seeds hit

object boundaries. In parallel work, [33] learns CNN fea-

ture extraction and levelset evolution in an end-to-end fash-

ion for object instance annotation. In our work, we exploit

level set optimization during training as a means to itera-

tively refine ground-truth semantic boundaries.

3. The STEAL Approach

In this section, we introduce our Semantically Thinned

Edge Alignment Learning (STEAL) approach. Our method

consists of a new boundary thinning layer together with a

loss function that aims to produce thin and precise seman-

tic edges. We also propose a framework that jointly learns

object edges while learning to align noisy human-annotated

edges with the true boundaries during training. We refer to

the latter as active alignment. Intuitively, by using the true

boundary signal to train the boundary network, we expect

it to learn and produce more accurate predictions. STEAL

is agnostic to the backbone CNN architecture, and can be

plugged on top of any existing learning-based boundary de-

tection network. We illustrate the framework in Fig. 2.

Subsec. 3.1 gives an overview of semantic boundary de-

tection and the relevant notation. Our boundary thinning

layer and loss are introduced in Subsec. 3.3. In Subsec. 3.4,

we describe our active alignment framework.

3.1. Semantic Aware Edge­Detection

Semantic Aware Edge-Detection [36, 37] can be defined

as the task of predicting boundary maps for K object classes

given an input image x. Let ymk ∈ {0, 1} indicate whether

pixel m belongs to class k. We aim to compute the prob-

ability map P (yk|x; θ), which is typically assumed to de-

compose into a set of pixel-wise probabilities P (ymk |x; θ)
modeled by Bernoulli distributions. It is computed with a

convolutional neural network f with k sigmoid outputs, and

parameters θ. Each pixel is thus allowed to belong to multi-

ple classes, dealing with the cases of multi-class occlusion
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Figure 2: STEAL architecture. Our architecture plugs on top of any backbone architecture. The boundary thinning layer acts upon boundary classification

predictions by computing the edge normals, and sampling 5 locations along the normal at each boundary pixel. We perform softmax across these locations,

helping us enhance the boundary pixels as in standard NMS. During training, we iteratively refine ground-truth labels using our predictions via an active

alignment scheme. NMS and normal direction losses are applied only on the (refined) ground-truth boundary locations.

boundaries. Note that the standard class-agnostic edge de-

tection can be seen as a special case with k = 1 (consuming

all foreground classes).

Semantic Edge Learning. State-of-the-art boundary de-

tectors are typically trained using the standard binary cross

entropy loss adopted from HED [34]. To deal with the high

imbalance between the edge and non-edge pixels, a weight-

ing term β = |Y −|/|Y | is often used, where |Y −| accounts

for the number of non-edge pixels among all classes in the

mini-batch, and |Y | is the total number of pixels. In the

multi-class scenario, the classes are assumed to be indepen-

dent [36, 37]. Therefore, in learning the following weighted

binary cross-entropy loss is minimized:

LBCE(θ) = −
∑

k

logP (yk|x; θ)

= −
∑

k

∑

m

{β ymk log fk(m|x, θ)+

+ (1− β)(1− ymk ) log(1− fk(m|x, θ))}

(1)

where y indicates the ground-truth boundary labels.

3.2. Semantic Boundary Thinning Layer

In the standard formulation, nearby pixels in each bound-

ary map are considered to be independent, and can cause the

predictions to “fire” densely around object boundaries. We

aim to encourage predictions along each boundary pixel’s

normal to give the maximal response on the actual bound-

ary. This is inspired by edge-based non-maximum suppres-

sion (NMS) dating back to Canny’s work [7]. Furthermore,

we add an additional loss term that encourages the normals

estimated from the predicted boundary maps to agree with

the normals computed from ground-truth edges. The two

losses work together in producing sharper predictions along

both the normal and tangent directions.

3.3. Thinning Layer and NMS Loss

Formally, during training we add a new deterministic

layer on top of the boundary prediction map. For each posi-

tive ground-truth boundary pixel p for class k we normalize

the responses along the normal direction ~dkp as follows:

hk(p|x, θ) =
exp(fk(p|x, θ)/τ)

∑L
t=−L exp(fk(pt|x, θ)/τ)

(2)

where:
x(pt) = x(p) + t · cos ~dp (3)

y(pt) = y(p) + t · sin ~dp (4)

Here, t ∈ {−L,−L + 1, . . . , L}, and L denotes the max-

imum distance of a pixel pt from p along the normal. See

Fig. 2 for a visualization. We compute the normal direc-

tion ~dkp from the ground-truth boundary map using basic

trigonometry and a fixed convolutional layer that estimates

second derivatives. The parameter τ in Eq. (2) denotes the

temperature of the softmax. We use L = 2 and τ = 0.1.

Intuitively, we want to encourage the true boundary pixel

p to achieve the highest response along its normal direction.

We do this via an additional loss, referred to as the NMS

loss, that pushes the predicted categorical distribution com-

puted with h towards a Dirac delta target distribution:

Lnms(θ) = −
∑

k

∑

p

log hk(p|x, θ) (5)

Note that p indexes only the positive boundary pixels for

each class, other pixels do not incur the NMS loss. We com-

pute fk(pt|x, θ) in Eq. (2) for non-integral locations using

a bilinear kernel.

Direction Loss. Ideally, the predicted boundaries would

have normal directions similar to those computed from the

ground-truth boundaries. We follow [4] to define the error

as the mean squared loss function in the angular domain:

Ldir(θ) =
∑

k

∑

p

|| cos−1〈 ~dp, ~ep(θ)〉||, (6)

with ~dp the ground-truth normal direction in boundary pixel

p, and ~ep the normal computed from the predicted boundary
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map. We use the same convolutional layer on top of fk to

get ~e. Finally, we compute our full augmented loss as the

combination of the following three terms:

L = α1 LBCE + α2 Lnms + α3 Ldir (7)

where α1, α2, α3 are hyper-parameters that control the im-

portance of each term (see Experiments).

3.4. Active Alignment

Learning good boundary detectors requires high quality

annotated data. However, accurate boundaries are time con-

suming to annotate. Thus datasets tradeoff between quality

and annotation efficiency. Like [37], we notice that the stan-

dard SBD benchmark [16] contains significant label noise.

In this section, we propose a framework that allows us to

jointly reason about true semantic boundaries and train a

network to predict them. We adopt a level set formulation

which ensures that the inferred “true” boundaries remain

connected, and are generally well behaved.

Let ŷ = {ŷ1, ŷ2, ..., ŷK} denote a more accurate version

of the noisy ground-truth label y, which we aim to infer as

part of our training procedure. We define ŷk to be the zero

level set of an embedding signed function φ such that:

ŷk = {Γ : φ(Γ, t) = 0} ∀t (8)

Our goal is to jointly optimize for the latent variable ŷ and

the parameters θ of the edge network. The optimization is

defined as a minimization of the following loss:

min
ŷ,θ

L(ŷ, θ) = −
∑

k

logP (yk, ŷk|x; θ) (9)

= −
∑

k

(

logP (yk|ŷk) + logP (ŷk|x; θ)
)

The second term is the log-likelihood of the model and

can be defined as in the previous section. The first term

encodes the prior that encourages ŷk to be close to yk. Up

to a constant, and without loss of generality, we can rewrite

this term in the following energy form:

E(yk|ŷk;λ; fk) =

∫

p

g(fk,yk, λ) ŷk(p) |ŷ
′

k(p)| ∂p (10)

where λ is a hyper-parameter that controls the effect of yk

and g(.) is the following decreasing function:

g(fk,yk, λ) =
1

√

1 + |fk|
+

λ
√

1 + |yk|
(11)

Intuitively, this energy is minimized when the curve ŷk lies

in areas of high probability mass of fk, and is close, by a

factor of λ, to the given ground-truth yk.

We can minimize Eq. (10) via the Euler-Lagrange equa-

tion, and find the gradient descent direction that allows to

deform the initial yk towards a (local) minima of Eq. (10):

∂ŷ(t)

∂t
= κ g(f,y, λ)~n− (∇g(f,y, λ)~n)~n (12)

Here κ is the Euclidean curvature and ~n is the inward nor-

mal to the boundary. Details of this computation can be

found in [8], Appendix B and C.

By differentiating Eq. (8), it is easy to show that if yk

evolves according to
∂ŷk(t)

∂t
= β ~N then the embedding

function φ can be deformed as
∂φ(t)
∂t

= β ~|∇φ|. We can

thus rewrite the evolution of ŷk in terms of φ as follows:

∂φ(t)

∂t
= g(fk,yk, λ)(κ+ c)|∇φ|+∇g∇φ (13)

where c can be seen as a constant velocity that helps to avoid

certain local minima [8]. Eq. 13 can also be interpreted as

the Geodesic Active Contour formulation of the Level Set

Method [8, 27].

3.5. Learning

Minimizing Eq. (9) can be performed with an iterative

two step optimization process. In one step, we evolve the

provided boundary yk towards areas where the network is

highly confident. The number of evolution steps indexed by

t can be treated as a latent variable and ŷk is selected by

choosing the ŷt
k that minimizes Eq. (9). In the second step,

we optimize θ using the computed yk.

Formally, we want to solve:

min
ŷ,θ

L(ŷ, θ) = min
θ

min
ŷ

L(ŷ, θ) (14)

where we iterate between holding θ fixed and optimizing ŷ:

min
ŷk

L(ŷk, θ) = min
t
{− logP (ŷt

k|x; θ)− C} (15)

and optimizing θ via Eq. (7) while holding ŷ fixed. Here C
is a constant that does not affect optimization.

3.6. Coarse­to­Fine Annotation

Embedding the evolution of ŷ in that of φ has two main

benefits. Firstly, topological changes of ŷ are handled for

free and accuracy and stability can be achieved by using

proper numerical methods. Secondly, φ can be naturally

interpreted as a mask segmenting an object, where φ < 0
corresponds to the segmented region. Moreover, our ap-

proach can also be easily used to speed up object annota-

tion. Assume a scenario where an annotator draws a coarse

mask inside an object of interest, by using only a few clicks.

This is how the coarse subset of the Cityscapes dataset has

been annotated [12]. We can use our learned model and

levelset formulation (Eq. (13)), setting λ = 0 and c = 1
to evolve the given coarse mask by t iterations to produce

an improved segmentation mask whose edges align with the

edges predicted by our model.

3.6.1 Implementation Details

Morphological Level Set. In this work, we follow a mor-

phological approach to compute the differential operators
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Metric Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

MF

(ODS)

CASENet 74.84 60.17 73.71 47.68 66.69 78.59 66.66 76.23 47.17 69.35 36.23 75.88 72.45 61.78 73.10 43.01 71.23 48.82 71.87 54.93 63.52

CASENet-S 76.26 62.88 75.77 51.66 66.73 79.78 70.32 78.90 49.72 69.55 39.84 77.25 74.29 65.39 75.35 47.85 72.03 51.39 73.13 57.35 65.77

SEAL 78.41 66.32 76.83 52.18 67.52 79.93 69.71 79.37 49.45 72.52 41.38 78.12 74.57 65.98 76.47 49.98 72.78 52.10 74.05 58.16 66.79

Ours (NMS Loss) 78.96 66.20 77.53 54.76 69.42 81.77 71.38 78.28 52.01 74.10 42.79 79.18 76.57 66.71 77.71 49.70 74.99 50.54 75.50 59.32 67.87

Ours (NMS Loss + AAlign) 80.15 67.80 77.69 54.26 69.54 81.48 71.34 78.97 51.76 73.61 42.82 79.80 76.44 67.68 78.16 50.43 75.06 50.99 75.31 59.66 68.15

AP

CASENet 50.53 44.88 41.69 28.92 42.97 54.46 47.39 58.28 35.53 45.61 25.22 56.39 48.45 42.79 55.38 27.31 48.69 39.88 45.05 34.77 43.71

CASENet-S 67.64 53.10 69.79 40.51 62.52 73.49 63.10 75.26 39.96 60.74 30.43 72.28 65.15 56.57 70.80 33.91 61.92 45.09 67.87 48.93 57.95

SEAL 74.24 57.45 72.72 42.52 65.39 74.50 65.52 77.93 40.92 65.76 33.36 76.31 68.85 58.31 73.76 38.87 66.31 46.93 69.40 51.40 61.02

Ours (NMS Loss) 75.85 59.65 74.29 43.68 65.65 77.63 67.22 76.63 42.33 70.67 31.23 77.66 74.59 61.04 77.44 38.28 69.53 40.84 71.69 50.39 62.32

Ours (NMS Loss + AAlign) 76.74 60.94 73.92 43.13 66.48 77.09 67.80 77.50 42.09 70.05 32.11 78.42 74.77 61.28 77.52 39.02 68.51 41.46 71.62 51.04 62.57

Table 1: Comparison of our method in the re-annotated SBD test set vs state-of-the-art. Scores are measured by %.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

CASENet [36] 83.3 76.0 80.7 63.4 69.2 81.3 74.9 83.2 54.3 74.8 46.4 80.3 80.2 76.6 80.8 53.3 77.2 50.1 75.9 66.8 71.4

SEAL [37] 84.9 78.6 84.6 66.2 71.3 83.0 76.5 87.2 57.6 77.5 53.0 83.5 82.2 78.3 85.1 58.7 78.9 53.1 77.7 69.7 74.4

Ours 85.8 80.0 85.6 68.4 71.6 85.7 78.1 87.5 59.1 78.5 53.7 84.8 83.4 79.5 85.3 60.2 79.6 53.7 80.3 71.4 75.6

Table 2: Results on SBD test following the original evaluation protocol, and test set from [16].

Metric Method Test NMS Or. Test Set Re-annot. Test Set

MF

(ODS)

CASENet 62.21 63.52

Ours (CASENet) 63.20 64.03

Ours (CASENet) X 64.84 66.58

+ NMS Layer 64.15 64.99

+ NMS Layer X 65.93 67.87

+ Active Align X 64.83 68.15

AP

CASENet 42.99 43.71

Ours (CASENet) 34.60 45.60

Ours (CASENet) X 44.83 60.48

+ NMS Layer 53.67 54.18

+ NMS Layer X 60.10 62.32

+ Active Align X 57.98 62.57

Table 3: Effect of the NMS Loss and Active Alignment on the SBD

dataset. Score (%) represents mean over all classes.

used in the curve’s evolution. This solution is based on nu-

merical methods which are simple, fast and stable. Addi-

tionally, in this approach, the level set is just a binary piece-

wise constant function and constant reinitialization of the

level set function is not required. We refer the reader to [25]

for a more detailed explanation and implementation details.

Training Strategy. Our active alignment heavily relies on

the quality of the network’s predictions to iteratively refine

the noisy ground-truth. During initial stages of training, the

network is not confident and may lead us to infer potentially

noisier labels. We hence introduce alignment after the net-

work’s accuracy starts to flatten. In our formulation, this can

be seen as setting λ = inf for a certain number of iterations.

In order to save on computation time, active alignment can

also be applied every n training iterations.

4. Experimental Results

In this section, we provide an extensive evaluation of our

approach on the standard SBD benchmark [16], as well as

on the Cityscapes dataset [12]. We further show how our

approach can be used to significantly improve coarse seg-

mentation labels, mimicking a scenario where we train on

a labeled dataset with moderate noise, and use the trained

model to generate finer annotations from only coarsely an-

notated data (collected with less manual annotation effort).

Implementation Details. In all experiments, we select

CASENet [36] as the backbone network since it is the

current state-of-the-art semantic-aware-edge detection ar-

Metric Method Active Align Noisy Train Noisy Train ( +8px err)

MF

(ODS)

Ours (CASENet) 64.03 50.58

Ours (CASENet) X 64.10 52.69

+ NMS Layer X 68.15 56.41

AP

Ours (CASENet) 45.60 29.32

Ours (CASENet) X 45.41 27.60

+ NMS Layer X 62.57 43.97

Table 4: Effect of Active Alignment on the SBD dataset. Score (%)

represents mean over all classes.

chitecture. We re-implement CASENet in PyTorch fol-

lowing [36]. The performance of our reimplementation

(slightly better) is illustrated in tables as CASENet Ours

for fair comparison. We use 472 × 472 as the training

resolution. Training is done on an NVIDIA DGX Sta-

tion using 4 GPUs with a total batch size of 8. We use

α1 = 1, α2 = 10, α3 = 1 in our loss function. For SBD,

we use a learning rate of 1e-7. At 20k iter, we decrease the

learning rate by a factor of 10 and set β = 0. Active align-

ment is done every 5k iter (λ = 1) starting at 55k iter. The

full model converges at about 70k iter and takes approxi-

mately two days to train. For Cityscapes, we set the learning

rate to be 5e-8, and decay is done every 20k iterations by a

factor of 20. Since images are more densely annotated, we

set the weights of the loss function to be 1. We do not use

active alignment in Cityscapes since the train set is finely

annotated. This is used later for the refinement of coarse

data. The model converges at around 60k iterations.

4.1. Datasets and Evaluation Metrics

Semantic Boundary Dataset (SBD) [16] contains 11355

images from the trainval set of PASCAL VOC2011, with

8498 images divided into training, and 2857 as test. This

dataset contains annotations following the 20-class defini-

tions in PASCAL VOC. In our experiments, we randomly

select 100 images from the training set, which are used as

our validation. Training is performed on the remaining 8398

images and evaluation is done on test. We additionally re-

port performance on the high-quality re-annotated SBD test

set from [37]. This constitutes 1059 images from SBD test.

Cityscapes Dataset [12] contains 5000 finely annotated

images divided into 2975 training, 500 validation, and 1525

test images. Since the boundaries are not provided and test

is held-out, we follow [36] to generate the ground truth
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(a) Image (b) CASENet (c) Ours (d) +Thinning Layer (e) Ground-truth
Figure 3: Qualitative Results on the SBD Dataset.

Figure 4: Active Alignment. From Left-to-right (GT, Refined).

Metric Method Test NMS road s.walk build. wall fence pole t-light t-sign veg terrain sky person rider car truck bus train motor bike mean

MF

(ODS)

CASENet 87.06 75.95 75.74 46.87 47.74 73.23 72.70 75.65 80.42 57.77 86.69 81.02 67.93 89.10 45.92 68.05 49.63 54.21 73.74 68.92

Ours(CASENet) 87.23 76.08 75.73 47.86 47.57 73.67 71.77 75.19 80.58 58.39 86.78 81.00 68.18 89.31 48.99 67.82 50.84 55.30 74.16 69.29

Ours(CASENet) X 88.13 76.53 76.75 48.70 48.60 74.21 74.54 76.38 81.32 58.98 87.26 81.90 69.05 90.27 50.93 68.41 52.11 56.23 75.66 70.31

+ NMS LOSS 88.08 77.62 77.08 50.02 49.62 75.48 74.01 76.66 81.51 59.41 87.24 81.90 69.87 89.50 52.15 67.80 53.60 55.93 75.17 70.67

+ NMS LOSS X 88.94 78.21 77.75 50.59 50.39 75.54 76.31 77.45 82.28 60.19 87.99 82.48 70.18 90.40 53.31 68.50 53.39 56.99 76.14 71.42

AP

CASENet 54.58 65.44 67.75 37.97 39.93 57.28 64.65 69.38 71.27 50.28 73.99 72.56 59.92 66.84 35.91 56.04 41.19 46.88 63.54 57.65

Ours(CASENet) 68.38 69.61 70.28 40.00 39.26 61.74 62.74 73.02 72.77 50.91 80.72 76.06 60.49 79.43 40.86 62.27 42.87 48.84 64.42 61.30

Ours(CASENet) X 88.83 73.94 76.86 42.06 41.75 69.81 74.50 76.98 79.67 56.48 87.73 83.21 68.10 91.20 44.17 66.69 44.77 52.04 75.65 68.13

+NMS LOSS 89.54 75.72 74.95 42.72 41.53 65.86 67.55 75.84 77.85 52.72 82.70 79.89 62.59 91.07 45.26 67.73 47.08 50.91 70.78 66.44

+NMS LOSS X 90.86 78.94 77.36 43.01 42.33 71.13 75.57 77.60 81.60 56.98 87.30 83.21 66.79 91.59 45.33 66.64 46.25 52.07 74.41 68.89

Table 5: Results on the val set on the Cityscapes dataset. Training is done using the finely annotated train set. Scores are measured by %.

edges and use the validation images as our test set.

Evaluation Protocol: We follow the evaluation protocol

proposed in [37] which is considerable harder than the one

used in [16, 3, 36]. An important parameter is the matching

distance tolerance which is defined as the maximum slack

allowed for boundary predictions to be considered as cor-

rect matches to ground-truth. We follow [37] and set it

to be 0.0075 for SBD and 0.0035 for Cityscapes. For fur-

ther comparisons, in Table 2 we also report the performance

with the original SBD evaluation protocol [16].

Coarse Label Simulation. In order to quantify the level

of annotation noise that our approach can handle, we syn-

thetically coarsen the given labels following the procedure

described in [40]. This algorithm, inspired by the way that

coarse labels were collected in Cityscapes [12], erodes and

then simplifies the true labels producing controlled masks

with various qualities. In addition, we also compute the es-

timated number of clicks required to annotate such objects.

This is simulated by counting the number of vertices in the

simplified polygon.

Evaluation Metrics: We use two quantitative measures

to evaluate our approach in the task of boundary prediction.

1) We use maximum F-Measure (MF) at optimal dataset

scale (ODS), and 2) average precision (AP) for each class.

To evaluate the quality of the improved coarse segmentation

masks, we use the intersection-over-union (IoU) metric.

4.2. Semantic Boundary Prediction

Results and Comparisons. We first compare the perfor-

mance of our approach vs current state-of-the-art methods.

Our baselines include CASENet [36], and the recently pro-

posed CASENet-S and SEAL [37]. CASENet-S can be seen

as an improved version of CASENet, while SEAL builds on

top of CASENet-S and also deals with misaligned labels.

Table 1 illustrates per category performance in the high

quality re-annotated SBD test set. Surprisingly, by just in-

troducing the NMS Layer on top of CASENet, our method

11080



0.001875
(~2.15px)

0.00375
(~4.30px)

0.00500
(~5.72px)

Matching Threshold

60

62

64

66

68

70

72

AV
G 

MF
 (O

DS
)

Ours
DeepLab V3+
CASENet

Figure 5: Comparison of our boundaries vs those obtained from DeepLab

v3+’s segmentation masks. We perform 4.2% better at the strictest regime.
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Figure 6: Semantic Segmentation on Cityscapes val: Performance of

DeepLab V3+ when trained with fine data and (blue) vanilla train extra

set, (orange) our refined data (8 object classes) from train extra. We see

improvement of more than 1.2 IoU % in rider, truck and bus.

outperforms SEAL (an approach that deals with misalign-

ment) by more than 1% in both MF(ODS) and AP. By com-

bining with active alignment, we can see that the perfor-

mance is improved even further. In Table 5, we also evaluate

the performance of our method in the Cityscapes dataset.

While our method outperforms previous state-of-the-art,

we emphasize that the main advantage of the proposed ap-

proach is its ability of being added on top of any existing

architecture such as CASENet, CASENet-S or SEAL.

Analysis of the Boundary Thinning Layer. We evaluate

the performance of the NMS and direction loss on the SBD

dataset in two different test sets. These include the orig-

inal noisy annotated test set and its re-annotated version

from [37]. The comparison, shown in Table 3, highlights

the effectiveness of the NMS and direction loss on both test

sets. In the original test set, our approach improves the per-

formance of CASENet by 3.72% in terms of MF(ODS) and

17.11% in terms of AP. In the high-quality test set, we out-

perform the baseline by 5.35% and 18.61%, respectively.

NMS Loss w/o Edge-NMS: We also compare the per-

formance of our method when post-processing is not used

at test time. Table 3 shows that even when the Boundary

Thinning Layer is not used during inference, the NMS Loss

equally improves the crispness of the raw predictions. As

such, we can see improvements vs CASENet of 1.94 %

(MF) and 10.68 % (AP) in the original dataset, and 1.47

% (MF) and 10.47 % (AP) in the re-annotated one.

Analysis of Active Alignment. We also evaluate the use

of our active alignment during training. To enable a more

controlled analysis, we create several noisier versions of the

real ground-truth as explained in Sec. 4.1. Note that given

the notion of label error as introduced by [40], the original

Label Quality 4px error 8px error 16px error 32px error

Num.Clicks per Image 70.34 44.76 26.78 14.64

Test IoU 91.22 78.95 62.20 41.31

GrabCut 68.74 70.32 69.76 62.82

Ours(Coarse-to-Fine) IoU 92.78 88.16 82.89 76.20

Table 6: Refining coarse labels on SBD. Model is trained on the noisy

SBD training set (approx 4px error). The re-annotated test set is then sim-

plified to simulate coarse data with a given quality (see main text). Score

(%) represents mean over all the 20 object classes.

Label Quality 4px error 8px error 16px error 32px error Real Coarse

Num.Clicks per Image 175.23 95.63 49.21 27.00 98.78

Test IoU 74.85 53.32 33.71 19.44 48.67

GrabCut 26.00 28.51 29.35 25.99 32.11

Ours(Coarse-to-Fine) IoU 78.93 69.21 58.96 50.35 67.43

Table 7: Refining coarse labels on Cityscapes. Model trained on fine

Cityscapes trainset and used to refine coarse data. Real Coarse corresponds

to coarsely human annotated val set, while x-px error correspond to simu-

lated coarse data. Score (%) represents mean over all 8 object classes.

ground-truth is at roughly 4px error, as measured based on

the fine (re-annotated) ground-truth. We train our model us-

ing active alignment on the noisy training set, and perform

evaluation on the high quality test set from [37]. Results,

shown in Table 4, illustrate the effectiveness of active align-

ment in both small and extreme noisy conditions.

STEAL vs DeepLab-v3 [10]: Semantic segmentation

can be seen as a dual task to semantic-aware edge detec-

tion since the boundaries can easily be extracted from the

segmentation masks. Therefore, we compare the perfor-

mance of our approach vs state-of-the-art semantic segmen-

tation networks. Concretely, we use the implementation of

DeepLab V3+ provided by the authors in [10] (78.8 mIoU in

the Cityscapes val set), and obtain the edges by computing a

sobel filter on the output segmentation masks. For fairness

in evaluation, we set a margin of 5 pixels in the corners and

135 pixels in the bottom of the image. This removes the ego

car and image borders on which DeepLab performs poorly.

The comparison (Fig 5), at different matching thresholds,

shows that STEAL outperforms DeepLab edges in all evalu-

ation regimes, e.g. 4.2% at ∼ 2px thrs. This is an impressive

result, as DeepLab uses a much more powerful feature ex-

tractor than us, i.e. Xception 65 [11] vs Resnet101 [17, 36],

and further employs a decoder that refines object bound-

aries [10]. The numbers also indicate that the segmenta-

tion benchmarks, which compute only region-based metrics

(IoU), would benefit by including boundary-related mea-

sures. The latter are harder, and better reflect how precise

the predictions really are around object boundaries.

Qualitative Results Fig 3, 7 show qualitative results of

our method on the SBD and Cityscapes datasets, respec-

tively. We can see how our predictions are crisper than the

base network. In Fig 4, we additionally illustrate the true

boundaries obtained via active alignment during training.

4.3. Refining Coarsely Annotated Data

We now evaluate how our learned boundary detection

network can be used to refine coarsely annotated data

(Sec. 3.6). We evaluate our approach on both the simu-
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Figure 7: Qualitative Results on the Cityscapes Dataset.

Figure 8: Qualitative Results. Coarse-to-Fine on the coarsely annotated Cityscapes train extra set.

lated coarse data (as explained in Sec. 4.1), as well as on

the “real” coarse annotations available in the Cityscapes

train extra and val sets. For quantitative comparison we use

the Cityscapes val set, where we have both fine and coarse

annotations. We use the train extra set for a qualitative com-

parison as fine annotations are not available.

Results and Comparisons. Results of our method are

shown in Table 6 for the SBD dataset. We emphasize that

in this experiment the refinement is done using a model

trained on noisy data (SBD train set). Table 7, on the other

hand, illustrates the same comparison for the Cityscapes

dataset. However, in this case, the model is trained using

the finely annotated train set. In both experiments, we use

GrabCut [29] as a sanity-check baseline. For this, we ini-

tialize foreground pixels with the coarse mask and run the

algorithm at several iterations (1,3,5,10). We report the one

that gives on average the best score (usually 1). In our case,

we run our method 1 step for the 4px error. For cases, with

higher error, we increase it by 5 starting at 8px error.

Qualitative Results. We show qualitative results of our

approach in Fig 8. One can observe that by starting from a

very coarse segmentation mask, our method is able to ob-

tain very precise refined masks. We believe that our ap-

proach can be introduced in current annotation tools saving

considerable amount of annotation time.

Better Segmentation. We additionally evaluate whether

our refined data is truly useful for training. For this, we

refine 8 object classes in the whole train extra set (20K im-

ages). We then train our implementation of DeepLabV3+

with the same set of hyper-parameters with and without re-

finement in the coarse train extra set. Fig 6 provides in-

dividual performance on the 8 classes vs the rest. We see

improvement of more than 1.2 IoU% for rider, truck and

bus as well as in the overall mean IoU (80.55 vs 80.37).

5. Conclusion

In this paper, we proposed a simple and effective Thin-

ning Layer and loss that can be used in conjunction with

existing boundary detectors. We further introduced a frame-

work that reasons about true object boundaries during train-

ing, dealing with the fact that most datasets have noisy

annotations. Our experiments show significant improve-

ments over existing approaches on the popular SBD and

Cityscapes benchmarks. We evaluated our approach in re-

fining coarsely annotated data with significant noise, show-

ing high tolerance during both training and inference. This

lends itself as an efficient way of labeling future datasets, by

having annotators only draw coarse, few-click polygons.
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[20] P. Krähenbühl and V. Koltun. Geodesic object proposals. In

ECCV, pages 725–739, 2014.

[21] D. C. Lee, M. Hebert, and T. Kanade. Geometric reason-

ing for single image structure recovery. CVPR, pages 2136–

2143, 2009.

[22] C. Li, C. Xu, C. Gui, and D. Fox. Distance regularized

level set evolution and its application to image segmentation.

IEEE Trans. Image Proc., 19(12):3243–3254, Dec 2010.

[23] J. Malik and D. E. Maydan. Recovering three-dimensional

shape from a single image of curved objects. T-PAMI,

11(6):555–566, 1989.

[24] D. Marcos, D. Tuia, B. Kellenberger, L. Zhang, M. Bai,

R. Liao, and R. Urtasun. Learning deep structured active

contours end-to-end. In CVPR, pages 8877–8885, 2018.

[25] P. Marquez-Neila, L. Baumela, and L. Alvarez. A morpho-

logical approach to curvature-based evolution of curves and

surfaces. T-PAMI, 36(1):2–17, 2014.

[26] A. Opelt, A. Pinz, and A. Zisserman. A boundary-fragment-

model for object detection. In ECCV, pages 575–588, 2006.

[27] S. Osher and J. A. Sethian. Fronts propagating with

curvature-dependent speed: algorithms based on hamilton-

jacobi formulations. Journal of computational physics,

79(1):12–49, 1988.

[28] M. Prasad, A. Zisserman, A. Fitzgibbon, M. P. Kumar, and

P. H. Torr. Learning class-specific edges for object detection

and segmentation. In Computer Vision, Graphics and Image

Processing, pages 94–105. Springer, 2006.

[29] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Inter-

active foreground extraction using iterated graph cuts. In

SIGGRAPH, 2004.

[30] C. Rupprecht, E. Huaroc, M. Baust, and N. Navab. Deep

active contours. arXiv preprint arXiv:1607.05074, 2016.

[31] S. Wang, S. Fidler, and R. Urtasun. Lost shopping! monoc-

ular localization in large indoor spaces. In ICCV, 2015.

[32] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and

B. Catanzaro. High-resolution image synthesis and semantic

manipulation with conditional gans. In CVPR, 2018.

[33] Z. Wang, D. Acuna, H. Ling, A. Kar, and S. Fidler. Object

instance annotation with deep extreme level set evolution. In

CVPR, 2019.

[34] S. Xie and Z. Tu. Holistically-nested edge detection. In

ICCV, pages 1395–1403, 2015.

[35] X. Yu, S. Chaturvedi, C. Feng, Y. Taguchi, T.-Y. Lee, C. Fer-

nandes, and S. Ramalingam. Vlase: Vehicle localization by

aggregating semantic edges. In arXiv:1807.02536, 2018.

[36] Z. Yu, C. Feng, M.-Y. Liu, and S. Ramalingam. uppercase-

CASENet: Deep category-aware semantic edge detection. In

CVPR, 2017.

[37] Z. Yu, W. Liu, Y. Zou, C. Feng, S. Ramalingam, B. Vi-

jaya Kumar, and J. Kautz. Simultaneous edge alignment and

learning. In ECCV, 2018.

[38] D. Zhu, J. Li, X. Wang, J. Peng, W. Shi, and X. Zhang. Prin-

ciples of Gestalt Psychology. Lund Humphries, 1935.

[39] D. Zhu, J. Li, X. Wang, J. Peng, W. Shi, and X. Zhang. Se-

mantic edge based disparity estimation using adaptive dy-

namic programming for binocular sensors. Sensors, 18(4),

2018.

[40] A. Zlateski, R. Jaroensri, P. Sharma, and F. Durand. On the

importance of label quality for semantic segmentation. In

CVPR, June 2018.

11083


