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Abstract

Time-of-Flight data is typically affected by a high level

of noise and by artifacts due to Multi-Path Interference

(MPI). While various traditional approaches for ToF data

improvement have been proposed, machine learning tech-

niques have seldom been applied to this task, mostly due

to the limited availability of real world training data with

depth ground truth. In this paper, we avoid to rely on la-

beled real data in the learning framework. A Coarse-Fine

CNN, able to exploit multi-frequency ToF data for MPI cor-

rection, is trained on synthetic data with ground truth in a

supervised way. In parallel, an adversarial learning strat-

egy, based on the Generative Adversarial Networks (GAN)

framework, is used to perform an unsupervised pixel-level

domain adaptation from synthetic to real world data, ex-

ploiting unlabeled real world acquisitions. Experimental

results demonstrate that the proposed approach is able to

effectively denoise real world data and to outperform state-

of-the-art techniques.

1. Introduction

Among the various solutions for depth data acquisition,

Time-of-Flight (ToF) sensors have attracted a large interest

since they are able to reliably get the depth information at

interactive frame rates. These sensors estimate the depth by

illuminating a scene with a periodic, amplitude modulated

light signal and by estimating the time taken by the signal

to reach the scene points and come back from the phase dis-

placement between the transmitted and received signal [33].

Even if the technology behind these sensors has improved a

lot since their introduction, it is still affected by several crit-

ical issues, including limited spatial resolution, relatively

high noise levels (specially on dark surfaces) and inaccura-

cies on the edges due to the mixed pixel effect. A partic-

ularly critical issue is the so-called Multi-Path Interference

(MPI), due to the fact that the emitted light can bounce mul-

tiple times in the scene before reaching to the sensor. This

leads to a depth overestimation that is scene dependent and

related to both the geometry and the material properties.

Since the MPI error is related to the modulation fre-

quency of the ToF signal, by using multi-frequency ToF

(MF-ToF) sensors, useful clues for its estimation can be

extracted and used for ToF data denoising. However, tra-

ditional approaches based on this idea do not have com-

pletely satisfactory performances. Recently, machine learn-

ing techniques and in particular Convolutional Neural Net-

works (CNN) have been exploited for this task [5, 30, 14].

Even if these approaches have obtained reasonable perfor-

mances in some simple situations, they are not able to com-

pletely remove the MPI corruption and their generalization

capabilities are limited. The main issue in using deep learn-

ing techniques for this task is the limited amount of avail-

able training data. There are no large public datasets, like

for image classification or semantic segmentation. Further-

more, while ToF depth data can be easily acquired, getting

the corresponding ground truth information is a very time

consuming task, requiring the acquisition of the scene with

highly accurate scanning equipments and the registration of

ground truth data with the ToF acquisition.

A possible solution to overcome this issue, is to train the

deep network with synthetic data produced by a Time-of-

Flight simulator. The approach of [5] exploits this idea and

obtains impressive performances on synthetic data. On the

other hand, the differences between the real world and sim-

ulated data, reduce the performances on real sensors, where

the approach is able to reduce the MPI corruption but does

not completely remove it.

This paper introduces a novel transfer learning architec-

ture able to properly denoise real world data by exploit-

ing unlabeled real world ToF acquisitions (i.e., without the

ground truth data) to adapt the training performed on syn-

thetic data to the real world setting. More in detail, a

Coarse-Fine CNN exploiting MF-ToF data derived from the

one introduced in [5] is jointly trained in a supervised way

on a dataset composed by synthetic scenes, for which the

ground truth depth is known and in an unsupervised way on

a real dataset, for which the depth ground truth is unknown.

For the unsupervised training, we use an adversarial loss

and a learning framework based on the Generative Adver-

sarial Network (GAN) model. The generator network per-

forming ToF data denoising is trained along with a discrim-
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inator network, implementing the adversarial loss used for

the unsupervised domain adaptation of the generator. This

method contains several novel contributions. First of all, it

introduces a novel adversarial learning framework for do-

main adaptation in regression problems and it is the first

to apply this technique to the denoising of depth data. In

the proposed framework, couples of noisy depths and er-

ror maps, computed from ground truth or from generated

data, are used to better capture the joint statistics of the

noisy data and the denoised ones. This avoids the deviation

of the generator from the input data. Furthermore, a novel

data augmentation strategy based on noise augmentation is

introduced. The effectiveness of the proposed approach is

demonstrated by the evaluation on two different real world

datasets.

2. Related Works

ToF sensors suffer from different noise sources [33, 20,

22, 19] as: thermal noise due to the electronics of the sen-

sor; Photon Shot Noise (PSN) related to the random nature

of the light; systematically distorted depth estimation due to

the non-ideality of the emitted light signals; MPI due to the

multiple reflections of the emitted light before coming back

to the ToF sensor. Bilateral filtering or total variation tech-

niques could be used to reduce the zero mean errors (PSN,

thermal) [21, 5], while MPI is a more critical issue for ToF

sensors. Many methods for MPI correction have been pro-

posed [31], but it remains an open problem.

The methods based on single modulation frequency ac-

quisitions employ a suitable reflection model and exploit the

corrupted structure of the scene to estimate its true geome-

try [10, 11, 18].

The methods based on multi-frequency ToF acquisi-

tions impose a hypothesis on the composition of the back-

scattered light, e.g. assuming it is composed by few specu-

lar rays. Freedman et al. [9] proposed an optimization based

approach, using data acquired at 3 modulation frequencies.

The method presented by Bhandari et al. [6] corrects MPI

due to K interfering rays using 2K+1 modulation frequen-

cies with a closed form solution.

Other methods use a modified ToF light source that

projects a sequence of spatial patterns onto the scene to

separate the direct light, reflecting only once inside the

scene, from the interfering rays, the so called global light

[32, 4, 25, 2].

In order to avoid the use of an explicit reflection model,

data-driven approaches correcting MPI have been presented

recently. Son et al. in [29] use a deep neural network,

trained on labeled real data, captured from a robotic arm

on short range scenes. Since the acquisition of a dataset

composed by ToF depth with a registered ground truth is

challenging and expensive, Marco et al. in [24] trained an

encoder-decoder CNN in an unsupervised way on real depth

maps. Then they trained the decoder part only in a super-

vised way on a synthetic ToF dataset. Recently, deep learn-

ing techniques using end-to-end CNNs, taking raw ToF cor-

relation samples as input and outputting the refined scene

depth map, have been presented for general purpose ToF de-

noising [30, 14, 5]. In these methods, the CNNs have been

trained on synthetic data, but the adaptation to real data has

been investigated only from a qualitative point of view in

[30] and on a single corner scene in [14]. In the method

of Agresti et al. [5], a CNN for MPI correction is trained

on multi-frequency synthetic data. By presenting a wider

quantitative performance evaluation on real data, this paper

shows some limitations due to the domain shift between the

training and testing domain. Finally, a closely related field,

where deep learning strategies have been successfully ex-

ploited, is the fusion of stereo and ToF data [3, 26].

This paper starts from the method introduced in [5], but

uses an unsupervised domain adaptation technique to over-

come the synthetic-real data domain shift. We acquired

unlabeled real data, avoiding the expensive task of ground

truth acquisition, and we used them in combination with

the labeled synthetic data in the proposed domain adapta-

tion framework.

Domain adaptation is a growing research area. A mile-

stone of this field is the work of Ganin et al. [12], which

reduced the domain shift of a classifier in an unsupervised

way by using a domain classifier trained to decide if the

input features of the classifier are coming from the source

domain or from the target domain. The domain classifier is

used to realize an adversarial loss, similar to GAN [13], to

apply the domain adaptation. Similarly, unsupervised do-

main adaptation of a pre-trained classifier is proposed in

[8]. In [27], feature adaptation is used to adapt a network

trained for multi-task regression (normal, edge and depth

from color image) from synthetic to real data. In [28, 8] a

generator network is used to modify some labeled synthetic

data to look similar to the real data, which are then used

to train a classifier. A pixel-level cycle-consistent domain

adaptation scheme, that also ensures the semantic consis-

tency in the domain translation, is proposed in [17].
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Figure 1: Architecture of the proposed approach.
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3. Proposed Method

In order to denoise the acquired ToF depth data (i.e., re-

move both MPI and sensor noise), we use an improved ver-

sion of the Coarse-Fine CNN of [5] that has been fitted into

a novel adversarial learning framework, used to perform un-

supervised domain adaptation from synthetic to real data.

The general architecture of the proposed machine learn-

ing strategy is shown in Fig. 1: the generator Coarse-Fine

CNN (Section 4) takes different features extracted from the

sensor raw data as input and produces an estimate of the

noise-free depth map of the scene, while the discriminator

network (Section 5) is used for the adversarial learning pro-

cedure of Section 6. In this section, we discuss the process-

ing of input data, while the machine learning framework

will be the subject of the next sections.

Recall that the phase offsets of the interfering rays caus-

ing MPI are frequency dependent and this frequency diver-

sity can be used to understand if MPI is acting on MF-ToF

cameras and can give cues for its correction [9, 7, 16].

Following this rationale, the scenes are captured with the

ToF camera modulation frequency at 20, 50 and 60 MHz
and the depth maps have been phase unwrapped to extend

the maximum unambiguous range up to 15 m. The acquired

information is pre-processed in order to extract a represen-

tation IG that contains relevant information about the MPI

presence and strength: 5 different feature channels have

been extracted from the ToF data, thus obtaining the fol-

lowing input representation:

IG=

(

d60; d20 − d60; d50 − d60;
A20

A60

− 1;
A50

A60

− 1

)

(1)

where dx and Ax are the ToF depth and amplitude maps,

captured at x MHz. The idea is to exploit the frequency di-

versity and the fact that in presence of MPI, the modulated

light interferes, resulting in a variation of the received sig-

nal amplitude when the modulation frequency changes (for

more details see [5]) .

The input data IG, without any pre-processing for de-

noising (differently from [5]), is fed to a generator network,

i.e. a Coarse-Fine CNN architecture that produces the de-

noised depth map (Section 4). This network consists of two

parts: a coarse network that takes IG as input and estimates

a low resolution version of the scene; a fine network that

takes both IG and the output of the coarse network as input

in order to estimate the full resolution data. Note that the

network directly produces the denoised data and not an es-

timation of the error as in [5], thus allowing to avoid the use

of additional computationally intensive filtering steps, e.g.

the bilateral filter used in other ToF denosing methods.

The discriminator CNN module (Section 5) instead is

used to perform an unsupervised domain adaptation from

synthetic to real data based on adversarial learning. This
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Figure 2: Architecture of the generator network G.

represents a key advancement of this work w.r.t. previous

research on the topic [5, 14, 30, 24]. The discriminator is

fed with a two channel input. The first channel is always the

noisy ToF depth map. The second channel is an estimate of

the ToF error (the deviation from the true depth).

4. Generator Network Architecture

The architecture of the proposed generator network G

is depicted in Fig. 2 and consists of a Coarse-Fine CNN.

The choice of using 2 sub-networks is due to the fact that

the reflections causing MPI can happen in different areas of

the scene, thus requiring a wide field of view. On the other

hand, wide convolutions and pooling layers cause blurring

of edges and small details.

The coarse network allows to have a wide receptive field,

since it applies downsampling with pooling layers after the

first and second convolutional layers. It is made of a stack

of 4 convolutional layers with 3 × 3 kernels and 32 filters.

Each convolutional layer is followed by a ReLU. The last

layer is a single 3× 3 convolutional filter. The output of the

coarse network is a low resolution estimate of the scene ge-

ometry (note that differently from [5], the network directly

estimates the depth map and not the MPI corruption). The

output of the last layer is finally up-sampled using a bilinear

interpolation. The up-sampled output dG,C = GC(IG) is a

coarse estimate of the refined depth map.

The fine network works at full resolution and allows to

obtain an accurate representation of edges and details (the

output of this network is denoted with dG = G(IG) and is

also the final output of the proposed method). The first 4
convolutional layers have 3 × 3 kernels, 64 filters, ReLU

activation and no pooling. The output layer is a single 3× 3
convolutional kernel. In order to exploit the global informa-

tion, the up-sampled output of the coarse network (dG,C) is

given to the 4th layer of the fine network as input.

5. Discriminator Network Architecture

In order to perform unsupervised domain adaptation, we

use a discriminator Convolutional Neural Network (denoted

with D). We want the discriminator to capture the relation-

ships between the noisy depth data and the related noise im-

age, in order to realize a discrimination of denoised depth
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maps produced from G from ground truth data. This will

be used to drive the adversarial learning process in Section

6, that will force G to produce depth maps from synthetic

and real data, that are correctly denoised and resemble the

properties of ground truth data. As introduced in Section 3,

the discriminator takes the noisy depth map dn and the er-

ror map E (which can be the difference between the noisy

depth map and the ground truth depth Egt = dn − dgt
or between the noisy depth map and the generator output

EG = dn − dG) as input. The discriminator aims to cap-

ture the joint statistics of the couple ID;gt = (dn;Egt),
that is (dgt +Egt;Egt) or equivalently (dn; dn − dgt), giv-

ing output 1 if the input follows this distribution. Instead,

we want the discriminator to discard all the data that does

not follow the ground truth statistics and are generated by

G. To clarify, the output of D should be 0, if the input is

ID;G = (dn, dn − dG) = (dn, EG) and 1 if the input is

ID;gt = (dn, dn − dgt) = (dn, Egt). In an early version of

the proposed work, we tried to use the standard approach of

feeding D with dgt as positive example, or the output of G,

dG, as negative example. After the domain adaptation, the

generated data was not very close to the depth ground truth,

since this approach left too much freedom to the genera-

tor. Thus, we employed the proposed two channel features.

This choice forces D to focus on the raw ToF depth map

and on how the estimated error is related to it, preventing

the output of G to deviate from its input.

The architecture of the proposed discriminator network

is shown in Fig. 3: it is made of a stack of 5 convolutional

layers. The first 4 have 4 × 4 convolution kernel windows

with a stride of 2 and 16, 32, 64 and 128 filters respectively.

Each layer is followed by a batch normalization layer and a

ReLU activation. The output layer has 1 filter and no ReLU

and batch normalization. The discriminator can be trained

by minimizing the following loss function:

LD = −E
(

log
(

D(ID;gt)
)

+ log
(

1−D(ID;G)
)

)

(2)

Please note that we are using for the training of the whole

system a synthetic dataset provided with the ground truth

depth of the scenes (dsgt) and an unlabeled real dataset. In

the rest of this paper, we will use the “s” and “r” apexes to

distinguish between synthetic and real data.

In the true case ID;gt requires the ground truth dgt and

so it can be constructed only on the synthetic dataset. On

the other hand, the fake data ID;G does not require ground

truth information and can be constructed for both real and

synthetic datasets.

In order to obtain better performance, we chose to train

D on synthetic data only (note that real data will instead be

used in the adversarial training procedure for G in Section

6). Otherwise, D would always recognize real data as fake,

since they were always used as negative examples. This
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Figure 3: Architecture of the discriminator network D.

allows to avoid training the discriminator to distinguish be-

tween real and synthetic data instead of learning the statis-

tics of (dn;E) in the correct way.

On the other side, the choice of using only synthetic data

limits the capability of D to generalize to real data. One of

the main causes for this is that the amount of noise on real

data depends on several factors and can be slightly differ-

ent from synthetic simulations. In order to better generalize

and train a network that is able to adapt to different levels

of noise, we apply a novel data augmentation strategy on

IsD;gt. Using ground truth data we can separate data and

noise on the training set and then produce different versions

of the scene with slightly increased or decreased amounts

of noise. The idea is to use as true input for D the couple

IsD;gt = (dsgt + E′

gt;E
′

gt) (3)

with E′

gt given by

E′

gt = k · (ds60 − dsgt) = k · Es
gt, (4)

where k represents a uniform random variable in the range

[1 − ǫ; 1 + ǫ] that acts as a scaling factor for the noise on

simulated data. The parameter ǫ has been set to 0.5 for opti-

mal domain adaptation performance using k-fold validation.

This data augmentation strategy leads to a wider and more

general data distribution of which the synthetic statistics is

a subset. It forces D to learn more generic pairs of (noisy

depth; error image), preventing it from focusing too much

on synthetic ToF statistics. Doing so, D learns to judge how

well the error map from G fits to the noisy ToF depth.

6. Adversarial Learning Strategy

The denoising network G is trained both with synthetic

data in a supervised way and with unlabeled real data in an

unsupervised way. The discriminator D is used to imple-

ment an adversarial loss to perform an unsupervised domain

adaptation to real world scenes on G. More in detail, the

supervised training is performed with the patches extracted

from the synthetic dataset S1 (see Section 7) and allows to

obtain good performance on synthetic scenes, but the pho-

tometric differences between simulated and real world data

makes this training not very effective on real data. For this

reason, the unlabeled real dataset is used to train G by using

the adversarial loss from the discriminator. G is trained by

minimizing a loss function composed of 2 parts:

LG = Lsup + w · Ladv, (5)
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where

Lsup = E[|dsG − dsgt|] + E[|dsG,C − dsgt|] (6)

Ladv = E[−log
(

D(IrD;G)
)

]. (7)

The first term is optimized in a supervised way on syn-

thetic data only (dataset S1, Section 7). It is modeled as

the sum of the l1 distances between the outputs of G (i.e.,

the output dsG = G(IsG) of the fine network and the out-

put dsG,C = GC(I
s
G) of the coarse one) and the ground

truth depth. Note that considering also the output of the

coarse network allows to properly train also this module,

that is fundamental to understand the general scene struc-

ture and consequently the behavior of MPI. The second part

is trained in an unsupervised way on real data (dataset S2,

Section 7) without using ground truth information. By min-

imizing the loss of Eq. 7 we aim at fooling the discrimina-

tor by modifying the output of G in order to generate depth

maps similar to the ground truth ones. This allows to obtain

samples of IrD;G = (drn; d
r
n − drG) (i.e. couples of noisy

depth maps and related error images) similar to the ground

truth data ID;gt. With the proposed training approach, we

can train G to adapt to and denoise real world data without

capturing depth ground truth for real scenes.

The implementation of the loss functions given by Eq.

2 and Eq. 7 follows the LS-GAN structure proposed in

[23], where the negative log likelihoods are replaced by

least squared loss in order to stabilize the learning process.

At each step of the training phase, a batch of real data and

a batch of synthetic data are sampled from the two training

datasets S1 and S2. At first, the synthetic data are used to

train the discriminator as mentioned in Section 5. By fol-

lowing the idea introduced in [28, 34], we exploited a buffer

to collect examples of fake data IsD;G, produced by G when

processing synthetic data in past training steps. Two differ-

ent strategies can be selected with a 50% probability each.

In the first, D is trained using data produced by G in the

current training step. In the second, data collected in the

buffer is extracted at random and used as fake examples for

training while the buffer is filled with the data produced by

G. This approach allows to avoid that D overfits on the cur-

rent status of G. Thus, it stabilizes the training process and

lets D focus also on fake data related to previous training

steps, since these always have to be classified as fake. In

this way, D captures the statistics of ID;gt better.

Simultaneously, G is trained on the unlabeled real data

by minimizing the loss function of Eq. 7 and on the syn-

thetic data by minimizing the loss in Eq. 6.

Since the exploited synthetic dataset is not too large, we

have used K-fold cross validation with K=5 on the synthetic

training set to control and avoid over-fitting. Instead, the

real dataset used for the adversarial training is completely

unlabelled. For this reason, we used an additional real

dataset provided with depth ground truth as validation set

during the domain adaptation process. We have optimized

the hyper-parameters of the CNN and of the training pro-

cedure, i.e., the learning rate, the weight of the adversarial

loss Ladv and the structure of the discriminator network in

order to reduce the most the average mean absolute error

(MAE) on the real validation set S3 (see Section 7) after the

k-fold cross validation on the synthetic dataset.

The complete learning procedure is summarized in Algo-

rithm 1 and in Fig. 4: we optimized the two neural networks

using the TensorFlow framework [1] with the ADAM opti-

mizer. The learning rate has been set to 5 · 10−6, while the

weight of the adversarial part has been set to w = 5 · 10−3.

Each batch contains 4 samples and we trained the network

for 105 training steps. Fig. 5 shows the mean behavior

of the validation error (MAE) on the real world validation

dataset S3 (this dataset has depth ground truth, see Section

7) of the proposed architecture after k-fold cross validation.

The figure compares the presented approach with the train-

ing curves obtained without using some of its components

in order to allow for some ablation considerations.

The blue curve corresponds to the supervised training on

synthetic data of the generator (i.e. without using the ad-

versarial domain adaptation). It can be clearly seen that the

validation error is higher than the proposed method, in par-

ticular the error initially decreases but after a certain point

the accuracy does not improve, since the deep network is

basically overfitting on the synthetic data.

The green curve corresponds to the baseline adversarial

learning method without the history buffer and the data aug-

mentation. The achieved minimum error is smaller than the

supervised training, even if not as good as the complete ver-

sion of our approach. On the other hand, the training looks

unstable and after a certain point, the discriminator domi-

nates on the generator and the validation error increases.

The purple plot corresponds to the use of data augmen-

tation but no history buffer: the minimum error is similar to

the previous case, but the curve is more stable and the prob-

lem of the discriminator saturation is more limited. The op-

posite case (history but no data augmentation) has a similar

behavior with slightly better performance (in the final part

the yellow curve has lower and more stable values).

Finally, by putting together all the components we can

obtain very good performance with a small and stable vali-

dation error (red curve). In particular, note that even if the

gap in terms of minimum error, obtained by adding data

augmentation and history is not so large, the two techniques

allow to obtain more stable training behavior and to avoid

the unbalancing of the generator and discriminator after a

certain point. This suggests that the full version of the ap-

proach has better generalization properties and can be ap-

plied on a wider set of different scenes and settings.
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Algorithm 1 Domain Adaption Procedure

1: procedure TRAINING STEP

2: (IsG; d
s
gt)← S1 ⊲ Get synthetic data

3: IrG ← S2 ⊲ Get real world data

4: ds60 ← IsG and dr60 ← IrG
5: Es

gt = ds60 − dsgt
6: k = rand.unif([1− ǫ; 1 + ǫ]) ⊲ For noise augm.

7: IsD;gt = (dsgt + k · Es
gt; k · E

s
gt)

8: IsD;G = (ds60; d
s
60 −G(IsG))

9: IrD;G = (dr60; d
r
60 −G(IrG))

10: if rand.uniform([0; 1]) > 0.5 then

11: I
s, curr
D;G = IsD;G

12: else

13: Is curr
D;G = queue.get_sample()

14: queue.push
(

IsD;G

)

⊲ Optimize the discriminator (D)

15: minimize LD (Eq. 2) on IsD;gt and Is curr
D;G

⊲ Optimize the generator (G)

16: minimize Lsup (Eq. 6) on (IsG; d
s
gt)

17: minimize Ladv (Eq. 7) on IrD;G

ToF
data

Depth 
gt

Synthetic dataset: ଵ

ToF
data

Unlabeled real 
dataset: ଶ

௦ீ and ௚௧௦
஽,ீ௦ ଺଴௦ ଺଴௦ ௦ீ Supervised 

training of D

஽,ீ௥ ଺଴௥ ଺଴௥ ௥ீ
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training of G

1

2

of ஽,ீ௦
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Figure 4: Schematic representation of a training step.
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Figure 5: Validation error during the training procedure for

different versions of the proposed approach.

7. Synthetic and Real World Datasets

We exploited 5 different datasets for the training and

evaluation of this work.

For the supervised training with synthetic data we used

the dataset introduced in [5]. This dataset (S1) is com-

posed of 40 synthetic scenes with multi-frequency data and

ground truth depth. We performed data augmentation by ex-

tracting 10 random patches of size 128×128 [px] from each

scene and by applying rotation and flipping of the patches.

In order to perform the adversarial training procedure,

we acquired an unlabeled real world dataset (S2), using

a SoftKinetic Time-of-Flight camera in an office environ-

ment. The dataset is composed by 97 scenes (without

ground truth depth). The scenes (some are depicted in the

additional material) have different sizes and subjects and

contain critical situations in which MPI is clearly visible.

We also acquired ground truth data for a small set of real

world scenes for validation purposes. This smaller dataset,

S3, has only 8 scenes acquired with the SoftKinetic camera,

but contains also ground truth information, acquired with an

active stereo matching system using high frequency sinu-

soidal patterns, to reduce diffuse reflection distortions [15],

and registered on the ToF sensor.

In order to evaluate the performances of the proposed

approach, we used the real world dataset S4 of [5]. This

dataset contains 8 real world scenes with ground truth data

and allows to perform the comparison with state-of-the-art

approaches for the considered task.

Finally, we acquired another set of scenes (S5) with

ground truth information to ensure a more robust per-

formance evaluation and comparison with competing ap-

proaches, focusing on current real world applications. Since

ToF sensors can be used in logistics and manufacturing for

inspection, handling and dimensioning of parcels, we ac-

quired a set of 8 scenes with ground truth, containing boxes

of different sizes. Since the boxes are arranged close or one

over the other, there is strong MPI making the precise mea-

surement of these simple geometries challenging.

The additional material describes the datasets in more

detail and presents some visual examples of the data. Fur-

thermore, the 3 datasets S2, S3 and S5 that have been cre-

ated for this work are available at http://lttm.dei.

unipd.it/paper_data/MPI_DA_CNN .

8. Experimental Results

The proposed method has been evaluated using the real

datasets S4 (from [5]) and S5 . Both the datasets contain 8
different scenes with the corresponding ground truth depth.

The scenes contain objects of various sizes and materials

and situation in which MPI can arise.

In order to evaluate the performance of the proposed ap-

proach we start by analyzing the impact of the proposed

adversarial learning strategy and then we compared our

method with some state-of-the-art approaches.

8.1. Denoising Properties of the Adversarial Scheme

First of all, we analyze how the adversarial learning strat-

egy allows to perform denoising and MPI removal on real

world data. Fig. 6 shows the output of the proposed ap-

proach on some sample scenes in the S4 dataset and com-
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pares it with that obtained by the proposed generator net-

work trained in a supervised way on synthetic data. Column

3 shows the error map for input data at 60 MHz. Note the

large amount of MPI corruption on slanted surfaces and the

issues close to the edges of the objects. Column 4 shows

the error map corresponding to the usage of the proposed

Coarse-Fine network in a supervised fashion (i.e. using

only synthetic data for training but, differently from [5], by

looking at the performance on the real validation set S3 and

not on the synthetic one to set the hyper-parameters). Note

how it is possible to reduce the MPI corruption, but only by

a small margin. A strong effect remains on the slanted sur-

faces, especially on the floor. Furthermore, there is a large

amount of error in the proximity of the edges, probably due

to the fact that edges are very sharp and well defined on

synthetic data, while the mixed-pixel effect produces many

artifacts in these regions in real world data. By applying the

proposed adversarial learning strategy (last column), it is

possible to obtain a noticeable improvement: the amount of

MPI on the floor is further reduced, even if not completely

removed and the accuracy in proximity of edges is much

better than in the supervised case. The visual evaluation is

also confirmed by numerical results: on the S4 dataset, the

average MAE on the input data (i.e., the ToF depth map at

60 Mhz) is 5.43 cm. By denoising the data with the net-

work trained in a supervised way, the MAE can be reduced

to 2.74 cm, i.e. about half of the original error. By applying

the proposed domain adaptation approach, the average error

is reduced to 2.36 cm, i.e. a further reduction of about 14%
w.r.t. the error of the synthetic supervised approach.

Depth Map Error Maps

Input Our method Input Supervised Our Method

Figure 6: Output of the synthetic supervised and of the pro-

posed domain adaptation approach on some sample scenes

from the S4 dataset. The values are measured in meters.

8.2. Comparison with State­of­the­Art Approaches

The performance of the proposed method was compared

with three state-of-the-art approaches for ToF data denois-

S4 Dataset ([5]) S5 Dataset (box)

Method MAE Relative MAE Relative

(cm) error (cm) error

Input (60 Mhz) 5.43 - 3.62 -

Input (20 Mhz) 7.28 - 5.06 -

SRA [9] 5.11 94.1% 3.37 93.1%

DeepToF [24] 5.13 70.5%* 6.68 132%*

[24]+calibration 5.46 75%* 3.36 66.4%*

Agresti et al. [5] 3.19 58.7% 2.22 60.5%

Our Approach 2.36 43.5% 1.66 46.1%

DA-F (Ours+[12, 27]) 2.6 47.9% 1.71 47.2%

Table 1: MAE and relative error on the S4 and S5 datasets.

The relative error is the ratio between the MAE of each

method and the MAE on input at 60 MHz, the highest em-

ployed frequency for all approaches, except [24] (*) that is

compared with 20 MHz since it uses only this frequency.

ing, i.e. the multi-frequency scheme of Freedman et al.

(SRA) [9], the deep learning based approaches of Marco

et al. (DeepToF) [24] and of Agresti et al. [5].

Additionally, we also considered a combination of our

model with the domain adaptation scheme of [12, 27] (we

denote this idea as DA-F). In these approaches, the discrim-

inator is trained to recognize if the features produced inter-

nally by the generator (we selected the output of the 4-th

convolutional layer in the fine network) are originated from

synthetic or real data, thus forcing G to produce similar fea-

tures in the 2 domains and reducing the domain shift.

From the quantitative evaluation in Table 1, the analyt-

ical method of [9] is able to remove only a small part of

about 6% of the noise and MPI in the scene. Deep learn-

ing based approaches have better performances: DeepToF

[24] is able to remove about 30% of the error (w.r.t. the

20 Mhz data used by this approach), while the best com-

peting approach is [5], which removes more than 40% of

the corruption. Our approach outperforms all compared ap-

proaches with a large margin, removing more than 56% of

the error and reducing it to just 2.36 cm. Also the variant

with feature-based domain adaptation (DA-F) has good per-

formances (even if lower than the proposed method) and re-

moves about 52% of the error. Note that [5], sharing a sim-

ilar denoiser CNN but without domain adaptation, obtains

lower performance. The evaluation on the box dataset leads

to very similar results. On this dataset, the initial amount

of error is smaller (3.62 cm), mostly due to the simpler ge-

ometry of the objects and to the reduced amount of MPI.

The SRA method [9] has roughly the same performance ob-

tained on the other dataset, removing only 7% of the error.

DeepToF [24] is affected by a systematic bias in the estima-

tions on this dataset. For a fair comparison, we removed the

bias by calibrating on a white wall scene, achieving an error

reduction of 33%, confirming the results on S4 also in this
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Ground Input data Proposed method SRA[9] DeepToF[24] Agresti[5] Ours+[12, 27]

Truth Depth Map Error Map Depth Map Error Map Error Map Error Map Error Map Error Map

Figure 7: Comparison between the input depth at 60 MHz, the proposed method and the denoised depth maps obtained with

some state-of-the-art methods. The figure shows the computed depths with the corresponding error maps for some sample

scenes from S4 (first and second row) and S5 (third and fourth row). The values are measured in meters.

case. The method of Agresti et al. [5] is better performing

and removes about 40% of the corruption. The proposed

method reduces the MAE to 1.67 cm, removing 54% of the

error, roughly confirming the results obtained on S4. Again

it clearly outperforms the compared approaches. Finally,

the DA-F method outperforms [5] and get close to our ap-

proach, removing about 53% of the error.

Some visual results are shown in Fig. 7 for both datasets.

It is possible to note how the proposed approach is able to

remove most of the MPI corruption on the boxes and objects

and a large part of the error on the floor (even if some MPI

remains in this area). Also its variant DA-F (Ours+[12, 27])

looks visually good. The compared methods are able to

remove a smaller amount of MPI. The best of the com-

pared ones is [5], [9] have limited performances and [24]

stays midway. Furthermore, edges are more accurately rep-

resented than the compared approaches and the zero mean

noise is widely reduced. Complex or round shapes like the

deer or the sphere are better preserved by the proposed ap-

proach while the competing ones introduce relevant artifacts

on these objects. The additional material contains other vi-

sual results.

Fig. 8 shows the correction obtained with the different

methods on a cross-section of a corner scene. Please note

how the proposed method is able to reconstruct the corner

shape more accurately reducing the distortion due to MPI.

9. Conclusions

In this paper, we presented a novel domain adaptation

strategy for ToF data denosing. We solved the critical is-

sue of the lack of real world ToF data with depth ground

truth by using the combination of supervised learning on

labeled synthetic data with an adversarial learning strategy

for regression exploiting unlabeled real data. By feeding

the discriminator with the combination of noisy data and

error maps, it was possible to capture the relation between

the structure of the scene and the error, while a novel data

augmentation strategy allowed to make the approach more

robust to differences between the real and simulated data.

The adversarial learning strategy proved to be able to adapt

the generator to real world data as demonstrated by the ex-

perimental results where the proposed method clearly out-

performs all compared approaches.

Finally, note that the proposed approach has been intro-

duced for ToF denoising but in principle it can be applied

to any image or data denosing task, where learning on su-

pervised data in one domain needs to be adapted to different

domains. Further research will be devoted to the exploration

of its applicability for general image denosing tasks.
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