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Abstract

Transferring knowledge from a teacher neural network

pretrained on the same or a similar task to a student neural

network can significantly improve the performance of the

student neural network. Existing knowledge transfer ap-

proaches match the activations or the corresponding hand-

crafted features of the teacher and the student networks. We

propose an information-theoretic framework for knowledge

transfer which formulates knowledge transfer as maximiz-

ing the mutual information between the teacher and the

student networks. We compare our method with existing

knowledge transfer methods on both knowledge distillation

and transfer learning tasks and show that our method con-

sistently outperforms existing methods. We further demon-

strate the strength of our method on knowledge transfer

across heterogeneous network architectures by transferring

knowledge from a convolutional neural network (CNN) to a

multi-layer perceptron (MLP) on CIFAR-10. The resulting

MLP significantly outperforms the-state-of-the-art methods

and it achieves similar performance to the CNN with a sin-

gle convolutional layer.

1. Introduction

Deep neural networks (DNNs) play important roles in

various computer vision tasks, e.g., depth estimation [8],

pose estimation [26], optical flow [7], object classification

[11], detection [10], and segmentation [25]. A typical DNN

approach for a computer vision task is to train a sophis-

ticated end-to-end neural network with a large amount of

labeled data. Such an approach often delivers state-of-the-

art performance if a sufficient amount of data is available.

∗Contributed during an internship at Amazon.

Figure 1: Conceptual diagram of the proposed knowledge

transfer method. The student network efficiently learns the

target task by minimizing the cross-entropy (CE) loss while

retaining high mutual information (MI) with the teacher net-

work. The mutual information is maximized by learning to

estimate the distribution of the activations in the teacher net-

work, provoking the transfer of knowledge.

However, in many cases, it is impossible to gather suffi-

ciently large data to train a DNN. For example, in many

medical image applications [24], the amount of available

data is constrained by the number of patients of a particular

disease.

A popular approach for handling such lack of data is

transfer learning [19], where the goal is to transfer knowl-

edge from the source task to facilitate learning on the tar-

get task. Typically, one considers the source task to be
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generic with a larger amount of available data that contains

useful knowledge for learning the target task, e.g., knowl-

edge from natural image classification [23] is likely to be

useful for fine-grained bird classification [29]. Hinton et

al. [12] proposed the teacher-student framework for trans-

ferring such knowledge between DNNs being trained on the

source and target tasks respectively. The high-level idea is

to introduce an additional regularization for the DNN being

trained on the target task, i.e., the student network, which al-

lows learning the knowledge existing in the DNN that was

pre-trained on the source task, i.e., the teacher network.

While the framework was originally designed for knowl-

edge transfer between DNNs on the same dataset, recent

works [30, 31] started exploiting its potential for more gen-

eral transfer learning tasks, i.e., when the source data and

the target data are different.

Many knowledge transfer methods have been proposed

with various intuitions. Hinton et al. [12] and Ba and Caru-

ana [2] propose to match the final layers of the teacher and

the student network, as the outputs from the final layer of

the teacher network provide more information than raw la-

bels. Romero et al. [22] proposes to match intermediate

layers of the student network to the corresponding layers of

the teacher network. Recent works [3, 6, 13, 30, 31] relax

the regularization of matching the entire layer by matching

carefully designed features/statistics extracted from inter-

mediate layers of the teacher and the student networks, e.g.,

attention maps [31] and maximum mean discrepancy [13].

Evidently, there is no commonly agreed theory behind

knowledge transfer. This causes difficulty in understand-

ing empirical results and in developing new methods in

a more principled way. In this paper, we propose varia-

tional information distillation (VID) as an attempt towards

this direction in which we formulate the knowledge trans-

fer as maximization of the mutual information between the

teacher and the student networks. This framework proposes

an actionable objective for knowledge transfer and allows

us to quantify the amount of information that is transferred

from a teacher network to a student network. Since the mu-

tual information is computationally intractable, we employ

a variational information maximization [1] scheme to max-

imize the variational lower bound instead. See Figure 1 for

the conceptual diagram of the proposed knowledge transfer

method. We further show that several existing knowledge

transfer methods [16, 22] can be derived as specific imple-

mentations of our framework by choosing different forms

of the variational lower bound. We empirically validate the

VID framework, which significantly outperforms existing

methods. We observe the gap is especially large in the cases

of small data and heterogeneous architectures.

In summary, the overall contributions of our paper are as

follows:

• We propose variational information distillation, a prin-

cipled knowledge transfer framework through max-

imizing mutual information between two networks

based on the variational information maximization

technique.

• We demonstrate that VID generalizes several existing

knowledge transfer methods. In addition, our imple-

mentation of the framework empirically outperforms

state-of-the-art knowledge transfer methods on vari-

ous knowledge transfer experiments, including knowl-

edge transfer between (heterogeneous) DNNs on the

same dataset or on different datasets.

• Finally, we demonstrate that heterogeneous knowl-

edge transfer between a convolutional neural networks

(CNN) and a multilayer perceptrons (MLP) is pos-

sible on CIFAR-10. Our method yields a student

MLP that significantly outperforms the best-reported

MLPs [17, 27] in the literature.

2. Variational information distillation (VID)

In this section, we describe VID as a general framework

for knowledge transfer in the teacher-student framework.

Specifically, consider training a student neural network on a

target task, given another teacher neural network pre-trained

on a similar (or related) source task. Note that the source

task and the target task could be the same, e.g., for model

compression or knowledge distillation. The underlying as-

sumption is that the layers in the teacher network have been

trained to represent certain attributes of given inputs that

exist in both the source task and the target task. For a suc-

cessful knowledge transfer, the student network must learn

how to incorporate the knowledge of such attributes to its

own learning.

From a perspective of information theory, knowledge

transfer can be expressed as retaining high mutual infor-

mation between the layers of the teacher and the student

networks. More specifically, consider an input random vari-

able x drawn from the target data distribution p(x) and K

pairs of layers R = {(T (k),S(k))}Kk=1, where each pair

(T (k),S(k)) is selected from the teacher network and the

student network respectively. Feedforwarding the input x

through the networks induces K pairs of random variables

{(t(k), s(k))}Kk=1 which indicate activations of the selected

layers, e.g., t(k) = T (k)(x). The mutual information be-

tween the pair of random variables (t, s) is defined by:

I(t; s) = H(t)−H(t|s)

= −Et[log p(t)] + Et,s[log p(t|s)], (1)

where the entropy H(t) and the conditional entropy H(t|s)
are derived from the joint distribution p(t, s). Empirically,

the joint distribution p(t, s) is a result of aggregation over

the layers with input x sampled from the input distribution
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p(x). Intuitively, the definition of I(t; s) can be understood

as a reduction in uncertainty in the knowledge of the teacher

encoded in its layer t when the the student layer s is known.

We now define the following loss function which aims to

learn a student network for the target task while encourag-

ing high mutual information with the teacher network:

L = LS −

K∑

k=1

λkI(t
(k), s(k)), (2)

where LS is the task-specific loss function for the target task

and λk > 0 is a hyper-parameter introduced for regulariza-

tion of the mutual information in each layer. Equation (2)

needs to be minimized with respect to the parameters of the

student network. However, the minimization is hard since

exact computation of the mutual information is intractable.

We instead propose a variational lower bound for each mu-

tual information term I(t; s), in which we define a varia-

tional distribution q(t|s) that approximates p(t|s):

I(t; s) = H(t)−H(t|s)

= H(t) + Et,s[log p(t|s)]

= H(t) + Et,s[log q(t|s)] + Es[DKL(p(t|s)||q(t|s))]

≥ H(t) + Et,s[log q(t|s)], (3)

where the expectations are over the distribution p(t, s)
and the last inequality is due to the non-negativity of

the Kullback-Leiber divergence DKL(·). This technique

is known as the variational information maximization [1].

Finally, we obtain VID by applying the variational in-

formation maximization to each mutual information term

I(t(k), s(k)) in (2), leading to a minimization of the follow-

ing loss function:

L̃ = LS −

K∑

k=1

λkEt(k),s(k) [log q(t(k)|s(k))]. (4)

The objective L̃ is jointly minimized over the parameters of

the student network and the variational distribution q(t|s).
Note that the entropy term H(t) has been removed from

the equation (3) since it is constant with respect to the pa-

rameters to be optimized. Alternatively, one could interpret

the objective (4) as jointly training the student network for

the target task and maximization of the conditional likeli-

hood to fit the activations of the selected layers from the

teacher network. By doing so, the student network obtains

the “compressed” knowledge required for recovering acti-

vations of the selected layers in the teacher network.

2.1. Algorithm formulation

We further specify our framework by choosing a form

made for the variational distribution q(t|s). In general, we

employ a Gaussian distribution with heteroscedastic mean

µ(·) and homoscedastic variance σ as the variational dis-

tribution q(t|s), i.e., the mean µ(·) is a function of s and

the standard deviation σ is not. Next, the parameterization

of µ(·) and σ is further specified by the type of layer cor-

responding to t. When t corresponds to intermediate layer

of the teacher network with spatial dimensions indicating

channel, height and width respectively, i.e., t ∈ R
C×H×W ,

our choice of variational distribution is expressed as fol-

lows:

− log q(t|s) = −

C∑

c=1

H∑

h=1

W∑

w=1

log q(tc,h,w|s) (5)

=

C∑

c=1

H∑

h=1

W∑

w=1

log σc +
(tc,h,w − µc,h,w(s))

2

2σ2
c

+ constant,

where tc,h,w denote scalar components of t indexed by

(c, h, w). Further, µc,h,w represents the output of a single

unit from the neural network µ(·) consisting of convolu-

tional layers and the variance is ensured to be positive us-

ing the softplus function, i.e., σ2
c = log(1 + exp(αc)) + ǫ

where αc ∈ R being the parameter to be optimized and

ǫ > 0 is minimum variance introduced for numerical stabil-

ity. Typically, one can choose s from the student network

with similar hierarchy and spatial dimension as t. When

spatial dimension of two layers are equal, 1 × 1 convolu-

tional layers are typically used for efficient parameterization

of µ(·). Otherwise, convolution or transposed convolution

with larger kernel size could be used to match the spatial

dimensions.

We additionally consider the case when the layer t =
T (logit)(x) ∈ R

N corresponds to the logit layer of the

teacher network. Here, our choice of the variational dis-

tribution is expressed as follows:

− log q(t|s) = −

N∑

n=1

log q(tn|s) (6)

=

N∑

n=1

log σn +
(tn − µn(s))

2

2σ2
n

+ constant,

where tn indicates the n-th entry of the vector t, µn repre-

sents the output of a single unit of neural network µ(·) and

σn is, again, parameterized by softplus function to enforce

positivity. For this case, the corresponding layer s in the

student network is the penultimate layer S(pen) instead of

the logit layer to match the hierarchy of two layers without

being too restrictive on the output of the student network.

Furthermore, we found that using a simple linear transfor-

mation for the parameterization of the mean function was

sufficient in practice, i.e., µ(s) = Ws for some weight

matrix W.

The aforementioned implementations turned out to per-

form satisfactorily during the experiments. We also consid-
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(a) input (b) 0-th epoch (c) 40-th epoch (d) 160-th epoch (e) no transfer (f) magnitude of th,w

Figure 2: Plots for the heat maps corresponding to the variational distribution evaluated for spatial dimensions of the inter-

mediate layer in the teacher network, i.e., log q(th,w|s) =
∑

c log q(tc,h,w|s). Each figure corresponds to (a) original input

image, (b, c, d) log-likelihood log q(th,w|s) that was normalized and interpolated to fit the spatial dimension of the input im-

age (red pixels correspond to high probability), (d) log-likelihood of variational distribution optimized for the student network

trained without any knowledge transfer applied and (f) magnitude of the layer t averaged for each spatial dimensions.

ered using heteroscedastic variance σ(·), but it gave unsta-

ble training with ignorable improvements. Other types of

parameterizations such as a heavy-tailed distribution or the

mixture density network [5] could be used to gain additional

performance. We leave these ideas for future exploration.

See Figure 2 for an illustration of the training VID using

the implementation based on equation (5). Here, we display

the change in the evaluated log-likelihood of the variational

distribution aggregated over channels, i.e., log q(th,w|s) =∑
c log q(tc,h,w|s), given input x (Figure 2a) throughout

the VID training process. One observes that the student

network is trained gradually for the variational distribution

to estimate the density of the intermediate layer from the

teacher network (Figure 2b, 2c and 2d). As a comparison,

we also optimize the variational distribution for the student

network trained without knowledge transfer, (Figure 2e).

For this case, we observe that this particular instance of the

variational distribution fails to obtain high log-likelihoods,

indicating low mutual information between the teacher and

the student networks. Interestingly, the parts that corre-

spond to the background achieve higher magnitudes com-

pared to that of the foreground in general. Our explanation

is that the output of layers corresponding to the background

that mostly corresponds to zero activations (Figure 2f) and

contains less information, being a relatively easier target for

maximizing the log-likelihood of the variational distribu-

tion.

2.2. Connections to existing works

The infomax principle. We first describe the relationship

between our framework and the celebrated infomax princi-

ple [18] applied to representation learning [28], stating that

“good representation” is likely to contain much informa-

tion in the corresponding input. Especially, such a principle

has been successfully applied to semi-supervised learning

for neural networks by maximizing the mutual information

between the input and output of the intermediate layer as a

regularization to learning the target task, e.g., learning to re-

construct input based on autoencoders [21]. Our framework

can be viewed similarly as an instance of semi-supervised

learning with modification of the infomax principle: layers

of the teacher network contain important information for the

target task, and a good representation of the student network

is likely to retain much of their information. One recovers

the traditional semi-supervised learning infomax principle

when we set t(k) = x in the equation (2).

Generalizing mean squared error matching. Next, we

explain how existing knowledge transfer methods based on
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mean squared error matching can be seen as a specific in-

stance of the proposed framework. In general, the methods

will be induced from the equation (4) by making a specific

choice of the layers R = {(T (k),S(k))}Kk=1 for knowledge

transfer and parameterization of heteroscedastic mean µ(·)
in the variational distribution:

− log q(t|s) =

N∑

n=1

(tn − µn(s))
2

2
+ constant. (7)

Note that Equation (7) corresponds to a Gaussian distribu-

tion with unit variance over every dimension of the layer

in the teacher network. Ba and Caruana [2] showed that

knowledge can be transferred between the teacher and the

student networks that were designed for the same task, by

matching the output of logit layers T (logit),S(logit) from

the teacher and the student networks with respect to mean

squared error. Such a formulation is induced from the equa-

tion (7) by letting R = {(T (logit),S(logit))}, and µ(s) = s

in the equation (7). This was later extended for knowl-

edge transfer between the teacher and the student net-

works designed for different tasks by Li and Hoiem [16],

through adding an additional linear layer on top of the

penultimate layer S(pen) in the student network to match-

ing with logit layer T (logit) in the teacher network. This

is induced similarly from the equation (7) by letting R =
{(T (logit),S(pen))}, and µ(·) being a linear transformation,

i.e., µ(s) = Ws. Next, Romero et al. [22] proposed a

knowledge transfer loss for minimizing the mean squared

error between intermediate layers from the teacher and the

student networks, with additional convolutional layer intro-

duced for adapting different dimension size between each

pair of matched layers. This is recovered from the regular-

ization term in the equation (7) by choosing layers for the

knowledge transfer to be intermediate layers of the teacher

and the student networks, and µ(·) being a linear transfor-

mation corresponding to a single 1× 1 convolutional layer.

These methods are all similar to our implementation of

the framework in that they all use Gaussian distribution as

the variational distribution. However, our method differs in

two key ways: (a) allowing the use of a more flexible non-

linear functions for heteroscedastic mean and (b) modeling

different variances for each dimension in the variational dis-

tribution. This allows transferring mutual information in a

more flexible manner without wasting model capacity. Es-

pecially, modeling unit variance for all dimensions of the

layer t in the teacher network could be highly restrictive for

the student network. To illustrate, the layer of the teacher

network might include an activation tn that contains infor-

mation irrelevant to the task of the student network, yet re-

quires much capacity for regression of µn(s) to tn. This

would raise over-regularization issues, i.e., wasting the ma-

jority of the student network’s capacity on trying to fit such

a unit. Instead, modeling high homoscedastic variance σn

for such dimension make its contribution ignorable to the

overall loss, allowing one to “filter” out such unit in an effi-

cient way.

Comparison with feature matching. Besides the knowl-

edge transfer methods based on mean squared error match-

ing, several works [6, 13, 30, 31] have proposed indi-

rectly matching the handcrafted features extracted from

intermediate layers. More specifically, Zagoruyko and

Komodakis [31] proposed matching the “attention maps”

generated from activations from the layers. Huang and

Wang [13] later generalized the attention map to matching

the maximum mean discrepancy of the activations. Yim

et al. [30] proposed matching the feature called the Flow

of Solution Procedure (FSP) defined by the Gram matrix

of layers adjacent in the same network. Chen et al. [6]

considered matching the reconstructed input image from

the intermediate layers of the teacher and the student net-

works. These methods could be seen as smartly avoiding

the aforementioned over-regularization issue by filtering out

information in the teacher network using expert knowledge.

However, such methods potentially lead to suboptimal re-

sults when the feature extraction method is not apt for the

particular knowledge transfer task and may discard impor-

tant information from the layer of the teacher network in an

irreversible way.

3. Experiments

We demonstrate the performance of the proposed knowl-

edge transfer framework by comparing VID to state-of-

the-art knowledge transfer methods on image classifica-

tion. We apply VID to two different locations: (a) VID

between intermediate layers of the teacher and the student

network (VID-I) and (b) VID between the logit layer of

the teacher network and the penultimate layer of the stu-

dent network (VID-LP). For comparison, we consider the

following knowledge transfer methods: the original knowl-

edge distillation (KD) [12], learning without forgetting

(LwF) [16], hint based transfer (FitNet) [31], activation-

based attention transfer (AT) [31] and polynomial kernel-

based neural selectivity transfer (NST) [13]. Note that we

consider FitNet as a regularization for training the student

network [31] instead of a stage-wise training procedure as

first proposed in [22]. We compare knowledge transfer

methods for knowledge transfer between same and different

datasets, which is commonly referred to as the knowledge

distillation and transfer learning tasks respectively.

In all the experiments, we select the same pairs of in-

termediate layers for knowledge transfer based on VID-I,

FitNet, AT and NST. Similarly, the same pairs of layers for

knowledge transfer are used for LwF and VID-LP. All the

hyper-parameters of all the methods are chosen according

to the performance on a validation set, which is 20% of
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M 5000 1000 500 100

Teacher 94.26 - - -

Student 90.72 84.67 79.63 58.84

KD 91.27 86.11 82.23 64.24

FitNet 90.64 84.78 80.73 68.90

AT 91.60 87.26 84.94 73.40

NST 91.16 86.55 82.61 64.53

VID-I 91.85 89.73 88.09 81.59

KD + AT 91.81 87.34 85.01 76.29

KD + VID-I 91.7 88.59 86.53 78.48

Table 1: Experimental results (test accuracy) of knowledge

distillation on the CIFAR-10 dataset from teacher network

(WRN-40-2) to student network (WRN-16-1) with varying

number of data points per class (denoted by M ).

the training set. We carefully pick the set of candidate val-

ues of hyper-parameters such that all the values proposed

in the original works are included. The presented perfor-

mances are the average of three repeated runs. More details

about experiments are included in the supplementary ma-

terial. The implementation of the algorithm will be made

publicly available shortly.

3.1. Knowledge distillation

We first compare knowledge transfer methods on the tra-

ditional knowledge distillation task, where a student net-

work is trained on the same task as the teacher network. By

distilling the knowledge from a large teacher network into

a small student network, we can speed up the computation

for prediction. We further investigate two problems for this

task: whether we can benefit from knowledge transfer in the

small data regime and how much performance we lose by

reducing the size of the student network? Note that we do

not evaluate the performance of VID-LP and LwF as they

are designed for transfer learning. When applied, KD, VID-

LP and LwF delivered similar performance.

Reducing training data. Knowledge transfer can be a

computationally expensive task. Given a pre-trained teacher

network on the whole training data set, we explore the pos-

sibility of using a small portion of the training set for knowl-

edge transfer. We demonstrate the effect of a reduced train-

ing set by applying knowledge distillation on CIFAR-10

[15] with four different sizes of training data. We employ

wide residual networks (WRN) [15] for the teacher network

(WRN-40-2) and the student network (WRN-16-1), where

the teacher network is pre-trained on the whole training set

of CIFAR-10. Knowledge distillation is applied to four dif-

ferent sizes of training set: 5000 (the full size), 1000, 500,

100 data points per class.

(d, w) (40,2) (16, 2) (40, 1) (16, 1)

Teacher 74.16 - - -

Student 74.34 70.42 68.79 65.46

KD 75.80 72.87 70.99 66.03

FitNet 74.29 70.89 68.66 65.38

AT 74.76 71.06 69.85 65.31

NST 74.81 71.19 68.00 64.95

VID-I 75.25 73.31 71.51 66.32

KD + AT 75.86 73.13 71.4 67.07

KD + VID-I 76.11 73.69 72.16 67.19

Table 2: Experimental results (test accuracy) of knowl-

edge distillation on the CIFAR-100 dataset from the teacher

network (WRN-40-2) to the student networks (WRN-d-w)

with varying factor of depth d and width w.

We compare VID-I with KD, FitNet, AT and NST. We

also provide performances of the teacher network (Teacher)

and the student network trained without any knowledge

transfer (Student) as baselines. We choose four pairs of in-

termediate layers similarly to [31], each of which is located

at the end of a group of residual blocks. We implemented

VID-I using three 1 × 1 convolutional layers with hidden

channel size as twice of the output channel size. The

results are shown in Table 1. Our method, VID-I, outper-

forms other knowledge transfer methods consistently across

all regimes. The performance gap increases as the size of

dataset get smaller, e.g., VID-I only drops 10.26% of accu-

racy even when 100 data points per each class are provided

to the student network. There is a 31.88% drop without

knowledge transfer and a 15.52% drop for the best baseline,

i.e., KD + AT.

Varying the size of the student network. The size of the

student network gives a trade-off between the speed and the

performance in knowledge transfer. We evaluate the per-

formance of knowledge transfer methods on different sizes

of the student network. The teacher network (WRN-40-2)

is pre-trained on the whole training set of CIFAR-100. A

student network with four choices of size, i.e., WRN-40-

2, WRN-16-2, WRN-40-1, WRN-16-1, is trained on the

whole training set of CIFAR-100. We compare our VID-

I with KD, FitNet, AT and NST along with the Teacher and

Student baselines. The choices of intermediate layers are

the same as the previous experiment.

The results are shown in in Table 1. As also noticed

by Furlanello et al. [9], the student network with the same

size as the teacher network outperforms the teacher network

with all the knowledge transfer methods. One observes

that VID-I consistently outperforms FitNet, AT and NST,

which correspond to the same choice of layers for knowl-

edge transfer. It also outperforms KD except for the case
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when the structure of the student network is identical to that

of the teacher network, i.e., WRN-40-2, where two methods

can be combined to yield the best performance.

3.2. Transfer learning

We evaluate knowledge transfer methods on transfer

learning. The teacher network is a residual network

(ResNet-34) [11] pre-trained on the ImageNet dataset [23].

We apply transfer learning to improve the performance of

two separate image classification tasks. The first task is a

fine-grained bird species classification based on the CUB-

200-2011 dataset [29], which contains 11,788 images in

total for 200 bird species. The second task is an indoor

scene classification based on the MIT-67 dataset [20], which

contains 15,620 images for 67 classes of indoor scenes.

For both tasks, there are a relatively few images per class,

which can significantly benefit from knowledge transfer

from the ImageNet classification task. To evaluate the per-

formance at various levels of data scarcity, we subsample

both datasets into three different sizes (50, 25, 10 per class

for MIT-67 and 20, 10, 5 per class for CUB-200-2011) and

compare the knowledge transfer methods.

We evaluate the knowledge transfer methods in two sce-

narios: a smaller student network of the same architecture

(ResNet-18) and different architecture (VGG-9) [25]. We

compare our VID-I and VID-LP with LwF, FitNet, AT and

NST. We evaluate the performance of the student network

without transfer learning (Student) as a baseline. For the

teacher and the student network with ResNet architecture,

we choose the outputs of the third and fourth groups of

residual blocks (from the input) as the intermediate layers

for knowledge transfer. In the case of the VGG-9 student

network, we choose the fourth and fifth max-pooling lay-

ers as the intermediate layers for knowledge transfer, which

corresponds to the same spatial dimension as the intermedi-

ate layers selected from the teacher network. For applying

VID-I to the ResNet-18 student network, we use two 1× 1
convolutional layers with the size of intermediate channels

as half of the output channel size. When the student net-

work is VGG-9, a single 1 × 1 convolutional layer without

non-linearity is used.

The results are shown in Table 3. The knowledge trans-

fer from ResNet-34 to VGG-9 gives very similar perfor-

mance to the transfer from ResNet-34 to ResNet-18 for all

the knowledge transfer methods. This shows that knowl-

edge transfer methods are robust against small architecture

changes. Our methods outperform other knowledge trans-

fer methods in all regions of comparison. Both VID-I and

VID-LP outperforms baselines that correspond to the same

choice of layers for knowledge transfer. For the MIT-67

dataset, we observe that our algorithm outperforms even the

finetuning method, which requires pre-training of the stu-

dent network on the source task.

3.3. Knowledge transfer from CNN to MLP

The transfer learning experiments show the robustness

of the knowledge transfer method against small architec-

ture changes. This leads to an interesting question: whether

a knowledge transfer method can work between two com-

pletely different network architectures. A solution to this

question can open a new direction of knowledge trans-

fer and potentially offer solutions to many problems, e.g.,

speeding up prediction of recurrent neural networks (RNNs)

by transferring knowledge from a RNN to a CNN, speed-

ing up prediction of CNN on CPU or low-energy device by

transferring knowledge from a CNN to a multi-layer per-

ceptron (MLP).

In this paper, we evaluate the performance of knowl-

edge transfer from CNN to MLP on CIFAR-10. There is

a well-known performance gap between CNN and MLP

on CIFAR-10 [17, 27]. The state-of-the-art performance

on CIFAR-10 with MLP is 78.62% with initialization from

auto-encoders [17] and 74.32% using knowledge distilla-

tion [27]. Urban et al. [27] also trained a single convo-

lutional layer achieving the performance of 84.6% using

knowledge distillation.

We apply the knowledge transfer methods in the knowl-

edge distillation setting as mentioned in Section 3.1. We

use a teacher network with convolutional layers (WRN-40-

2) pre-trained on CIFAR-10. We use a MLP with five fully

connected hidden layers as the student network, constructed

by stacking one linear layer, three bottleneck linear layers

and one linear layer in sequence. Each is followed by a non-

linearity activation in between. Here, the bottleneck layer

indicates a composition of two linear layers without non-

linearity that is introduced to speed up learning by reducing

the number of parameters. All the hidden layers have the

same h number of units and the bottleneck linear layer is

composed of two linear layers with a size of h × h
4 and

h
4 × h.

The knowledge transfer between intermediate layers is

defined between the outputs of four residual groups of the

teacher network and the outputs of the first four fully con-

nected layers of the student network. We compare VID-I

with KD and FitNet since these knowledge transfer meth-

ods do not rely on spatial structures. For the same reason,

AT and NST are not applicable to multilayer perceptrons.

VID-I is implemented with multiple transposed convolu-

tional layers without non-linearities. Specifically, the inputs

for the variational distributions, i.e., the hidden layers of the

MLP are treated as a tensor with 1 × 1 spatial dimensions.

Single transposed convolutional layer with a 4 × 4 kernel,

unit stride and zero padding is followed by multiple trans-

posed convolutional layers with a 4× 4 kernel, two strides,

and single padding to match the spatial dimension of the

corresponding layer of the teacher network for knowledge

transfer. More details on implementations of the student
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M ≈80 50 25 10

Student 48.13 37.69 27.01 14.25

fine-tuning 70.97 66.04 58.13 47.91

LwF 63.43 51.79 41.04 22.76

FitNet 71.34 60.45 54.78 36.94

AT 58.21 48.66 43.66 27.01

NST 55.52 46.34 33.21 20.82

VID-LP 67.91 58.51 47.09 31.94

VID-I 71.34 63.66 60.07 50.97

LwF + FitNet 70.97 60.37 54.48 38.73

VID-LP + VID-I 71.87 65.75 61.79 50.37

(a) MIT-67, ResNet-34 to ResNet-18

M ≈80 50 25 10

Student 53.58 43.96 29.70 15.97

fine-tuning 65.97 58.51 51.72 39.63

LwF 60.90 52.01 41.57 27.76

FitNet 70.90 64.70 54.48 40.82

AT 60.90 52.16 42.76 25.60

NST 55.60 46.04 35.22 21.64

VID-LP 68.88 61.64 50.22 39.25

VID-I 72.01 67.01 59.33 45.90

LwF + FitNet 70.52 64.10 54.63 40.15

VID-LP + VID-I 71.72 66.49 58.96 45.89

(b) MIT-67, ResNet-34 to VGG-9

M ≈29.95 20 10 5

Student 37.22 24.33 12.00 7.09

fine-tuning 76.69 71.00 59.25 44.07

LwF 55.18 42.13 26.23 14.27

FitNet 66.63 56.63 46.68 31.04

AT 54.62 41.44 28.90 16.55

NST 55.01 41.87 23.76 15.63

VID-LP 65.59 54.12 39.20 27.86

VID-I 73.25 67.20 56.86 46.21

LwF + FitNet 68.69 58.81 48.86 31.30

VID-LP + VID-I 69.71 63.94 52.87 41.12

(c) CUB-200-2011, ResNet-34 to ResNet-18

M ≈29.95 20 10 5

Student 44.59 32.10 15.69 9.66

fine-tuning 60.96 51.86 46.88 39.98

LwF 52.18 38.05 25.57 13.93

FitNet 68.96 61.52 48.04 32.89

AT 56.28 43.96 28.33 13.98

NST 56.55 44.95 28.43 14.66

VID-LP 66.82 55.94 38.10 30.47

VID-I 71.51 65.69 53.29 38.09

LwF + FitNet 70.56 62.44 47.36 30.52

VID-LP + VID-I 70.00 65.14 53.78 38.76

(d) CUB-200-2011, ResNet-34 to VGG-9

Table 3: Experimental results (test accuracy) of transfer learning from the teacher network (ResNet-34) to the student network

(ResNet-18/VGG-9) for the MIT-67/CUB-200-2011 dataset with varying number of data points per class (denoted by M ).

We use M ≈ Mavg to denote the setting where the number of data points per class is non-uniform and Mavg in average.

Fine-tuning gives good results on transfer learning, but is not directly comparable as it is not a knowledge transfer method.

Network MLP-4096 MLP-2048 MLP-1024

Student 70.60 70.78 70.90

KD 70.42 70.53 70.79

FitNet 76.02 74.08 72.91

VID-I 85.18 83.47 78.57

Urban et al. [27] 74.32

Lin et al. [17] 78.62

Table 4: Experimental result (test accuracy) of distilla-

tion on CIFAR-10 from the convolutional teacher network

(WRN-40-2) to the fully connected student network (MLP-

h) with varying size of hidden dimensions h.

network and the auxiliary distribution are in the supplemen-

tary material.

The results are shown in Table 4. Both FitNet and VID-

I improve the performance comparing the baseline of di-

rectly training the intermediate layers of the student net-

work. VID-I significantly outperforms FitNet on MLPs

with different sizes. Furthermore, MLP-4096 outperforms

the the state-of-the-art performance with MLP reported by

Lin et al. [17] (78.62%) and Ba et al. [27] (74.32%) signif-

icantly. More importantly, our method bridges the perfor-

mance gap between CNN (84.6% using one convolutional

layer [27]) and MLP shown in previous works.

4. Conclusion

In this work, we proposed the VID framework for ef-

fective knowledge transfer by maximizing the variational

lower bound of the mutual information between two neural

networks. The implementation of our algorithm is based on

Gaussian observation models and is empirically shown to

outperform other benchmarks in the distillation and trans-

fer learning tasks. Using more flexible recognition models,

e.g., [14], for accurate maximization of mutual information

and alternative estimation of mutual information, e.g., [4],

are both ideas of future interest.
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