
Strike (with) a Pose: Neural Networks Are Easily Fooled

by Strange Poses of Familiar Objects

Michael A. Alcorn

alcorma@auburn.edu

Qi Li

qzl0019@auburn.edu

Zhitao Gong

gong@auburn.edu

Chengfei Wang

czw0078@auburn.edu

Long Mai

malong@adobe.com

Wei-Shinn Ku

weishinn@auburn.edu

Anh Nguyen

anhnguyen@auburn.edu

Auburn University Adobe Inc.

Abstract

Despite excellent performance on stationary test sets,

deep neural networks (DNNs) can fail to generalize to

out-of-distribution (OoD) inputs, including natural, non-

adversarial ones, which are common in real-world settings.

In this paper, we present a framework for discovering DNN

failures that harnesses 3D renderers and 3D models. That

is, we estimate the parameters of a 3D renderer that cause

a target DNN to misbehave in response to the rendered im-

age. Using our framework and a self-assembled dataset of

3D objects, we investigate the vulnerability of DNNs to OoD

poses of well-known objects in ImageNet. For objects that

are readily recognized by DNNs in their canonical poses,

DNNs incorrectly classify 97% of their pose space. In addi-

tion, DNNs are highly sensitive to slight pose perturbations.

Importantly, adversarial poses transfer across models and

datasets. We find that 99.9% and 99.4% of the poses mis-

classified by Inception-v3 also transfer to the AlexNet and

ResNet-50 image classifiers trained on the same ImageNet

dataset, respectively, and 75.5% transfer to the YOLOv3 ob-

ject detector trained on MS COCO.

1. Introduction

For real-world technologies, such as self-driving

cars [10], autonomous drones [14], and search-and-rescue

robots [37], the test distribution may be non-stationary, and

new observations will often be out-of-distribution (OoD),

i.e., not from the training distribution [42]. However, ma-

chine learning (ML) models frequently assign wrong labels

with high confidence to OoD examples, such as adversarial

examples [46, 29]—inputs specially crafted by an adver-

sary to cause a target model to misbehave. But ML models

are also vulnerable to natural OoD examples [21, 2, 48, 3].

For example, when a Tesla autopilot car failed to recog-

(a) (b) (c) (d)

school bus 1.0

motor scooter 0.99

fire truck 0.99

garbage truck 0.99 punching bag 1.0 snowplow 0.92

parachute 1.0 bobsled 1.0 parachute 0.54

school bus 0.98 fireboat 0.98 bobsled 0.79

Figure 1: The Google Inception-v3 classifier [44] correctly

labels the canonical poses of objects (a), but fails to recog-

nize out-of-distribution images of objects in unusual poses

(b–d), including real photographs retrieved from the Inter-

net (d). The left 3× 3 images (a–c) are found by our frame-

work and rendered via a 3D renderer. Below each image are

its top-1 predicted label and confidence score.

nize a white truck against a bright-lit sky—an unusual view

that might be OoD—it crashed into the truck, killing the

driver [3].

Previous research has successfully used 3D graphics as

a diagnostic tool for computer vision systems [7, 31, 47,

32, 50]. To understand natural Type II classification errors

in DNNs, we searched for misclassified 6D poses (i.e., 3D

translations and 3D rotations) of 3D objects. Our results re-

4845

veal that state-of-the-art image classifiers and object detec-

tors trained on large-scale image datasets [36, 22] misclas-

sify most poses for many familiar training-set objects. For

example, DNNs predict the front view of a school bus—

an object in the ImageNet dataset [36]—extremely well

(Fig. 1a) but fail to recognize the same object when it is too

close or flipped over, i.e., in poses that are OoD yet exist in

the real world (Fig. 1d). However, a self-driving car needs

to correctly estimate at least some attributes of an incoming,

unknown object (instead of simply rejecting it [17, 38]) to

handle the situation gracefully and minimize damage. Be-

cause road environments are highly variable [3, 2], address-

ing this type of OoD error is a non-trivial challenge.

In this paper, we propose a framework for finding OoD

errors in computer vision models in which iterative opti-

mization in the parameter space of a 3D renderer is used

to estimate changes (e.g., in object geometry and appear-

ance, lighting, background, or camera settings) that cause

a target DNN to misbehave (Fig. 2). With our framework,

we generated unrestricted 6D poses of 3D objects and stud-

ied how DNNs respond to 3D translations and 3D rotations

of objects. For our study, we built a dataset of 3D ob-

jects corresponding to 30 ImageNet classes relevant to the

self-driving car application. The code for our framework

is available at https://github.com/airalcorn2/

strike-with-a-pose. In addition, we built a simple

GUI tool that allows users to generate their own adversarial

renders of an object. Our main findings are:

• ImageNet classifiers only correctly label 3.09% of the

entire 6D pose space of a 3D object, and misclassify

many generated adversarial examples (AXs) that are

human-recognizable (Fig. 1b–c). A misclassification

can be found via a change as small as 10.31◦, 8.02◦,

and 9.17◦ to the yaw, pitch, and roll, respectively.

• 99.9% and 99.4% of AXs generated against Inception-

v3 transfer to the AlexNet and ResNet-50 image classi-

fiers, respectively, and 75.5% transfer to the YOLOv3

object detector.

• Training on adversarial poses generated by the 30 ob-

jects (in addition to the original ImageNet data) did

not help DNNs generalize well to held-out objects in

the same class.

In sum, our work shows that state-of-the-art DNNs per-

form image classification well but are still far from true

object recognition. While it might be possible to improve

DNN robustness through adversarial training with many

more 3D objects, we hypothesize that future ML models

capable of visual reasoning may instead benefit from better

incorporation of 3D information.

2. Framework

2.1. Problem formulation

Let f be an image classifier that maps an image x ∈

R
H×W×C onto a softmax probability distribution over

1,000 output classes [44]. Let R be a 3D renderer that takes

as input a set of parameters φ and outputs a render, i.e., a 2D

image R(φ) ∈ R
H×W×C (see Fig. 2). Typically, φ is fac-

tored into mesh vertices V , texture images T , a background

image B, camera parameters C, and lighting parameters L,

i.e., φ = {V, T,B,C, L} [19]. To change the 6D pose of

a given 3D object, we apply a 3D rotation and 3D transla-

tion, parameterized by w ∈ R
6, to the original vertices V

yielding a new set of vertices V ∗.

Here, we wish to estimate only the pose transformation

parameters w (while keeping all parameters in φ fixed) such

that the rendered image R(w;φ) causes the classifier f to

assign the highest probability (among all outputs) to an in-

correct target output at index t. Formally, we attempt to

solve the below optimization problem:

w
∗ = argmax

w

(ft(R(w;φ))) (1)

In practice, we minimize the cross-entropy loss L for the

target class. Eq. 1 may be solved efficiently via backpropa-

gation if both f and R are differentiable, i.e., we are able to

compute ∂L/∂w. However, standard 3D renderers, e.g.,

OpenGL [51], typically include many non-differentiable

operations and cannot be inverted [27]. Therefore, we at-

tempted two approaches: (1) harnessing a recently pro-

posed differentiable renderer and performing gradient de-

scent using its analytical gradients; and (2) harnessing a

non-differentiable renderer and approximating the gradient

via finite differences.

We will next describe the target classifier (Sec. 2.2), the

renderers (Sec. 2.3), and our dataset of 3D objects (Sec. 2.4)

before discussing the optimization methods (Sec. 3).

2.2. Classification networks

We chose the well-known, pre-trained Google Inception-

v3 [45] DNN from the PyTorch model zoo [33] as the main

image classifier for our study (the default DNN if not other-

wise stated). The DNN has a 77.45% top-1 accuracy on the

ImageNet ILSVRC 2012 dataset [36] of 1.2 million images

corresponding to 1,000 categories.

2.3. 3D renderers

Non-differentiable renderer. We chose ModernGL [1]

as our non-differentiable renderer. ModernGL is a simple

Python interface for the widely used OpenGL graphics en-

gine. ModernGL supports fast, GPU-accelerated rendering.

Differentiable renderer. To enable backpropagation

through the non-differentiable rasterization process, Kato et

4846

(b) 2D image
(a) 3D scene

������������

background

objects	(shapes,	textures)

3D

renderer

image

classifier

light	source

camera

forward pass

error vs. desired output

backward pass

target	network

Figure 2: To test a target DNN, we build a 3D scene (a) that consists of 3D objects (here, a school bus and a pedestrian),

lighting, a background scene, and camera parameters. Our 3D renderer renders the scene into a 2D image, which the image

classifier labels school bus. We can estimate the pose changes of the school bus that cause the classifier to misclassify by

(1) approximating gradients via finite differences; or (2) backpropagating (red dashed line) through a differentiable renderer.

al. [19] replaced the discrete pixel color sampling step with

a linear interpolation sampling scheme that admits non-zero

gradients. While the approximation enables gradients to

flow from the output image back to the renderer param-

eters φ, the render quality is lower than that of our non-

differentiable renderer (see Fig. S1 for a comparison). Here-

after, we refer to the two renderers as NR and DR.

2.4. 3D object dataset

Construction. Our main dataset consists of 30 unique 3D

object models (purchased from many 3D model market-

places) corresponding to 30 ImageNet classes relevant to

a traffic environment (Fig. S2). The 30 classes include 20

vehicles (e.g., school bus and cab) and 10 street-related

items (e.g., traffic light). See Sec. S1 for more details.

Each 3D object is represented as a mesh, i.e., a list of

triangular faces, each defined by three vertices [27]. The 30

meshes have on average 9,908 triangles (Table S1). To max-

imize the realism of the rendered images, we used only 3D

models that have high-quality 2D image textures. We did

not choose 3D models from public datasets, e.g., Object-

Net3D [52], because most of them do not have high-quality

image textures. That is, the renders of such models may be

correctly classified by DNNs but still have poor realism.

Evaluation. We recognize that a reality gap will often exist

between a render and a real photo. Therefore, we rigorously

evaluated our renders to make sure the reality gap was ac-

ceptable for our study. From ∼100 initially-purchased 3D

models, we selected the 30 highest-quality models using the

evaluation method below.

First, we quantitatively evaluated DNN predictions on

the renders. For each object, we sampled 36 unique views

(common in ImageNet) evenly divided into three sets. For

each set, we set the object at the origin, the up direction

to (0, 1, 0), and the camera position to (0, 0,−z) where

z = {4, 6, 8}. We sampled 12 views per set by start-

ing the object at a 10◦ yaw and generating a render at ev-

ery 30◦ yaw-rotation. Across all objects and all renders,

the Inception-v3 top-1 accuracy was 83.23% (compared to

77.45% on ImageNet images [44]) with a mean top-1 confi-

dence score of 0.78 (Table S2). See Sec. S1 for more details.

Second, we qualitatively evaluated the renders by com-

paring them to real photos. We produced 116 (real photo,

render) pairs via three steps: (1) we retrieved real photos of

an object (e.g., a car) from the Internet; (2) we replaced the

object with matching background content in Adobe Photo-

shop; and (3) we manually rendered the 3D object on the

background such that its pose closely matched that in the

reference photo. Fig. S3 shows example (real photo, render)

pairs. While discrepancies can be spotted in our side-by-

side comparisons, we found that most of the renders passed

our human visual Turing test if presented alone.

2.5. Background images

Previous studies have shown that image classifiers may

be able to correctly label an image when foreground ob-

jects are removed (i.e., based on only the background con-

tent) [57]. Because the purpose of our study was to under-

stand how DNNs recognize an object itself, a non-empty

background would have hindered our interpretation of the

results. Therefore, we rendered all images against a plain

background with RGB values of (0.485, 0.456, 0.406), i.e.,

the mean pixel of ImageNet images. Note that the presence

of a non-empty background should not alter our main quali-

tative findings in this paper—adversarial poses can be easily

found against real background photos (Fig. 1).

3. Methods

We will describe the common pose transformations

(Sec. 3.1) used in the main experiments. We were able to ex-

4847

periment with non-gradient methods because: (1) the pose

transformation space R
6 that we optimize in is fairly low-

dimensional; and (2) although the NR is non-differentiable,

its rendering speed is several orders of magnitude faster than

that of DR. In addition, our preliminary results showed that

the objective function considered in Eq. 1 is highly non-

convex (see Fig. 4), therefore, it is interesting to compare

(1) random search vs. (2) gradient descent using finite-

difference (FD) approximated gradients vs. (3) gradient de-

scent using the DR gradients.

3.1. Pose transformations

We used standard computer graphics transformation ma-

trices to change the pose of 3D objects [27]. Specifically, to

rotate an object with geometry defined by a set of vertices

V = {vi}, we applied the linear transformations in Eq. 2 to

each vertex vi ∈ R
3:

vRi = RyRpRrvi (2)

where Ry , Rp, and Rr are the 3 × 3 rotation matrices for

yaw, pitch, and roll, respectively (the matrices can be found

in Sec. S6). We then translated the rotated object by adding

a vector T =
�

xδ yδ zδ
��

to each vertex:

vR,T
i = T + vRi (3)

In all experiments, the center c ∈ R
3 of the object was

constrained to be inside a sub-volume of the camera view-

ing frustum. That is, the x-, y-, and z-coordinates of c were

within [−s, s], [−s, s], and [−28, 0], respectively, with s be-

ing the maximum value that would keep c within the camera

frame. Specifically, s is defined as:

s = d · tan(θv) (4)

where θv is one half the camera’s angle of view (i.e., 8.213◦

in our experiments) and d is the absolute value of the differ-

ence between the camera’s z-coordinate and zδ .

3.2. Random search

In reinforcement learning problems, random search (RS)

can be surprisingly effective compared to more sophisti-

cated methods [41]. For our RS procedure, instead of it-

eratively following some approximated gradient to solve

the optimization problem in Eq. 1, we simply randomly se-

lected a new pose in each iteration. The rotation angles for

the matrices in Eq. 2 were uniformly sampled from (0, 2π).
xδ , yδ , and zδ were also uniformly sampled from the ranges

defined in Sec. 3.1.

3.3. zδ-constrained random search

Our preliminary RS results suggest the value of zδ
(which is a proxy for the object’s size in the rendered image)

has a large influence on a DNN’s predictions. Based on this

observation, we used a zδ-constrained random search (ZRS)

procedure both as an initializer for our gradient-based meth-

ods and as a naive performance baseline (for comparisons

in Sec. 4.4). The ZRS procedure consisted of generating 10

random samples of (xδ, yδ, θy, θp, θr) at each of 30 evenly

spaced zδ from −28 to 0.

When using ZRS for initialization, the parameter set with

the maximum target probability was selected as the starting

point. When using the procedure as an attack method, we

first gathered the maximum target probabilities for each zδ ,

and then selected the best two zδ to serve as the new range

for RS.

3.4. Gradient descent with finite-difference

We calculated the first-order derivatives via finite central

differences and performed vanilla gradient descent to itera-

tively minimize the cross-entropy loss L for a target class.

That is, for each parameter wi, the partial derivative is ap-

proximated by:

∂L

∂wi

=
L(wi +

h
2
)− L(wi −

h
2
)

h
(5)

Although we used an h of 0.001 for all parameters, a dif-

ferent step size can be used per parameter. Because radians

have a circular topology (i.e., a rotation of 0 radians is the

same as a rotation of 2π radians, 4π radians, etc.), we pa-

rameterized each rotation angle θi as (cos(θi), sin(θi))—a

technique commonly used for pose estimation [30] and in-

verse kinematics [11]—which maps the Cartesian plane to

angles via the atan2 function. Therefore, we optimized in

a space of 3 + 2× 3 = 9 parameters.

The approximate gradient ∇L obtained from Equa-

tion (5) served as the gradient in our gradient descent. We

used the vanilla gradient descent update rule:

w := w − γ∇L(w) (6)

with a learning rate γ of 0.001 for all parameters and opti-

mized for 100 steps (no other stopping criteria).

4. Experiments and results

4.1. Neural networks are easily confused by object
rotations and translations

Experiment. To test DNN robustness to object rotations

and translations, we used RS to generate samples for ev-

ery 3D object in our dataset. In addition, to explore the

impact of lighting on DNN performance, we considered

three different lighting settings: bright, medium, and dark

(example renders in Fig. S10). In all three settings, both

the directional light and the ambient light were white in

color, i.e., had RGB values of (1.0, 1.0, 1.0), and the direc-

tional light was oriented at (0,−1, 0) (i.e., pointing straight

4848

� � �
���

���

���

���

�������

� � �
���

���

���

���

�������

�� �
����

����

����

����

����
�������

��� ��� ���
����

����

����

����

���

��� ��� ���
����

����

����

����

�����

��� ��� ���
����

����

����

����

����

(a) Incorrect classifications

� � �
���

���

���

���

�������

� � �
���

���

���

���

�������

�� �
����

����

����

����

����

�������

��� ��� ���
����

����

����

����

���

��� ��� ���
���

���

���

���

�����

��� ��� ���
����

����

����

����

����

����

����

(b) Correct classifications

Figure 3: The distributions of individual pose parameters

for (a) high-confidence (p ≥ 0.7) incorrect classifications

and (b) correct classifications obtained from the random

sampling procedure described in Sec. 3.2. xδ and yδ have

been normalized w.r.t. their corresponding s from Eq. 4.

down). The directional light intensities and ambient light

intensities were (1.2, 1.6), (0.4, 1.0), and (0.2, 0.5) for the

bright, medium, and dark settings, respectively. All other

experiments used the medium lighting setting.

Misclassifications uniformly cover the pose space. For

each object, we calculated the DNN accuracy (i.e., percent

of correctly classified samples) across all three lighting set-

tings (Table S5). The DNN was wrong for the vast majority

of samples, i.e., the median percent of correct classifications

for all 30 objects was only 3.09%. We verified the discov-

ered adversarial poses transfer to the real world by using the

3D objects to reproduce natural, misclassified poses found

on the Internet (see Sec. S3). High-confidence misclassifi-

cations (p ≥ 0.7) are largely uniformly distributed across

every pose parameter (Fig. 3a), i.e., AXs can be found

throughout the parameter landscape (see Fig. S15 for exam-

ples). In contrast, correctly classified examples are highly

multimodal w.r.t. the rotation axis angles and heavily biased

towards zδ values that are closer to the camera (Fig. 3b; also

compare Fig. S4 vs. Fig. S6). Intriguingly, for ball-like ob-

jects (not included in our main traffic dataset), the DNN was

far more accurate across the pose space (see Sec. S8).

An object can be misclassified as many different labels.

Previous research has shown that it is relatively easy to pro-

duce AXs corresponding to many different classes when

optimizing input images [46] or 3D object textures [5],

which are very high-dimensional. When finding adversarial

poses, one might expect—because all renderer parameters,

including the original object geometry and textures, are held

constant—the success rate to depend largely on the similari-

ties between a given 3D object and examples of the target in

ImageNet. Interestingly, across our 30 objects, RS discov-

ered 990/1000 different ImageNet classes (132 of which

were shared between all objects). When only considering

high-confidence (p ≥ 0.7) misclassifications, our 30 objects

were still misclassified into 797 different classes with a me-

dian number of 240 incorrect labels found per object (see

Fig. S16 and Fig. S6 for examples). Across all adversarial

poses and objects, DNNs tend to be more confident when

correct than when wrong (the median of median probabili-

ties were 0.41 vs. 0.21, respectively).

4.2. Common object classifications are shared
across different lighting settings

Here, we analyze how our results generalize across dif-

ferent lighting conditions. From the data produced in

Sec. 4.1, for each object, we calculated the DNN accuracy

under each lighting setting. Then, for each object, we took

the absolute difference of the accuracies for all three light-

ing combinations (i.e., bright vs. medium, bright vs. dark,

and medium vs. dark) and recorded the maximum of those

values. The median “maximum absolute difference” of ac-

curacies for all objects was 2.29% (compared to the me-

dian accuracy of 3.09% across all lighting settings). That is,

DNN accuracy is consistently low across all lighting condi-

tions. Lighting changes would not alter the fact that DNNs

are vulnerable to adversarial poses.

We also recorded the 50 most frequent classes for each

object under the different lighting settings (Sb, Sm, and Sd).

Then, for each object, we computed the intersection over

union score oS for these sets:

oS = 100 ·
|Sb ∩ Sm ∩ Sd|

|Sb ∪ Sm ∪ Sd|
(7)

The median oS for all objects was 47.10%. That is, for 15

out of 30 objects, 47.10% of the 50 most frequent classes

were shared across lighting settings. While lighting does

4849

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����

����

����

����

����

����

����

����

����

����

����

����

����

�
��
�
�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

(a)

(b)

Figure 4: Inception-v3’s ability to correctly classify images

is highly localized in the rotation and translation parameter

space. (a) The classification landscape for 15 vehicle ob-

jects when altering θr and θp and holding (xδ, yδ, zδ, θy)
at (0, 0,−3, π

4
). Lighter regions correspond to poses with

a greater number of correctly classified vehicle objects.

Green and red circles indicate correct and incorrect classifi-

cations, respectively, corresponding to the fire truck object

poses found in (b).

have an impact on DNN misclassifications (as expected),

the large number of shared labels across lighting settings

suggests ImageNet classes are strongly associated with cer-

tain adversarial poses regardless of lighting.

4.3. Correct classifications are highly localized in
the rotation and translation landscape

To gain some intuition for how Inception-v3 responds to

rotations and translations of an object, we plotted the prob-

ability and classification landscapes for paired parameters

(e.g., Fig. 4; pitch vs. roll) while holding the other param-

eters constant. We qualitatively observed that the DNN’s

ability to recognize an object (e.g., a fire truck) in an image

varies radically as the object is rotated in the world (Fig. 4).

Further, adversarial poses often generalize across similar

objects (e.g., 83% of the sampled poses were misclassified

for all 15 four-wheeled vehicle objects).

Experiment. To quantitatively evaluate the DNN’s sen-

sitivity to rotations and translations, we tested how it re-

sponded to single parameter disturbances. For each object,

we randomly selected 100 distinct starting poses that the

DNN had correctly classified in our random sampling runs.

Then, for each parameter (e.g., yaw rotation angle), we ran-

domly sampled 100 new values1 while holding the others

constant. For each sample, we recorded whether or not the

object remained correctly classified, and then computed the

failure (i.e., misclassification) rate for a given (object, pa-

rameter) pair. Plots of the failure rates for all (object, pa-

rameter) combinations can be found in Fig. S18.

Additionally, for each parameter, we calculated the me-

dian of the median failure rates. That is, for each parameter,

we first calculated the median failure rate for all objects, and

then calculated the median of those medians for each pa-

rameter. Further, for each (object, starting pose, parameter)

triple, we recorded the magnitude of the smallest parameter

change that resulted in a misclassification. Then, for each

(object, parameter) pair, we recorded the median of these

minimum values. Finally, we again calculated the median

of these medians across objects (Table 1).

Results. As can be seen in Table 1, the DNN is highly

sensitive to all single parameter disturbances, but it is espe-

cially sensitive to disturbances along the depth (zδ), pitch

(θp), and roll (θr). To aid in the interpretation of these re-

sults, we converted the raw disturbance values in Table 1 to

image units. For xδ and yδ , the interpretable units are the

number of pixels the object shifted in the x or y directions of

the image (however, note that 3D translations are not equiv-

alent to 2D translations due to the perspective projection).

We found that a change in rotation as small as 8.02◦ can

cause an object to be misclassified (Table 1). Along the spa-

tial dimensions, a translation resulting in the object moving

as few as 2 px horizontally or 4.5 px vertically also caused

the DNN to misclassify.2 Lastly, along the z-axis, a change

in “size” (i.e., the area of the object’s bounding box) of only

5.4% can cause an object to be misclassified.

4.4. Optimization methods can effectively generate
targeted adversarial poses

Given a challenging, highly non-convex objective land-

scape (Fig. 4), we wish to evaluate the effectiveness of two

1using the random sampling procedure described in Sec. 3.2
2Note that the sensitivity of classifiers and object detectors to 2D trans-

lations has been observed in concurrent work [35, 12, 56, 6].

4850

Parameter Fail Rate (%) Min. ∆ Int. ∆

xδ 42 0.09 2.0 px

yδ 49 0.10 4.5 px

zδ 81 0.77 5.4%

θy 69 0.18 10.31◦

θp 83 0.14 8.02◦

θr 81 0.16 9.17◦

Table 1: The median of the median failure rates and the me-

dian of the median minimum disturbances (Min. ∆) for the

single parameter sensitivity tests described in Section 4.3.

Int. ∆ converts the values in Min. ∆ to more interpretable

units. For xδ and yδ , the interpretable units are pixels. For

zδ , the interpretable unit is the percent change in the area of

the bounding box containing the object. See main text and

Fig. S18 for additional information.

different types of approximate gradients at targeted attacks,

i.e., finding adversarial examples misclassified as a target

class [46]. Here, we compare (1) random search; (2) gra-

dient descent with finite-difference gradients (FD-G); and

(3) gradient descent with analytical, approximate gradients

provided by a differentiable renderer (DR-G) [19].

Experiment. Because our adversarial pose attacks are in-

herently constrained by the fixed geometry and appearances

of a given 3D object (see Sec. 4.1), we defined the targets to

be the 50 most frequent incorrect classes found by our RS

procedure for each object. For each (object, target) pair, we

ran 50 optimization trials using ZRS, FD-G, and DR-G. All

treatments were initialized with a pose found by the ZRS

procedure and then allowed to optimize for 100 iterations.

Results. For each of the 50 optimization trials, we recorded

both whether or not the target was hit and the maximum

target probability obtained during the run. For each (ob-

ject, target) pair, we calculated the percent of target hits and

the median maximum confidence score of the target labels

(see Table 2). As shown in Table 2, FD-G is substantially

more effective than ZRS at generating targeted adversarial

poses, having both higher median hit rates and confidence

scores. In addition, we found the approximate gradients

from DR to be surprisingly noisy, and DR-G largely under-

performed even non-gradient methods (ZRS) (see Sec. S5).

4.5. Adversarial poses transfer to different image
classifiers and object detectors

The most important property of previously documented

AXs is that they transfer across ML models, enabling black-

box attacks [55]. Here, we investigate the transferability of

our adversarial poses to (a) two different image classifiers,

AlexNet [20] and ResNet-50 [16], trained on the same Im-

ageNet dataset; and (b) an object detector YOLOv3 [34]

Hit Rate (%) Target Prob.

ZRS random search 78 0.29

FD-G gradient-based 92 0.41

DR-G† gradient-based 32 0.22

Table 2: The median percent of target hits and the median

of the median target probabilities for random search (ZRS),

gradient descent with finite difference gradients (FD-G),

and DR gradients (DR-G). All attacks are targeted and ini-

tialized with zδ-constrained random search. †DR-G is not

directly comparable to FD-G and ZRS (details in Sec. S4).

trained on the MS COCO dataset [22].

For each object, we randomly selected 1,350 AXs that

were misclassified by Inception-v3 with high confidence

(p ≥ 0.9) from our untargeted RS experiments in Sec. 4.1.

We exposed the AXs to AlexNet and ResNet-50 and cal-

culated their misclassification rates. We found that al-

most all AXs transfer with median misclassification rates

of 99.9% and 99.4% for AlexNet and ResNet-50, respec-

tively. In addition, 10.1% of AlexNet misclassifications and

27.7% of ResNet-50 misclassifications were identical to the

Inception-v3 predicted labels.

There are two orthogonal hypotheses for this result.

First, the ImageNet training-set images themselves may

contain a strong bias towards common poses, omitting un-

common poses (Sec. S7 shows supporting evidence from a

nearest-neighbor test). Second, the models themselves may

not be robust to even slight disturbances of the known, in-

distribution poses.

Object detectors. Previous research has shown that ob-

ject detectors can be more robust to adversarial attacks

than image classifiers [25]. Here, we investigate how

well our AXs transfer to a state-of-the-art object detector—

YOLOv3. YOLOv3 was trained on MS COCO, a dataset

of bounding boxes corresponding to 80 different object

classes. We only considered the 13 objects that belong

to classes present in both the ImageNet and MS COCO

datasets. We found that 75.5% of adversarial poses gen-

erated for Inception-v3 are also misclassified by YOLOv3

(see Sec. S2 for more details). These results suggest the

adversarial pose problem transfers across datasets, models,

and tasks.

4.6. Adversarial training

One of the most effective methods for defending against

OoD examples has been adversarial training [15], i.e. aug-

menting the training set with AXs—also a common ap-

proach in anomaly detection [9]. We tested whether adver-

sarial training can improve DNN robustness to new poses

generated for (1) our 30 training-set 3D objects; and (2)

seven held-out 3D objects (see Sec. S9 for details). Fol-

4851

lowing adversarial training, the accuracy of the DNN sub-

stantially increased for known objects (Table 3; 99.67% vs.

6.7%). However, the model (AT) still misclassified the ad-

versarial poses of held-out objects at an 89.2% error rate.

PT AT

Error (T) 99.67 6.7

Error (H) 99.81 89.2

High-confidence Error (T) 87.8 1.9

High-confidence Error (H) 48.2 33.3

Table 3: The median percent of misclassifications (Error)

and high-confidence (i.e., p > 0.7) misclassifications by

the pre-trained AlexNet (PT) and our AlexNet trained with

adversarial examples (AT) on random poses of training-set

objects (T) and held-out objects (H).

5. Related work

Out-of-distribution detection. OoD classes, i.e., classes

not found in the training set, present a significant challenge

for computer vision technologies in real-world settings [38].

Here, we study an orthogonal problem—correctly classify-

ing OoD poses of objects from known classes. While re-

jecting to classify is a common approach for handling OoD

examples [17, 38], the OoD poses in our work come from

known classes and thus should be assigned correct labels.

2D adversarial examples. Numerous techniques for craft-

ing AXs that fool image classifiers have been discov-

ered [55]. However, previous work has typically optimized

in the 2D input space [55], e.g., by synthesizing an entire

image [29], a small patch [18, 13], a few pixels [8], or

only a single pixel [40]. But pixel-wise changes are uncor-

related [28], so pixel-based attacks may not transfer well

to the real world [24, 26] because there is an infinitesimal

chance that such specifically crafted, uncorrelated pixels

will be encountered in the vast physical space of camera,

lighting, traffic, and weather configurations. [54] generated

spatially transformed adversarial examples that are percep-

tually realistic and more difficult to defend against, but the

technique still directly operates on pixels.

3D adversarial examples. Athalye et al. [5] used a 3D

renderer to synthesize textures for a 3D object such that,

under a wide range of camera views, the object was still

rendered into an effective AX. We also used 3D renderers,

but instead of optimizing textures, we optimized the poses

of known objects to cause DNNs to misclassify (i.e., we

kept the textures, lighting, camera settings, and background

image constant).

Concurrent work. We describe below two concurrent at-

tempts that are closely related to ours. First, Liu et al. [23]

proposed a differentiable 3D renderer and used it to perturb

both an object’s geometry and the scene’s lighting to cause a

DNN to misbehave. However, their geometry perturbations

were constrained to be infinitesimal so that the visibility of

the vertices would not change. Therefore, their result of

minutely perturbing the geometry is effectively similar to

that of perturbing textures [5]. In contrast, we performed

3D rotations and 3D translations to move an object inside a

3D space (i.e., the viewing frustum of the camera).

Second, Engstrom et al. [12] showed how simple 2D im-

age rotations and translations can cause DNNs to misclas-

sify. However, these 2D transformations still do not reveal

the type of adversarial poses discovered by rotating 3D ob-

jects (e.g., a flipped-over school bus; Fig. 1d).

To the best of our knowledge, our work is the first at-

tempt to harness 3D objects to study the OoD poses of well-

known training-set objects that cause state-of-the-art Ima-

geNet classifiers and MS COCO detectors to misclassify.

6. Discussion and conclusion

In this paper, we revealed how DNNs’ understanding of

objects like “school bus” and “fire truck” is quite naive—

they can correctly label only a small subset of the entire

pose space for 3D objects. Note that we can also find real-

world OoD poses by simply taking photos of real objects

(Sec. S3). We believe classifying an arbitrary pose into one

of the object classes is an ill-posed task, and that the adver-

sarial pose problem might be alleviated via multiple orthog-

onal approaches. The first is addressing biased data [49].

Because ImageNet and MS COCO datasets are constructed

from photographs taken by people, the datasets reflect the

aesthetic tendencies of their captors. Such biases can be

somewhat alleviated through data augmentation, specifi-

cally, by harnessing images generated from 3D renderers

[39, 4]. From the modeling view, we believe DNNs would

benefit from the incorporation of 3D information, e.g., [4].

Finally, our work introduced a new promising method

(Fig. 2) for testing computer vision DNNs by harnessing

3D renderers and 3D models. While we only optimize a sin-

gle object here, the framework could be extended to jointly

optimize lighting, background image, and multiple objects,

all in one “adversarial world”. Not only does our frame-

work enable us to enumerate test cases for DNNs, but it

also serves as an interpretability tool for extracting useful

insights about these black-box models’ inner functions.

Acknowledgements

We thank Hiroharu Kato and Nikos Kolotouros for their

valuable discussions and help with the differentiable ren-

derer. We also thank Rodrigo Sardinas for his help with

some GPU servers used in the project. AN is supported

by multiple funds from Auburn University, a donation from

Adobe Inc., and computing credits from Amazon AWS.

4852

References

[1] Moderngl moderngl 5.4.1 documentation. https:

//moderngl.readthedocs.io/en/stable/

index.html. (Accessed on 11/14/2018).

[2] The self-driving uber that killed a pedestrian didn’t brake.

here’s why. https://slate.com/technology/

2018/05/uber-car-in-fatal-arizona-

crash-perceived-pedestrian-1-3-seconds-

before-impact.html. (Accessed on 07/13/2018).

[3] Tesla car on autopilot crashes, killing driver, united

states news & top stories - the straits times. https:

//www.straitstimes.com/world/united-

states/tesla-car-on-autopilot-crashes-

killing-driver. (Accessed on 06/14/2018).

[4] H. A. Alhaija, S. K. Mustikovela, A. Geiger, and

C. Rother. Geometric image synthesis. arXiv preprint

arXiv:1809.04696, 2018.

[5] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthe-

sizing robust adversarial examples. In 2018 Proceedings

of the 35th International Conference on Machine Learning

(ICML), pages 284–293, 2018.

[6] A. Azulay and Y. Weiss. Why do deep convolutional net-

works generalize so poorly to small image transformations?

arXiv preprint arXiv:1805.12177, 2018.

[7] A. Borji, S. Izadi, and L. Itti. ilab-20m: A large-scale con-

trolled object dataset to investigate deep learning. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2221–2230, 2016.

[8] N. Carlini and D. Wagner. Towards Evaluating the Robust-

ness of Neural Networks. In 2017 IEEE Symposium on Se-

curity and Privacy (SP), 2017.

[9] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detec-

tion: A survey. ACM computing surveys (CSUR), 41(3):15,

2009.

[10] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving:

Learning affordance for direct perception in autonomous

driving. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 2722–2730, 2015.

[11] B. B. Choi and C. Lawrence. Inverse Kinematics Problem

in Robotics Using Neural Networks. NASA Technical Mem-

orandum, 105869:1–23, 1992.

[12] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry.

A rotation and a translation suffice: Fooling CNNs with sim-

ple transformations, 2019.

[13] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li,

A. Prakash, A. Rahmati, and D. Song. Robust physical-

world attacks on machine learning models. arXiv preprint

arXiv:1707.08945, 2017.

[14] D. Gandhi, L. Pinto, and A. Gupta. Learning to fly by

crashing. In Intelligent Robots and Systems (IROS), 2017

IEEE/RSJ International Conference on, pages 3948–3955.

IEEE, 2017.

[15] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and

harnessing adversarial examples. In International Confer-

ence on Learning Representations, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. In 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–

778, 2016.

[17] D. Hendrycks and K. Gimpel. A baseline for detecting

misclassified and out-of-distribution examples in neural net-

works. In Proceedings of International Conference on

Learning Representations, 2017.

[18] D. Karmon, D. Zoran, and Y. Goldberg. Lavan: Lo-

calized and visible adversarial noise. arXiv preprint

arXiv:1801.02608, 2018.

[19] H. Kato, Y. Ushiku, and T. Harada. Neural 3D Mesh Ren-

derer. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2018.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

Classification with Deep Convolutional Neural Networks. In

Advances in Neural Information Processing Systems (NIPS

2012), pages 1097–1105, 2012.

[21] F. Lambert. Understanding the fatal tesla accident on autopi-

lot and the nhtsa probe. Electrek, July, 2016.

[22] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014.

[23] H.-T. D. Liu, M. Tao, C.-L. Li, D. Nowrouzezahrai, and

A. Jacobson. Adversarial Geometry and Lighting using a

Differentiable Renderer. arXiv preprint, 8 2018.

[24] J. Lu, H. Sibai, E. Fabry, and D. Forsyth. NO Need to

Worry about Adversarial Examples in Object Detection in

Autonomous Vehicles. arXiv preprint, 7 2017.

[25] J. Lu, H. Sibai, E. Fabry, and D. A. Forsyth. Standard de-

tectors aren’t (currently) fooled by physical adversarial stop

signs. CoRR, abs/1710.03337, 2017.

[26] Y. Luo, X. Boix, G. Roig, T. Poggio, and Q. Zhao. Foveation-

based Mechanisms Alleviate Adversarial Examples. arXiv

preprint, 11 2015.

[27] S. Marschner and P. Shirley. Fundamentals of computer

graphics. CRC Press, 2015.

[28] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and

J. Yosinski. Plug & play generative networks: Conditional

iterative generation of images in latent space. In CVPR, vol-

ume 2, page 7, 2017.

[29] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks

are easily fooled: High confidence predictions for unrec-

ognizable images. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 427–436,

2015.

[30] M. Osadchy, M. L. Miller, and Y. LeCun. Synergistic Face

Detection and Pose Estimation with Energy-Based Mod-

els. In Advances in Neural Information Processing Systems,

pages 1017–1024, 2005.

[31] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for cate-

gory specific multiview object localization. In 2009 IEEE

Conference on Computer Vision and Pattern Recognition,

pages 778–785. IEEE, 2009.

[32] N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you

get with a modern face recognition test set using only simple

4853

features? In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 2591–2598. IEEE, 2009.

[33] PyTorch. torchvision.models pytorch master documen-

tation. https://pytorch.org/docs/stable/

torchvision/models.html. (Accessed on

11/14/2018).

[34] J. Redmon and A. Farhadi. YOLOv3: An Incremental Im-

provement. 2018.

[35] A. Rosenfeld, R. Zemel, and J. K. Tsotsos. The elephant in

the room. arXiv preprint arXiv:1808.03305, 2018.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015.

[37] C. Sampedro, A. Rodriguez-Ramos, H. Bavle, A. Carrio,

P. de la Puente, and P. Campoy. A fully-autonomous aerial

robot for search and rescue applications in indoor environ-

ments using learning-based techniques. Journal of Intelligent

& Robotic Systems, pages 1–27, 2018.

[38] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E.

Boult. Toward open set recognition. IEEE transactions on

pattern analysis and machine intelligence, 35(7):1757–1772,

2013.

[39] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,

and R. Webb. Learning from simulated and unsupervised

images through adversarial training. In CVPR, volume 2,

page 5, 2017.

[40] J. Su, D. V. Vargas, and S. Kouichi. One Pixel Attack for

Fooling Deep Neural Networks. arXiv preprint, 2017.

[41] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley,

and J. Clune. Deep neuroevolution: genetic algorithms are a

competitive alternative for training deep neural networks for

reinforcement learning. arXiv preprint arXiv:1712.06567,

2017.

[42] M. Sugiyama, N. D. Lawrence, A. Schwaighofer, et al.

Dataset shift in machine learning. The MIT Press, 2017.

[43] X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B.

Tenenbaum, and W. T. Freeman. Pix3d: Dataset and methods

for single-image 3d shape modeling. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2818–2826, 2016.

[45] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the Inception Architecture for Computer Vision.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2818–2826, 12 2016.

[46] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. In International Conference on Learning Repre-

sentations, 2014.

[47] G. R. Taylor, A. J. Chosak, and P. C. Brewer. Ovvv: Using

virtual worlds to design and evaluate surveillance systems.

In 2007 IEEE conference on computer vision and pattern

recognition, pages 1–8. IEEE, 2007.

[48] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated

testing of deep-neural-network-driven autonomous cars. In

Proceedings of the 40th International Conference on Soft-

ware Engineering, pages 303–314. ACM, 2018.

[49] A. Torralba and A. A. Efros. Unbiased look at dataset bias.

In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 1521–1528. IEEE, 2011.

[50] Y. Z. S. Q. Z. X. T. S. K. Y. W. A. Y. Weichao Qiu, Fang-

wei Zhong. Unrealcv: Virtual worlds for computer vision.

ACM Multimedia Open Source Software Competition, 2017.

[51] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL pro-

gramming guide: the official guide to learning OpenGL, ver-

sion 1.2. Addison-Wesley Longman Publishing Co., Inc.,

1999.

[52] Y. Xiang, W. Kim, W. Chen, J. Ji, C. Choy, H. Su, R. Mot-

taghi, L. Guibas, and S. Savarese. Objectnet3d: A large scale

database for 3d object recognition. In European Conference

on Computer Vision, pages 160–176. Springer, 2016.

[53] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn:

A convolutional neural network for 6d object pose estimation

in cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.

[54] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song.

Spatially transformed adversarial examples. In International

Conference on Learning Representations, 2018.

[55] X. Yuan, P. He, Q. Zhu, and X. Li. Adversarial Examples:

Attacks and Defenses for Deep Learning. arXiv preprint,

2017.

[56] R. Zhang. Making convolutional networks shift-invariant

again, 2019.

[57] Z. Zhu, L. Xie, and A. L. Yuille. Object recognition with and

without objects. arXiv preprint arXiv:1611.06596, 2016.

4854

