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Figure 1: An illustration of latent filter scaling. Input noise codes are mapped to the filters of the network, instead of injection

into the input image.

Abstract

In multimodal unsupervised image-to-image translation

tasks, the goal is to translate an image from the source

domain to many images in the target domain. We present

a simple method that produces higher quality images than

current state-of-the-art while maintaining the same amount

of multimodal diversity. Previous methods follow the un-

conditional approach of trying to map the latent code di-

rectly to a full-size image. This leads to complicated net-

work architectures with several introduced hyperparame-

ters to tune. By treating the latent code as a modifier

of the convolutional filters, we produce multimodal output

while maintaining the traditional Generative Adversarial

Network (GAN) loss and without additional hyperparam-

eters. The only tuning required by our method controls the

tradeoff between variability and quality of generated im-

ages. Furthermore, we achieve disentanglement between

source domain content and target domain style for free as

a by-product of our formulation. We perform qualitative

and quantitative experiments showing the advantages of

our method compared with the state-of-the art on multiple

benchmark image-to-image translation datasets.

1. Introduction

Recently, GANs have emerged as a promising research

field [9, 3, 2, 11, 19]. The use of adversarial training has

shown to be effective in many computer vision tasks. Gen-

erative networks can be trained with reasonable success to

produce realistic images of humans and objects [6, 21, 7].

In the unconditional generation task, the aim is to map

a randomly generated low-dimensional code to a realistic

image. After training, the entries of the input code should

control sources of variation in the output image. There is an

effort in the community to guarantee certain desirable qual-

ities about this mapping. For example, InfoGAN [6] aims

to enhance the interpretability of changing the latent code

through disentanglement. Other methods aim for a mapping

where the interpolation between two latent codes results

in an image that is semantically interpolated between the

images resulting from the two codes. Additionally, some

methods aim for an application-specific disentangled map-

ping, where changing certain parts of the input code will

correspond to changes in certain parts of the output images

[20, 17]. In the case of pedestrian image generation, the dis-

entanglement might allow the user to change the pedestrian

appearance independently of the background.

In the literature, image-to-image translation is handled

similarly to unconditional generation, where the latent vec-
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tor is directly mapped to an image. In order to generate

many images in the target domain for each input image, pre-

vious methods [27, 12, 15] make use of an input latent code

in addition to autoencoding, adding multiple terms to the

loss. The intuitive idea behind our contribution is that in

image-to-image translation tasks we often start with an im-

age and the aim is to use the latent vector to control local

changes in the input image. Therefore, we opt for treating

the latent vector as a modifier of the network’s filters, in-

stead of taking the unconditional approach of treating the

latent vector as encoded data.

Contributions: Our contribution is a method for multi-

modal unsupervised image-to-image translation that is sim-

ple, competitive with the state-of-the-art, and provides dis-

entanglement of the latent codes from the input images.

This is achieved without modifying standard GAN loss and

with minimal overhead. Our method achieves state-of-the-

art quality and diversity on multiple image-to-image trans-

lation datasets, while maintaining the simplicity and gen-

erality of standard GAN loss and architecture. To the best

of our knowledge, our method is the first method that does

not require autoencoding or reconstruction losses for latent

codes or images. Our method essentially prevents mode

collapse in image-to-image GANs while enabling a larger

degree of freedom in the quality-variability tradeoff. In con-

trast, previous methods include several losses in addition to

the GAN loss, each with a new hyperparameter to tune.

Notation: In this paper, GANs that take an image from

one domain and produce an image in another domain will be

referred to as image-to-image translation GANs. If paired

data are used, the GAN will be referred to as supervised. It

will be referred to as unsupervised if the images from the

two domains are not paired. Finally, image-to-image trans-

lation GANs that produce a single image will be referred to

as deterministic or unimodal, while multimodal ones make

use of an input latent vector in addition to the input image

to produce many outputs.

2. Related Work

For paired data, conditional adversarial networks [13,

23] show reasonable results that are applicable to almost

any dataset. However, requiring paired data is a major limi-

tation.

Many works in literature search for ways to produce sim-

ilar results without using pair information [12, 15, 1]. Zhu

et al. [26] demonstrate that unimodal unpaired image-to-

image translation tasks are under-constrained, since there

might be many possible translations in the output space.

CycleGAN [26] is one of the most successful approaches

to handling this issue. Instead of training one network that

maps source domain images to target domain images, they

propose adding another network to map domain images to

source images forming a cycle. They argue that imposing

this cycle-consistency loss produces better image quality.

While there are acceptable results for unconditional gen-

eration GANs and unimodal image-to-image translation

GANs, the multimodal case is an open area of research. The

success of GANs in generating diverse output images from

scratch does not naturally extend to image-to-image trans-

lation problems. Diversity in the conditional case, where

an image is given and the goal is to translate it into another

class of images, is proving to be more challenging. Un-

like the unconditional case, where the latent vector can be

simply mapped to a full size image, the conditional case

requires using both the latent vector and the input image.

Simple concatenation of the latent vector with the image of-

ten leads to deterministic output, where the network learns

to ignore the latent code. This is the problem that most

conditional image-to-image translation papers tackle: pre-

serving original image structure, and preserving influence

and variability of the latent vector. In other words, given

an input image and a latent vector, the aim is to change the

appearance using the latent vector, such that different latent

vectors produce different target domain images.

Earlier proposals for multimodal output are largely lim-

ited in capacity and application[8, 4, 5]. In the case of

PixelNN [4], multi-modality is achieved by providing some

form of the output image to the GAN. For example, a low

resolution image or a normal map must be fed to the GAN,

and given different low resolution images different outputs

will be produced. On the other hand, MADGAN [8] em-

ploys multiple generators with the obvious limitation of

having a constant and discrete number of generated target

domain modes. Cascaded Refinement Networks [5] have

the same limitation of generating a constant discrete num-

ber of outputs at test time.

Previous methods [27, 12, 15, 1] follow the uncondi-

tional approach for achieving conditional multi-modality.

In the unconditional case, the latent code is often inter-

preted as a compressed version of the output image. After

training an unconditional image-to-image translation GAN,

it is often found that entries in the input noise vector cor-

respond to semantic labels of the output images. For ex-

ample, on MNIST, changing one entry in the input vector

might change thickness or slope of a digit. In a sense, un-

conditional image generation is an inverse problem where

the goal is to enforce the correspondence between latent

code entries and semantic variations in the resulting image.

Following this approach for image-to-image GANs, previ-

ous methods are often forced to compress the input image

until concatenation with the low-dimensional code is mean-

ingful. One of the more successful ways to achieve this

is the disentanglement approach where the compression is

regularized such that each image can be described by two

components: the latent code which is domain specific, and

a content code which is shared between source and target
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domain [12, 15].

One of the earlier methods for multimodal image-to-

image translation is BicycleGAN [27]. BicycleGAN com-

bines two existing loss cycles: one to encourage latent code

diversity and one to encourage faithfulness to ground truth

images. One limitation of BicycleGAN is requiring paired

images. This raises a new problem of producing multimodal

output in an unsupervised fashion without requiring pair in-

formation. Recent methods [12, 15] handle the problem by

disentangling the input image into content and style. Con-

tent is assumed to be shared between the input and output

distributions, while style is domain-specific. Then, to trans-

late an image, the content code is computed and is concate-

nated with a style code sampled from target distribution.

While augmented CycleGAN [1] does not disentangle input

images, they still follow the common approach of injecting

the latent code somewhere in the network, and adding loss

terms to ensure the latent code is meaningful and diverse.

While disentanglement can be desirable in some graph-

ics problems where there is need to manipulate certain parts

of the image independently, it introduces several hyperpa-

rameters to tune. We claim that it is not necessary to pro-

duce multimodal output. Contrary to the state-of-the-art

approaches, we propose handling the conditional image-to-

image problem in an entirely different approach from the

unconditional case.

3. Methodology

3.1. Problem setup

Our goal is to perform multimodal unsupervised image-

to-image translation. Given an image x from source do-

main X, we want to translate it to many images yi in domain

Y. To produce multimodal output, we accept a latent code

z ∼ N (0k x 1, Ik x k) that is expected to describe the ways

in which our output should differ. So our task is to find a

function G such that: G: (x, zi) → yi, where x ∈ X, yi ∈ Y.

3.2. The latent scaling approach

The core argument of our work presented here is that the

latent code in conditional image generation should be inter-

preted differently than in the unconditional case. Tradition-

ally, the latent code is concatenated with the input image di-

rectly or in feature space after compression through autoen-

coding. This follows the interpretation of the latent code as

encoded data to be converted to a full-sized image. Instead,

we propose interpreting the latent code entries as modula-

tors of local changes in the input image. Specifically, the

latent code is not considered as encoded data, but as a mod-

ifier of the convolutional operations of the network. A sim-

ple analogy is that previous methods generate diverse new

images by appending the input image with different chan-

nels. On the other hand, our method generates diverse new

images by using different brushes. We map the latent code

to filters, such that the latent code modulates the strength of

applying each filter. This is easiest to explain in the case

of having a latent vector of length 3 operating only on the

last 3 channels of the network. In that case, the latent vector

will modulate only the color of the output image. How-

ever, in the hidden layers of the generator network, scal-

ing the filters will correspond to modulating the resulting

feature maps. For example, scaling an edge-detecting fil-

ter might result in stronger edges in the final image. Given

a k-dimensional latent code and an input image, we push

the latent code through a fully-connected network to pro-

duce a scalar per filter. Then, the image is pushed through

the convolutional network where each filter is scaled by the

mapped latent code. By not treating the latent code as data

to be concatenated with the input image, we provide a sim-

pler solution of the problem. Our approach allows a simple

image-to-image GAN to achieve comparable quality with

state-of-the-art while producing more diverse target domain

images. Furthermore, without modifying standard GAN

loss, we achieve disentanglement between source domain

image content and target domain image style. This occurs

as a result of our formulation where the latent code corre-

sponds to local changes in the input image.

3.3. Simplifying hyperparameters for multimodal­
ity

One major benefit of our method is the way it preserves

the simple GAN loss. Since previous methods treat the la-

tent code as compressed data, a simple concatenation of the

latent code to the input image often leads to unimodal be-

havior where the latent code is ignored. This might be a

result of augmenting a high-dimensional image with a low-

dimensional vector. It is clear that the traditional usage of

latent codes in unconditional GANs does not naturally ex-

tend to image-to-image GANs, as it requires adding mul-

tiple losses for reconstruction of images and latent codes.

This is evident in the losses of BicycleGAN[27] and MU-

NIT [12].

Bicycle GAN loss:

min
G,E

max
D

L
VAE
GAN(G,D,E) + λLVAE

1
(G,E)

+LGAN(G,D)

+λlatentL
latent
1

(G,E) + λKLLKL(E)

(1)

Where λ is a hyperparameter that controls the weight of

the L1 VAE loss, λlatent controls the weight of the recon-

struction loss of the latent code, and λKL controls the weight

of encouraging the encoded distribution to be similar to a

random Gaussian.
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Figure 2: The results of applying the same latent codes to

different input images. Disentanglement occurs as a result

of our change of viewpoint and without explicit guidance.

MUNIT loss:

min
E1,E2,G1,G2

max
D1,D2

L(E1, E2, G1, G2, D1, D2) = L
x1

GAN

+L
x2

GAN + λx(L
x1

recon + L
x2

recon)

+λc(L
c1
recon + L

c2
recon) + λs(L

s1
recon + L

s2
recon)

(2)

Where λx controls the weight of image reconstruction

loss, λc controls the weight of disentangled content code

reconstruction loss, and λs controls the weight of disentan-

gled style code reconstruction loss for both source and tar-

get domains.

By treating the latent code as a modifier of the network’s

filters, we can use the traditional GAN loss without any ad-

ditional encoding or decoding, while preventing mode col-

lapse for image-to-image translation. Our network learns

to map an input Gaussian latent code to a scalar per filter,

consequently learning to map different scalings of the net-

work’s filters to different output images. Throughout train-

ing, the latent code is never injected into the input image

nor the learned feature maps. Instead, the latent code en-

tries are multiplied by the feature maps. Consequently, we

avoid the need for reconstruction losses and the need for

losses based on encoded latent code diversity, and we use

only the standard GAN loss.

Figure 3: The results of interpolating between latent codes

and generating the corresponding images.

Latent scaling loss:

min
G

max
D

= LGAN(G,D)
(3)

We choose to use the least-squares GAN loss (LSGAN)

as described in [18]:

min
D

LGAN(D) =Ey

[

(D(y)− 1)2
]

+ Ex,z

[

D(G(x, z))2
]

min
G

LGAN(G) =Ex,z

[

(D(G(x, z))− 1)2
]

(4)

We apply label smoothing such that the desired value for

discriminator real samples and for generator samples is 0.9

instead of 1.

3.4. Mapping a low­dimensional latent vector to
scalars

There is a design choice in how to map the latent vector

to the actual scalars that affect feature maps. One option

is to sample a Gaussian with the same dimensionality as

the network’s filters. This leads to highly undesirable ef-

fects. As noted in [27], having a latent vector with high

dimensionality makes sampling more difficult and leads to

the network modeling less meaningful sources of variation.

Since the total number of filters in state-of-the-art image-to-

image networks is high (over 2000 filters), we use a fully-

connected network to map a low-dimensional latent vector

to the actual number of filters.

The mapping process leads to desirable effects. First, it

allows us to maintain the same latent code sampling pro-
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Figure 4: A demonstration of user control over the vari-

ability/quality tradeoff. An affine activation leads to more

stylistic variety at the cost of lower quality images. A tanh

activation leads to very realistic images but with lower vari-

ability.

cedure as previous methods in the field. Since our method

multiplies the filters by the latent code, we find that it helps

training to learn how to scale the input latent code. Second,

it allows the network to learn to make filters work in tan-

dem. Finally, control over the final mapped scalars allows

for controlling the tradeoff between quality and variability

in output images.

3.5. Disentanglement through mapped scalars

After training, we examine the learned mapping between

input noise which is sampled from a Gaussian distribution.

We find that the latent codes, without explicit guidance, are

style codes that are independent of the input image. Mean-

ing that providing the same input code with multiple source

domain images will produce target domain images of the

same style. This indicates that our network is learning

target domain style independently of the input image, and

not correlating specific inputs with specific styles. Thus,

our method obtains disentanglement between the source do-

main image and the target domain style essentially for free.

Disentanglement occurs as a result of the network mapping

the latent code to operations on the input images. Just as

painting a shoe with a certain color or with certain specu-

larity should easily transfer to other shoes. We show the

result of using the same latent codes with different images

in Figure 2.

Additionally, we demonstrate how interpolating between

two latent codes leads to semantically interpolated images,

as shown in Figure 3. The interpolation is not only in color,

but also in features such as specularity and the presence of

shoe string holes.

3.6. Controlling the tradeoff between variability
and quality

The only tuning required by our method is tuning the

mapping between input latent codes and the final scalars

per filter. In our experiments, the mapping choice can be

tuned easily. We find that applying the hyperbolic tangent

function (tanh) as the activation function leads to conserva-

tive variation with the benefit of high quality images. Us-

ing leaky rectified linear unit (LRELU) or a linear fully-

connected network leads to more variability at the cost

of occasionally generating unrealistic images. This can

be attributed to the magnitude of the mapped scalars be-

ing bounded when using tanh and unbounded when using

LRELU or no activation.

We find that using bias in the fully-connected network

leads to more conservative results. In this case, we believe

that the average target domain image is contained in the

bias, while the variation is achieved by the multiplied in-

put code values. Eliminating bias leads to more variation in

the produced images but again at the cost of quality.

Tuning the mapping between latent codes and scalars per

filter allows user control over variety and quality of pro-

duced images. While there’s dependence on the specific

dataset, we find that using tanh in the final activation layer

with bias leads to high quality low variety images. On the

other hand, using an affine layer (linear activation without

bias) leads to high variety low quality images. We show

some results of modifying the scalar mapping in Figure 4.

3.7. Compatibility with existing deep learning li­
braries

In many deep learning packages, it is easier to handle

feature maps per batch than filters. This is because filters

are per network, while feature maps are per input image.

Therefore, we choose to multiply the latent vector entries

by the feature maps instead of the filters to offer compati-

bility with most deep learning libraries. By the associative

property of convolution, this is equivalent to the scalar mul-

tiplication with the filters:

(c ∗ f)⊛ I = c ∗ (f ⊛ I)

where c is a scalar, f is a k x k filter, I is a m x n image, * is

the scalar multiplication operation, and ⊛ is convolution.

3.8. Implementation details

We follow the network architecture described in [26]

with a few differences as seen in Figure 1. First, our net-

work contains only one generator that takes an image from

the source domain and produces an image in the target do-

main, and one discriminator (instead of two generators and

discriminators cycling between source and target domains).

Second, we accept a latent code as an input to the network.

1462



Figure 5: A comparison between shoes generated by our

method, BicycleGAN, and MUNIT. AMT users preferred

BicycleGAN to both, but preferred ours to MUNIT.

Finally, we add a trainable fully-connected network to map

the input latent code to scalars which are multiplied by each

feature map of the network. The scalars are multiplied di-

rectly by the output of the convolution and before applying

RELU or instance normalization.

3.9. Similarity to previous methods

The idea of modifying the scale of a feature map was

explored previously but with a different approach and for

a different task. Adaptive Instance Normalization (AdaIN)

[10] was proposed for style transfer, where the authors pro-

posed transferring feature map statistics in order to transfer

style from one image to another. A major difference be-

tween our method and AdaIN is that we learn feature map

scales, where AdaIN simply computes scales from the in-

put style image. Furthermore, we apply the scaling to fea-

ture maps prior to any normalization which is equivalent to

filter scaling. StyleGAN is a more similar concurrent work

where Karras et al. [14] explore filter scaling and show great

results for unconditional face image generation.

4. Evaluation

We perform qualitative and quantitative experiments us-

ing benchmark image-to-image translation datasets. We

show results on the following datasets: winter to summer

[16], edges to shoes [24], and labels to facades [22].

For our qualitative experiments, we compare our results

with BicycleGAN [27], and MUNIT [12]. These are two

state-of-the-art methods. BicycleGAN uses pair informa-

tion, while MUNIT, as well as our method, do not use pair

information. We use two metrics: quality, measured by

Amazon Mechanical Turk (AMT) user preference, and di-

versity, measured by Learned Perceptual Image Patch Sim-

ilarity (LPIPS) [25].

Figure 6: A comparison between the variety of generated

windows in our method and that of BicycleGAN. Note how

BicycleGAN is primarily changing color, while our method

changes style as well.

4.1. Quantitative results

We follow the same experimental settings as [27] and

[12]. To measure quality, we present AMT users with two

generated images: one by our algorithm, and the other by

a different algorithm, and ask them to pick the image they

prefer. We use the likelihood of images generated by an al-

gorithm to be picked by users as the quality measure. Simi-

larly to Bicycle GAN and MUNIT, we adopt the LPIPS [25]

diversity score as a quantitative measure of variability in the

GAN output conditioned on the same image. We measure

the LPIPS score using 1900 pairs, where each pair is two

different generated images conditioned on the same input

image.

Quality Diversity

BicycleGAN 57.2% 0.104

Ours — 0.109

MUNIT 45.1% 0.109

Table 1: Comparison of quality and diversity between ours

and state-of-the-art methods. Quality is measured by the

percentage of images where another algorithm was pre-

ferred to ours. Diversity is measured by perceptual distance
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Figure 7: Our results on the winter to summer dataset. Learnt sources of semantic variation include time of day, presence of

clouds, and amount of foliage.

As shown in Table 1, our method results in the same va-

riety (as measured by the pairwise LPIPS distance) as the

best previously reported results but with higher AMT user

rating of quality on the edges to shoes dataset. We confirm

results by [12] showing the superior quality of BicycleGAN

which uses pair information. BicycleGAN quality is pre-

ferred to ours about 57% of the time. This is comparable to

the results obtained by MUNIT, showing that BicycleGAN

is preferred to MUNIT 56% of the time. In terms of di-

versity BicycleGAN scores lower than both our method and

MUNIT. However, we find that our method was preferred to

MUNIT about 55% of the time. The quality of images gen-

erated by our algorithm can be seen in 5. While our method

uses only the standard GAN loss without additional hyper-

parameters, we obtain higher quality than MUNIT and more

stylistic variability than BicycleGAN.

4.2. Qualitative results

We present images generated by our method to confirm

the quantitative results in terms of variety and quality. Fig-

ure 7 showcases our results on the winter to summer im-

ages. Since our method leads to style disentanglement, we

produce synchronized results using the same code for each

style. Our method learns several sources of semantic vari-

ability including time of day, condition of the sky, as well

as amount of foliage.

As can be seen in Figure 6, our method leads to more

semantic variability which can be observed in the windows

of generated facades. While BicycleGAN produces high-

quality facade images, the variance in the window appear-
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ance is limited mainly to color. Our method on the other

hand exhibits multiple realistic kinds of windows. This sup-

ports the higher diversity score of our method on the edges

to shoes dataset. We believe that the use of pair information

often restricts BicycleGAN to produce images that are too

close to the ground truth. This explains why unsupervised

methods such as our method and MUNIT produce images

that exhibit more variety.

4.3. Discussion

Quantitative and qualitative results show that our

method, while substantially simpler than both BicycleGAN

and MUNIT, improves upon the best reported quality and

diversity of upaired multimodal image-to-image GANs. We

outperform MUNIT in terms of quality on the edges2shoes

dataset while obtaining a higher diversity score than Bicy-

cleGAN.

Examining images generated by our method shows a

high semantic variability. This includes generating differ-

ent windows or architectural styles on the labels2facades

dataset, and generating different times of day on the sum-

mer2winter dataset as seen in Figures 6 and 7. Generated

images shown in Figure 5 confirm our quantitative results.

We find that, in general, BicycleGAN produces the highest

quality images, while our method produces higher quality

than MUNIT.

Additionally, after training using our method we show

that latent codes are independent of the input images. As a

result, latent codes are transferable from one output image

to another, such that using the same latent code with dif-

ferent input images yields output images of the same style.

This follows from our motivation where we map latent code

entries to operations. Furthermore, interpolation between

latent codes produces images that are interpolated in a se-

mantic sense.

Our network, while simple and easy to tune, outperforms

state-of-the-art methods. We believe that our success can be

explained by referring to our change of viewpoint. Previous

methods either extend unconditional GANs to accept im-

ages as additional input, or extent image-to-image GANs to

accept a latent vector as additional input. As a result, au-

toencoding losses are needed to guarantee that input images

and latent codes are not ignored. Therefore, a large portion

of the training procedures is spent on tasks that are not nec-

essary for multimodality, and only serves to preserve con-

tent after encoding or decoding. Our method, on the other

hand, directly maps the latent code to the convolutional op-

erations of the network. By design, the input image and

the latent code will not be ignored. In addition, the latent

code directly affects the convolutional operations. Thus, we

avoid complicating the network architecture and we avoid

solving auxiliary tasks. We believe that the simplicity and

effectiveness of our method will lead to a wide adoption in

the future in any image-to-image translation task.

5. Limitations and future work

The main limitation of our method is finding a good map-

ping between randomly generated latent codes and scalars

per filter. We believe that more work can be done in finding

an optimal mapping. While almost any setting can lead to

diverse and high-quality images, there are settings that are

noticeably better than others.

Another limitation is related to disentanglement. Meth-

ods that use reconstruction losses to learn how to disentan-

gle input images (such as MUNIT) have an advantage in

style transfer. This is because the style from the input im-

age can be applied to another input images. In our method

the disentanglement occurs in the target domain. In other

words, our method cannot extract style from an input image

and apply it to another input image. The disentanglement in

our method, however, can take a noise code that generated

a certain output image and apply it to any input image to

transfer the style. Thus, it is easy to transfer the style of a

generated image to any input image, but to transfer the style

of an input image to another input image the user must gen-

erate many images and use the latent code of the generated

image most similar to the input image.

6. Conclusion

We present a method for multimodal unsupervised

image-to-image translation. Our method is based on the

idea that latent codes should be interpreted as modifiers

of operations, and not as encoded data, in the case of

conditional image generation. This formulation produces

disentangled codes without autoencoding loss and with-

out adding to the standard GAN loss. Our results show

improvement on the state-of-the-art both qualitatively and

quantitatively in terms of quality and diversity while using

a drastically simpler network architecture. The simplicity of

the architecture means easier implementation for users. In

addition to simplicity, our method is general and can be ap-

plied to existing image-to-image translation methods such

as CycleGAN [26].
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Wasserstein generative adversarial networks. In Interna-

tional Conference on Machine Learning, pages 214–223,

2017.

[4] Aayush Bansal, Yaser Sheikh, and Deva Ramanan. Pix-

elnn: Example-based image synthesis. arXiv preprint

arXiv:1708.05349, 2017.

[5] Qifeng Chen and Vladlen Koltun. Photographic image syn-

thesis with cascaded refinement networks. In IEEE Inter-

national Conference on Computer Vision (ICCV), volume 1,

page 3, 2017.

[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya

Sutskever, and Pieter Abbeel. Infogan: Interpretable repre-

sentation learning by information maximizing generative ad-

versarial nets. In Advances in neural information processing

systems, pages 2172–2180, 2016.

[7] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep

generative image models using a laplacian pyramid of adver-

sarial networks. In Advances in neural information process-

ing systems, pages 1486–1494, 2015.

[8] Arnab Ghosh, Viveka Kulharia, Vinay Namboodiri,

Philip HS Torr, and Puneet K Dokania. Multi-agent

diverse generative adversarial networks. arXiv preprint

arXiv:1704.02906, 1(4), 2017.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014.

[10] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1501–1510, 2017.

[11] Xun Huang, Yixuan Li, Omid Poursaeed, John E Hopcroft,

and Serge J Belongie. Stacked generative adversarial net-

works. In CVPR, volume 2, page 3, 2017.

[12] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.

Multimodal unsupervised image-to-image translation. arXiv

preprint arXiv:1804.04732, 2018.

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. arXiv preprint, 2017.

[14] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

arXiv preprint arXiv:1812.04948, 2018.

[15] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh

Singh, and Ming-Hsuan Yang. Diverse image-to-image

translation via disentangled representations. arXiv preprint

arXiv:1808.00948, 2018.

[16] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised

image-to-image translation networks. In Advances in Neural

Information Processing Systems, pages 700–708, 2017.

[17] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc

Van Gool, Bernt Schiele, and Mario Fritz. Disentangled

person image generation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

99–108, 2018.

[18] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen

Wang, and Stephen Paul Smolley. Least squares genera-

tive adversarial networks. In Computer Vision (ICCV), 2017

IEEE International Conference on, pages 2813–2821. IEEE,

2017.

[19] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-

Dickstein. Unrolled generative adversarial networks. arXiv

preprint arXiv:1611.02163, 2016.

[20] Franziska Mueller, Florian Bernard, Oleksandr Sotny-

chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and

Christian Theobalt. Ganerated hands for real-time 3d hand

tracking from monocular rgb. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 49–59, 2018.

[21] Alec Radford, Luke Metz, and Soumith Chintala. Un-

supervised representation learning with deep convolu-

tional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.
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