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Abstract

We consider the problem of weakly supervised object de-

tection, where the training samples are annotated using

only image-level labels that indicate the presence or ab-

sence of an object category. In order to model the uncer-

tainty in the location of the objects, we employ a dissimilar-

ity coefficient based probabilistic learning objective. The

learning objective minimizes the difference between an an-

notation agnostic prediction distribution and an annotation

aware conditional distribution. The main computational

challenge is the complex nature of the conditional distri-

bution, which consists of terms over hundreds or thousands

of variables. The complexity of the conditional distribution

rules out the possibility of explicitly modeling it. Instead,

we exploit the fact that deep learning frameworks rely on

stochastic optimization. This allows us to use a state of the

art discrete generative model that can provide annotation

consistent samples from the conditional distribution. Ex-

tensive experiments on PASCAL VOC 2007 and 2012 data

sets demonstrate the efficacy of our proposed approach.

1. Introduction

Object detection requires us to localize all the instances

of an object category of interest in a given image. In re-

cent years, significant advances in speed and accuracy have

been achieved by detection frameworks based on Convolu-

tional Neural Networks (CNNs) [7, 13, 14, 16, 24, 26, 27].

Most of the existing methods require a strongly supervised

data set, where each image is labeled with the ground-

truth bounding boxes of all the object instances. Given the

high cost of obtaining such detailed annotations, researchers

have recently started exploring the weakly supervised ob-

ject detection (WSOD) problem [3, 9, 18, 21, 22, 23, 33,

34, 39, 40, 41, 42]. The goal of WSOD is to learn an accu-

rate detector using training samples that are annotated with

image-level labels (which indicate the presence of an object

category).

Given the wide availability of image-level labels,

WSOD offers a cost-effective and highly scalable learning

paradigm. However, this comes at the cost of introducing

uncertainty in the location of the object instances during

training. For example, consider the task of detecting a car.

Given a training image annotated to indicate the presence of

a car, we are still faced with the challenge of identifying the

bounding box for the car.

In order to effectively model uncertainty in weakly su-

pervised learning, Kumar et al. [20] proposed a probabilis-

tic framework that models two distributions: (i) a condi-

tional distribution, which represents the probability of an

output conditioned on the given annotation during training;

and (ii) a prediction distribution which represents the prob-

ability of an output at test time. The parameters of the two

distributions are estimated jointly by minimizing the dis-

similarity coefficient [25], which measures the distance be-

tween any two distributions using a task specific loss func-

tion.

The aforementioned dissimilarity coefficient based

framework has provided promising results in domains

where the conditional distribution is simple to model (that

is, consists of terms that depend on a few variables at a

time) [1, 20]. However, WSOD presents a more challenging

scenario due to the complexity of the underlying conditional

distribution. Specifically, given the hundreds or even thou-

sands of bounding box proposals for an image, the anno-

tation constraint imposes a term over all of these bounding

box proposals such that at least one of them corresponds

to the given image-level label. This leads to a challenging

scenario where the distribution is not factorizable over the

bounding box proposals. While previous works have ap-

proximated this uncertainty as a fully factorized distribution

for computational efficiency, we argue that such a choice

leads to poor accuracy.

To overcome the difficulty of a complex conditional dis-

tribution, we make the key observation that deep learning

relies on stochastic optimization. Therefore, we do not

need to explicitly model this complex distribution but sim-

ply estimate the distribution using samples. This observa-

tion opens the door to the use of state-of-the-art deep gen-

erative models such as the Discrete DISCO Net [4, 5].

We test the efficacy of our approach on the challeng-

ing PASCAL VOC 2007 and 2012 data sets. To generate
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the weakly supervised data sets, we use the image-level la-

bels, discarding the bounding box annotations. We achieve

53.6% detection AP on PASCAL VOC 2007 and 49.5% de-

tection AP on PASCAL VOC 2012 data set, significantly

improving the state-of-the-art by 1.5% on both data sets.

To summarize, we make the following contributions.

• Efficiently model the complex non-factorizable, an-

notation aware conditional distribution using the deep

generative model, the Discrete DISCO Net.

• Empirically show the importance of modeling the un-

certainty in the annotations in a single unified proba-

bilistic learning objective, the dissimilarity coefficient.

• State-of-the art performance for the task of WSOD on

challenging PASCAL VOC 2007 and 2012 data sets.

2. Related Work

Conventional methods often treat WSOD as a Multi-

ple Instance Learning (MIL) problem [10] by representing

each image as a bag of instances (that is, putative bounding

boxes) [2, 6, 31, 36, 38]. The learning procedure alternates

between training an object classifier and selecting the most

confident positive instances. However, these methods are

susceptible to poor initialization. To address this, differ-

ent strategies have been developed, which aim to improve

the initialization [19, 29, 30, 31], regularize the model with

extra cues [2, 6], or relax the MIL constraint [38] to make

the objective differentiable. These hard-MIL based methods

have demonstrated their effectiveness, specially when CNN

features are used to represent object proposals [6]. How-

ever, these models are not end to end trainable and also do

not explicitly model the uncertainty.

A more interesting line of work is to integrate MIL strat-

egy as deep networks such that they are end to end train-

able [3, 9, 12, 33, 34, 37, 40, 41, 42]. In their work, Bilen

et al. [3] proposed a smoothed version of MIL that softly

labels object proposals instead of choosing the highest scor-

ing ones. Building on this soft-MIL based approach, Diba et

al. [9] integrate the MIL strategy with better bounding box

proposals into an end-to-end cascaded deep network. Tang

et al. [33] refine the prediction iteratively through multi-

stage instance classifier. Zhang et al. [40] add curriculum

learning using the MIL framework. As we shall see, our for-

mulation brings out the curriculum learning naturally dur-

ing training. Other end-to-end trainable frameworks for

WSOD employ domain adaptation [22, 31], expectation-

maximization algorithm [18, 39] and saliency based meth-

ods [21]. Although these methods are end to end trainable,

they not only model a single distribution for two related

tasks, but also model the complex distribution with a fully

factorized one. This makes these approach sub-optimal as

what we truly want is to model a distribution which enforces

at least one bounding box proposals corresponding to the

image-level label.

There have been attempts to further improve the perfor-

mance of the weakly supervised detectors by combining

them with the strongly supervised detectors. Typically, the

predicted instances from a trained weakly supervised detec-

tor are treated as a pseudo-strong label to train a strongly

supervised network [12, 22, 33, 34, 40, 41, 42]. However,

there is only a unidirectional connection between the two

detectors. In their work, Wang et al. [37] train a weakly and

strongly supervised model jointly, in a collaborative man-

ner. This is similar in spirit to ours in using two distribu-

tions. However, they model their weakly supervised detec-

tor with a fully factorized distribution. The improvement in

results reported by these papers advocates the importance

of modeling two separate distributions. In this work, we ex-

plicitly define the two distributions employed during train-

ing and test time and jointly train them by minimizing the

dissimilarity coefficient [25] based objective function.

3. Model

3.1. Notation

We denote an input image as x ∈ R
(H×W×3), where H

and W are the height and the width of the image respec-

tively. For the sake of simplifying the subsequent descrip-

tion of our approach, we assume that we have extracted B

bounding box proposals from each image. In our experi-

ments, we use Selective Search [35]. Each bounding box

proposal, b(i), can belong to one of C + 1 categories from

the set {0, 1, . . . , C}, where category 0 is background, and

categories {1, . . . , C} are object classes.

We denote an image-level label by a ∈ {0, 1}C , where

a
(j) = 1 if image x contains the j-th object. Further-

more, we denote the unknown bounding box labels by

y ∈ {0, . . . , C}B , where y
(i) = j if the i-th bounding box

b(i) is of the j-th category. A weakly supervised data set

W = {(xi,ai)|i = 1, . . . , N} contains N pairs of images

xi and their corresponding image-level labels ai.

3.2. Probabilistic Modeling

Given a weakly supervised data set W , we wish to learn

an object detector that can predict the bounding box labels

y of a previously unseen image. Due to the uncertainty in-

herent in this task, we advocate the use of a probabilistic

formulation. Following [1, 20], we define two distributions.

The first one is the prediction distribution Prp(y|x;θp),
which models the probability of the bounding box labels

y given an input image x. Here θp are the parameters of the

distribution. As the name suggest, this distribution is used

to make the prediction at test time.

In addition to the prediction distribution, we also con-

struct a conditional distribution Prc(y|x,a;θc), which
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models the probability of the bounding box labels y given

the input image x and its image-level annotations a. Here

θc are the parameters of the distribution. The conditional

distribution contains additional information, namely the

presence of foreground objects in each image. Thus, we

can expect it to provide better predictions for the bounding

box labels y. We will use this property during training in

order to learn an accurate prediction distribution using the

conditional distribution. The details on the modeling of the

two distributions are discussed below.

3.2.1 Prediction Distribution

The task of the prediction distribution is to accurately model

the probability of the bounding box labels given the input

image. Taking inspiration from the supervised models [13,

14, 27], we assume independence between the probability

of the output for each bounding box proposal. Therefore,

the overall distribution for an image equals the product of

the probabilities of each proposal,

Prp(y|x;θp) =

B
∏

i=1

Prp(y
(i)|x;θp). (1)

We model this distribution using the Fast-RCNN architec-

ture [13] (see Figure 1(a)). As the prediction distribution

is specified by a neural network, we henceforth refer to it

as the prediction net. In this setting, the parameters of the

distribution θp are the weights of the prediction net.

3.2.2 Conditional Distribution

Given B bounding box proposals for an image x and

the image-level label a, the conditional distribution

Prc(y|x,a;θc) models the probability of bounding box la-

bels y under the constraint that they are compatible with the

annotation a. Specifically, there exists at least one bound-

ing box i such that y(i) = j, for every positive image-level

label a(j) = 1.

Note that due to the requirement that the bounding box

labels y are compatible with the annotation a, the con-

ditional distribution cannot be trivially decomposed over

bounding box proposals. This is in stark contrast to the sim-

ple prediction net, which uses a fully factorized distribution.

If one were to explicitly model the conditional distribution,

then one would be required to compute its partition function

during training, which would be prohibitively expensive. To

alleviate this computational challenge, we make a key ob-

servation that in practice we only need access to a represen-

tative set of samples from the conditional distribution. This

opens the door to the use of the recently proposed Discrete

DISCO Net [4]. In what follows, we briefly describe Dis-

crete DISCO Nets while highlighting their applicability to

our framework.

Discrete DISCO Net: Discrete DISCO Net [4] is a deep

probabilistic framework that implicitly represents a proba-

bility distribution over a discrete structured output space.

The strength of the framework lies in the fact that it allows

us to adapt a pointwise deep network (a network that pro-

vides a single pointwise prediction) to a probabilistic one

by the introduction of noise.

In the context of our setting, consider the modified Fast-

RCNN network in Figure 1(b) for the conditional distribu-

tion. Once again, as we are using a neural network, we will

henceforth refer to it as the conditional net. The parameters

of the conditional distribution θc are the weights of the con-

ditional net. The colored filters in the middle of the network

represent the noise that is sampled from a uniform distribu-

tion. Each value of the noise filter zk results in a different

score function1 Gk(y;x, zk,θc) ∈ R
B×C . We generate K

different score functions using K different noise samples.

These score functions are then used to sample correspond-

ing bounding box labels ŷk
c such that all ground truth labels

are present in it. This enables us to generate samples from

the underlying distribution encoded by the network param-

eters. Note that obtaining a single sample is as efficient as

a simple forward pass through the network. By placing the

filters sufficiently far away from the output layer of the net-

work, we can learn a highly non-linear mapping from the

uniform distribution (used to generate the noise filter) to the

output distribution (used to generate bounding box labels).

Inference: For the input pair (x, zk), the classification

branch of the conditional net outputs a score function

Gk(y;x, zk,θc), which is a B × C matrix. The (i, j)-th

element of the matrix, denoted by G
(i,j)
k , denotes the score

of the bounding box i belonging to the category j. We will

now redefine this score function such that it respects the

constraints imposed by the annotation a. In other words,

for each category j such that a(j) = 1 there must exist at

least one bounding box i in y such that y(i) = j. The joint

score for all the bounding box labels y is given by,

Sk(y;x, zk,θc) =
B
∑

i=1

Gk(y
(i);x, zk,θc)−Hk(y), (2)

where,

Hk(y) =











0 if ∀j ∈ {1, . . . , C} s.t. a(j) = 1,

∃i ∈ {1, . . . , B} s.t. y(i) = j,

∞ otherwise.

(3)

Given the scoring function in equation (2), we compute the

k-th sample as

ŷ
k
c = argmax

y∈Y

Sk(y;x, zk,θc). (4)

1The use of score function in this paper should not be confused with

the scoring rule theory, which is used to design the learning objective of

DISCO Nets.
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Figure 1. The overall architecture. (a) Prediction Network: a standard Fast-RCNN architecture is used to model the prediction net. For

an input image, bounding box proposals are generated from selective search [35]. Features from each of these proposals are computed

by the region of interest (ROI) pooling layers, which are then passed through the classifier and regressor to predict the final bounding

box. (b) Conditional Network: a modified Fast-RCNN architecture is used to model the conditional net. For a single input image x and

three different noise samples {z1, z2, z3} (represented as red, green and blue matrix), three different bounding boxes {y(1)
,y

(2)
,y

(3)}
are sampled for the given image-level label (bird in this example). Here the noise filter is concatenated as an extra channel to the final

convolutional layer. For both the networks, the initial conv-layers are fixed during training. Best viewed in color.

Note that in equation (4) the argmax needs to be computed

over the entire output space Y . A naı̈ve brute force algo-

rithm for this would be computationally infeasible. How-

ever, by using the structure of the higher order term Hk, we

can design an efficient yet exact algorithm for equation (4).

Specifically, we assign each bounding box proposal i to its

maximum scoring object class. If all the ground truth anno-

tations a are not present in the generated bounding box la-

bels, then we sample the bounding box which has the high-

est score corresponding to the foreground label, otherwise

we sample all bounding boxes which satisfies the constraint.

4. Learning Objective

In order to estimate the parameters of the prediction and

conditional distribution, θp and θc, we define a unified

probabilistic learning objective based on the dissimilarity

coefficient [25]. To this end, we require a task specific loss

function, which we define next.

4.1. Task Specific Loss Function

We define a loss function for object detection that de-

composes over the bounding box proposals as follows:

∆(y1,y2) =
1

B

B
∑

i=1

∆(y
(i)
1 ,y

(i)
2 ). (5)

Following the standard practice in most modern object

detectors [17], ∆(y
(i)
1 ,y

(i)
2 ) is further decomposed as a

weighted combination of the classification loss and the lo-

calization loss. We use λ to denote the loss ratio ( ratio of

the weight of localization loss to the weight of classification

loss). We use a simple 0 − 1 loss as our classification loss

∆cls, and smoothL1 [13] for our localization loss ∆loc.

Formally, the task specific loss is given by,

∆(y
(i)
1 ,y

(i)
2 ) = ∆cls(y

(i)
1 ,y

(i)
2 ) + λ∆loc(b

(i)
1 , b

(i)
2 ). (6)

4.2. Objective Function

The task of both the prediction distribution and the con-

ditional distribution is to predict the bounding box labels.

Moreover, as the conditional distribution utilizes the extra

information in the form of the image-level label, it is ex-

pected to provide more accurate predictions for the bound-

ing box labels y. Leveraging on the task similarity between

the two distributions, we would like to bring the two distri-

butions close to each other, so that the extra knowledge of

the conditional distribution can be transferred to the predic-

tion distribution. Taking inspiration from [1, 20], we design

a joint learning objective that can minimize the dissimilarity

coefficient [25] between the prediction distribution and con-

ditional distribution. In what follows, we briefly describe
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the concept of dissimilarity coefficient before applying it to

our setting.

Dissimilarity Coefficient: The dissimilarity coefficient

between any two distributions Pr1(·) and Pr2(·) is deter-

mined by measuring their diversities. The diversity of a dis-

tribution Pr1(·) and a distribution Pr2(·) is defined as the

expected difference between their samples, where the dif-

ference is measured by a task-specific loss function ∆′(·, ·).
Formally, we define the diversity as,

DIV∆′(Pr1,Pr2) =Ey1∼Pr1(·)[Ey2∼Pr2(·)

[∆′(y1,y2)]].
(7)

If the model correctly brings the two distribution close to

each other, we could expect the diversity DIV∆′(Pr1,Pr2)
to be small. Using this definition of diversity, the dissimi-

larity coefficient of Pr1 and Pr2 is given by,

DISC∆′(Pr1,Pr2) =DIV∆′(Pr1,Pr2)

− γDIV∆′(Pr2,Pr2)

− (1− γ)DIV∆′(Pr1,Pr1),

(8)

where γ ∈ [0, 1]. In other words, the dissimilarity coeffi-

cient between Pr1 and Pr2 is the difference between the

diversity of Pr1 and Pr2, and a convex combination of

their self-diversities. The self-diversity terms encourages

the samples from each of the two distribution to be diverse,

thus better representing the uncertainty of the task. In our

experiments, we use γ = 0.5, which results in a symmetric

dissimilarity coefficient between two distributions.

Learning Objective for Detection: Given the above def-

inition of dissimilarity coefficient, we can now specify our

learning objective for the task specific loss ∆ tuned for ob-

ject detection (6) as

θ
∗
p,θ

∗
c = argmin

θp,θc

DISC∆(Prp(θp),Prc(θc)), (9)

where each of the diversity terms can be derived from equa-

tion (7). As discussed in Section 3.2, the conditional dis-

tribution is difficult to model directly. Therefore, the cor-

responding diversity terms are computed by stochastic es-

timators from K samples ŷ
k
c of the conditional net. Thus,

each of the diversity terms can be written as2

(10)

DIV∆(Prp,Prc)

=
1

BK

B
∑

i=1

K
∑

k=1

∑

y
(i)
p

Prp(y
(i)
p ;θp)∆(y(i)

p , ŷk,(i)
c ),

2Details in the supplementary material

(11)

DIV∆(Prc,Prc)

=
1

K(K − 1)B

K
∑

k,k′=1
k′ 6=k

B
∑

i=1

∆(ŷk,(i)
c , ŷ′

k′,(i)

c ),

(12)DIV∆(Prp,Prp)

=
1

B

B
∑

i=1

∑

y
(i)
p

∑

y′
(i)
p

Prp(y
(i)
p ;θp) Prp(y

′(i)
p ;θp)∆(y(i)

p ,y′(i)
p ).

Here, DIV∆(Prp,Prc) measures the diversity between the

prediction net and the conditional net, which is the ex-

pected difference between the samples from the two dis-

tributions as measured by the task specific loss function

∆. Here Prp is explicitly modeled, hence the expectation

of its sample can be computed easily. However, as Prc is

not explicitly modeled, we compute the required expecta-

tion by drawing K samples from the distribution. Likewise,

DIV∆(Prc,Prc) measures the self diversity of the condi-

tional net. We draw K samples from the distribution to

compute the required expectation. Also, the self diversity

of the prediction net DIV∆(Prp,Prp) can be exactly com-

puted as Prp is explicitly modeled.

5. Optimization

As we employ deep neural networks to model the two

distributions, our objective function (9) is ideally suited to

be minimized by stochastic gradient descent. While it may

be possible to compute the gradients of both the networks

simultaneously, in this work we use a simple coordinate de-

scent optimization strategy. In more detail, the optimiza-

tion proceeds by iteratively fixing the prediction network

and learning the conditional network, followed by learning

the prediction network for fixed conditional network.

The main advantage of using the iterative training strat-

egy is that it results in an approach similar to the fully su-

pervised learning of each network. This in turn allows us to

readily use the algorithm developed in Fast-RCNN [13] and

Discrete DISCO Net [4]. The outputs from the fixed network

are treated as the pseudo ground truth bounding box labels

for the other network. Furthermore, the iterative learning

strategy also reduces the memory complexity of learning as

only one network is trained at a time.

Figure 2 provides the visualization of the performance

of the two networks over the different iterations of the iter-

ative learning procedure for two difficult cases. In Columns

1 and 2, different category objects are present in the same

image whereas, in columns 3 and 4, multiple instances of

the same category is present. The estimated bounding box

labels from the prediction net and those sampled from the

conditional net for two images are depicted. For conditional
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Figure 2. Example of predictions of prediction net and conditional net. For prediction net, the visualization is after taking standard non

maximal suppression using standard score threshold = 0.7. Column 1 and 3 are output of the prediction network while column 2 and 4

are output from the conditional network. Row 1 represents prediction of the two networks after first iteration and row 2 and 3 represents

prediction of the two networks after third and sixth (final) iteration respectively. Each object class is represented by different colored

bounding box, where green box represents the person category and red and blue represents the bottle and dog category respectively.

net, we superimpose five different samples of bounding box

labels. If all the samples agree with each other on bounding

box labels, then the bounding boxes will have a high over-

lap, otherwise they will be scattered across the image. For

visualization purposes only, a standard non maximal sup-

pression (NMS) is applied with a score threshold of 0.7 on

the output of the prediction net. However, note that the non

maximal suppression is not used during training of the pre-

diction net. The two steps of the iterative algorithm are de-

scribed below in brief. For completeness, the details are

provided in the supplementary material.

5.1. Optimization over Prediction Distribution

For a fixed set of parameters θc of the conditional net-

work, the learning objective of the prediction net corre-

sponds to the following:

θ
∗
p = argmin

θp

DIV∆(Prp,Prp)−(1−γ)DIV∆(Prp,Prp).

(13)

Note that, due to the use of dissimilarity coefficient, the

above objective differs slightly from the one used for Fast-

RCNN [13]. However, importantly, it is still differentiable

with respect to θp. Hence, the prediction net can be directly

optimized via stochastic gradient descent.

In order to visualize the optimization of the prediction

net, let us consider Figure 2. The first two columns show the

bounding box labels from the prediction and the conditional

nets for an image with single foreground object. As the im-

age has a large foreground object with a clean background,

both the prediction and the conditional nets have low uncer-

tainty. This represents an easy case where the prediction net

already has a high confidence for the bounding box labels

in initial iterations, and therefore has little to gain from the

conditional net. As expected, we see only a minor improve-

ment in the predicted bounding box labels of the prediction

net over the iterations.

The last two columns show bounding box labels from

the prediction and conditional nets for a challenging im-

age. The object dog presents moderate difficulty to our al-

gorithm, where initially the prediction net is highly uncer-

tain while the conditional net has low uncertainty. After few

iterations, the information present in the conditional net is

successfully transferred over to the prediction net. This is

shown in last row of the third column where the prediction

net does a reasonable job at estimating the bounding boxes.

The second object bottle in the image is a difficult exam-
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ple because of its small scale. We observe high uncertainty

in both the networks. In such cases the prediction and the

conditional nets will reject the bounding box labels having

high diversity. Moreover, the uncertainty in the prediction

net also decreases by learning from other easier instances of

the object present in the data set.

5.2. Optimization over Conditional Distribution

For a fixed set of parameters θp of the prediction net-

work, the learning objective for the conditional network cor-

responds to the following,

θ
∗
c = argmin

θc

DIV∆(Prp,Prc)− γDIV∆(Prc,Prc).

(14)

The above objective function is similar to the one used in

[4] for supervised learning of Discrete DISCO Nets. As our

conditional net employs a sampling procedure over the scor-

ing function Sk(y;θc), objective (14) is non-differentiable.

However, as observed in [4], it is possible to compute an

unbiased estimate of the gradients using the direct loss min-

imization technique [15, 32]. Therefore, the conditional

net can be optimized using stochastic gradient descent. We

present the technical details of optimization, which are sim-

ilar to those in [4], in the supplementary material.

In order to visualize the optimization of the conditional

net, let us first consider the easy case in Figure 2 (columns

1-2). Similar to the prediction net in the previous sub-

section, the uncertainty in the conditional net decreases

marginally over the iterations, as it already has high con-

fidence for the bounding box labels. For the challenging

objects present in the image of the last two columns, we

see that the prediction net has high uncertainty. The im-

provement in the predictions of the conditional net for these

two cases are mainly attributed to the information gained by

training on other easier examples of the dog and the bottle

category present in the data set.

6. Experiments

6.1. Data set and Evaluation Metrics

Data set: We evaluate our method on the challenging

PASCAL VOC 2007 and 2012 data sets [11] which have

9, 962 and 22, 531 images respectively for 20 object cat-

egories. These two data sets are divided into the train, val

and test sets. Here we choose trainval set of 5011 images for

VOC 2007 and 11, 540 images for VOC 2012 to train our

network. The trainval set is further split into 80% − 20%
to create new training and validation sets. We use a non-

standard training-validation split in order to maximize the

number of training images for our networks, while not over-

fitting our hyper-parameters on the test set. As we focus

on weakly supervised detection, only image-level labels are

utilized during training.

Evaluation Metric We use two metrics to evaluate our

detection performance. First we evaluate detection using

mean Average Precision (mAP) on the PASCAL VOC 2007

and 2012 test sets, following the standard PASCAL VOC

protocol [11]. Second, we compute CorLoc [8] on the PAS-

CAL VOC 2007 and 2012 trainval splits. CorLoc is the

fraction of positive training images in which we localize an

object of the target category correctly. Following [11], a de-

tected bounding box is considered correct if it has at least

0.5 IoU with a ground truth bounding box.

6.2. Implementation Details

We use standard Fast-RCNN [13] to model prediction

distribution and a modified Fast-RCNN to model the condi-

tional distribution, as shown in Figure 1(a). We use the Im-

ageNet pre-trained VGG16 Network [28] as the base CNN

architecture for both our prediction and conditional nets.

The Fast-RCNN architecture is modified by adding a

noise filter in its 5th conv-layer as an extra channel as shown

in Figure 1(b). A 1× 1 filter is used to bring the number of

channels back to the original dimensions (512 channels).

No architectural changes are made for the prediction net.

The bounding box proposals required for the Fast-RCNN

is obtained from the Selective Search algorithm [35]. Re-

sults based on the Region Proposal Networks are given in

the supplementary material.

Following the standard practice followed in Fast-RCNN,

we train and test our method on a single scale. We also

construct an ensemble by taking the ImageNet pre-trained

VGG11 and VGG13 along with VGG16 and report its re-

sults. For all our experiments we choose K = 5 for the

conditional net. That is, we sample 5 bounding boxes cor-

responding to 5 noise filters, which are themselves sampled

from a uniform distribution. For all other hyper-parameters,

we use the same configurations as described in [13].

6.3. Results

In this subsection, we will first compare our method with

existing state-of-the-art methods for detection and correct

localization tasks on VOC 2007 and 2012 data sets. Then

through ablation experiments, see how various terms of our

dissimilarity coefficient based objective function contribute

towards the accuracy gained. We present further ablation

studies in the supplementary material.

6.3.1 Comparison with other methods

We compare our proposed method with other state-of-the-

art weakly supervised methods. The detection average pre-

cision (AP) and correct localization (CorLoc) on the PAS-

CAL VOC 2007 and 2012 data sets are shown in Table 1,

Table 2 and Table 3 respectively. Compared with the other

methods, our proposed framework achieves state-of-the-art

performance using a single model.
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike pson plant sheep sofa train tv mAP

WSDDN [3] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3

WSCCN [9] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

k-EM [39] 59.8 64.6 47.8 28.8 21.4 67.7 70.3 61.2 17.2 51.5 34.0 42.3 48.8 65.9 9.3 21.1 53.6 51.4 54.7 50.7 46.1

OICR [33] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

ZLDN [40] 55.4 68.5 50.1 16.8 20.8 62.7 66.8 56.5 2.1 57.8 47.5 40.1 69.7 68.2 21.6 27.2 53.4 56.1 52.5 58.2 47.6

CL [37] 61.2 66.6 48.3 26.0 15.8 66.5 65.4 53.9 24.7 61.2 46.2 53.5 48.5 66.1 12.1 22.0 49.2 53.2 66.2 59.4 48.3

ML-LocNet [41] 60.8 70.6 47.8 30.2 24.8 64.9 68.4 57.9 11.0 51.3 55.5 48.1 68.7 69.5 28.3 25.2 51.3 56.5 60.0 43.1 49.7

WS-RPN [34] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 58.5 10.0 66.7 60.6 34.7 75.7 70.3 25.7 26.5 55.4 56.4 55.5 54.9 50.4

W2F [42] 63.5 70.1 50.5 31.9 14.4 72.0 67.8 73.7 23.3 53.4 49.4 65.9 57.2 67.2 27.6 23.8 51.8 58.7 64.0 62.3 52.4

Pred Net (VGG) 66.7 69.5 52.8 31.4 24.7 74.5 74.1 67.3 14.6 53.0 46.1 52.9 69.9 70.8 18.5 28.4 54.6 60.7 67.1 60.4 52.9

Pred Net (Ens) 67.7 70.4 52.9 31.3 26.1 75.5 73.7 68.6 14.9 54.0 47.3 53.7 70.8 70.2 19.7 29.2 54.9 61.3 67.6 61.2 53.6

Table 1. Detection average precision (%) for different methods on VOC 2007 test set.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike pson plant sheep sofa train tv mean

WSCCN [9] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

WSDDN [3] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0

ZLDN [40] 74.0 77.8 65.2 37.0 46.7 75.8 83.7 58.8 17.5 73.1 49.0 51.3 76.7 87.4 30.6 47.8 75.0 62.5 64.8 68.8 61.2

OICR [33] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3

CL [37] 85.8 80.4 73.0 42.6 36.6 79.7 82.8 66.0 34.1 78.1 36.9 68.6 72.4 91.6 22.2 51.3 79.4 63.7 74.5 74.6 64.7

k-EM [39] 79.8 77.8 66.7 50.3 57.0 80.1 89.9 71.5 29.9 75.9 30.5 58.9 73.2 90.2 25.4 51.8 80.2 60.3 72.4 78.9 65.0

WS-RPN [34] 83.8 82.7 60.7 35.1 53.8 82.7 88.6 67.4 22.0 86.3 68.8 50.9 90.8 93.6 44.0 61.2 82.5 65.9 71.1 76.7 68.4

ML-LocNet [41] 81.7 82.9 68.7 44.4 53.9 80.3 88.9 70.5 32.6 74.0 62.7 61.7 81.4 91.6 46.0 60.6 75.2 69.2 78.7 65.8 68.6

W2F [42] 85.4 87.5 62.5 54.3 35.5 85.3 86.6 82.3 39.7 82.9 49.4 76.5 74.8 90.0 46.8 53.9 84.5 68.3 79.1 79.9 70.3

Pred Net (VGG) 88.6 86.3 71.8 53.4 51.2 87.6 89.0 65.3 33.2 86.6 58.8 65.9 87.7 93.3 30.9 58.9 83.4 67.8 78.7 80.2 70.9

Pred Net (Ens) 89.2 86.7 72.2 50.9 51.8 88.3 89.5 65.6 33.6 87.4 59.7 66.4 88.5 94.6 30.4 60.2 83.8 68.9 78.9 81.3 71.4

Table 2. CorLoc (in %) for different methods on VOC 2007 trainval set.

Method WSCCN [9] DSL [18] OICR [33] W2F [42] PredNet(VGG) PredNet(Ens)

mAP % 37.9 38.3 42.5 47.8 48.4 49.5

CorLoc % - 58.8 65.6 69.4 69.5 70.2

Table 3. Results for different methods on VOC 2012. See supple-

mentary meterial for details.

Tables 1 and 2 shows that we significantly outperform

methods which only employ a fully factorized distribution

in MIL [3, 9]. This empirically demonstrates the useful-

ness of modeling a complex distribution. Compared to the

state-of-the-art method, which trains two separate networks

like ours, if we were to only train and test Zhang et al. [42]

(W2F) using a single scale, where they achieve 49.0% mAP,

we get an improvement of 3.9%. We approximate the use

of multiple scales by ensembling, which gives us a final im-

provement over the state-of-the-art method by over 1.2%

when compared on multiple scales.

The weakly supervised detector employed in W2F mod-

els the annotation constraint using a fully factorized distri-

bution. We argue that our choice of modeling the annotation

aware conditional distribution exactly but efficiently, using

Discrete DISCO Net, gives us the improved performance.

Moreover, unlike W2F, our method combines the weakly

supervised and the strongly supervised detectors with a sin-

gle learning objective instead of training them in a non-end-

to-end, cascaded fashion.

6.3.2 Effect of the diversity coefficient terms

In order to understand the effect of various diversity coeffi-

cient terms in our objective (8), we remove the self-diversity

term in one or both of our probabilistic networks (Prc and

Prp). In order to obtain a single sample from our condi-

tional network, we feed a zero noise vector (denoted by

PWc). The prediction network still outputs the probabil-

ity of each bounding box belonging to each class. However,

by removing the self-diversity term, we encourage it to out-

Method
Prp,Prc

(proposed)
Prp, PWc PWp,Prc PWp, PWc

Mean AP 52.9 50.1 52.6 49.5

Table 4. Detection Average Precision (%) for various ablative set-

tings on VOC 2007 test set

put a peakier distribution (denoted by PWp). Table 4 shows

that both the self-diversity terms are important to obtain the

maximum accuracy. Relatively speaking, it is more impor-

tant to include the self-diversity in the conditional network

in order to deal with the difficult examples (example, bottle

in figure 2). Moreover, this enforces a diverse set of outputs

from the conditional network, which helps the prediction

network to avoid overfitting the samples during training.

7. Discussion

We presented a novel framework to train an object detec-

tor using a weakly supervised data set. Our framework em-

ploys a probabilistic objective based on dissimilarity coeffi-

cient to model the uncertainty in the location of objects. We

show that explicitly modeling the complex non-factorizable

conditional distribution is a necessary modeling choice and

present an efficient mechanism based on a discrete gener-

ative model, the Discrete DISCO Nets, to do so. Extensive

experiments on the benchmark data sets have shown that our

framework successfully transfers the information present in

the image-level annotations for the task of object detection.

In future, we would like to investigate the use of active

learning, to further benefit our network in terms of the ac-

curacy of the fully supervised annotations. This will help

bridge the performance gap between the strongly supervised

detectors and detectors trained using low-cost annotations.
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