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Abstract

Generalized zero-shot learning (GZSL) is the problem of

learning a classifier where some classes have samples and

others are learned from side information, like semantic at-

tributes or text description, in a zero-shot learning fashion

(ZSL). Training a single model that operates in these two

regimes simultaneously is challenging. Here we describe

a probabilistic approach that breaks the model into three

modular components, and then combines them in a consis-

tent way. Specifically, our model consists of three classi-

fiers: A “gating” model that makes soft decisions if a sam-

ple is from a “seen” class, and two experts: a ZSL expert,

and an expert model for seen classes. We address two main

difficulties in this approach: How to provide an accurate

estimate of the gating probability without any training sam-

ples for unseen classes; and how to use expert predictions

when it observes samples outside of its domain.

The key insight to our approach is to pass information

between the three models to improve each one’s accuracy,

while maintaining the modular structure. We test our ap-

proach, adaptive confidence smoothing (COSMO), on four

standard GZSL benchmark datasets and find that it largely

outperforms state-of-the-art GZSL models. COSMO is also

the first model that closes the gap and surpasses the perfor-

mance of generative models for GZSL, even-though it is a

light-weight model that is much easier to train and tune.

1. Introduction

Generalized zero-shot learning (GZSL) [9] is the prob-

lem of learning to classify samples from two different do-

mains of classes: seen classes, trained in a standard su-

pervised way from labeled samples, and unseen classes,

learned from external knowledge, such as attributes or nat-

ural language, in a zero-shot-learning fashion. GZSL poses

a unique combination of hard challenges: First, the model

has to learn effectively for classes without samples (zero-

shot). It also needs to learn well for classes with many sam-

ples. Finally, the two very different regimes should be com-

bined in a consistent way in a single model. GZSL can be
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Figure 1. A qualitative illustration of COSMO : An input image is

processed by two experts: A seen-classes expert, and an unseen-

classes expert, which is a zero-shot model. (1) When an image is

from a seen class, the zero-shot expert may still produce an overly-

confident false-positive prediction. COSMO smooths the predic-

tions of the unseen expert if it believes that the image is from a

seen class. The amount of smoothing is determined by a novel

gating classifier. (2) Final GZSL predictions are based on a soft

combination of the predictions of two experts, with weights pro-

vided by the gating module.

viewed as an extreme case of classification with unbalanced

classes, hence solving the last challenge can lead to better

ways of addressing class imbalance, which is a key problem

in learning with real-world data.

The three learning problems described above operate in

different learning setups, hence combining them into a sin-

gle model is challenging. Here, we propose an architec-

ture with three modules, each focusing on one problem. At

inference time, these modules share their prediction confi-

dence in a principled probabilistic way in order to reach an

accurate joint decision.

One natural instance of this modular architecture is hard

gating: Given a test sample, the gate assigns it either to a

seen expert - trained as a standard supervised classifier - or

to an unseen expert - trained in a zero-shot-learning fash-

ion [39]. Only the selected expert is used for prediction,

ignoring the other expert. Here we study a more general

case, where both the seen expert and the unseen expert pro-

cess each test sample, and their predictions are combined

in a soft way. Specifically, the predictions are combined by
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the soft gater using the law of total probability: p(class) =
p(class|seen)p(seen) + p(class|unseen)p(unseen).

Unfortunately, softly combining expert decisions raises

several difficulties. First, when training a gating module it

is hard to provide an accurate estimate of the probability

that a sample is from the “unseen” classes, because by def-

inition no samples have been observed from those classes.

Second, experts tend to behave in uncontrolled ways when

presented with out-of-distribution samples, often producing

confident-but-wrong predictions. As a result, when using a

soft combination of the two expert models, the “irrelevant”

expert may overwhelm the decision of the correct expert.

We address these issues in two ways. First, we show

how to train a binary gating mechanism to classify the

Seen/Unseen domain based on the distribution of softmax

class predictions. The idea is to simulate the softmax re-

sponse to samples of unseen classes using a held-out sub-

set of training classes, and represent expert predictions in

a class-independent way. Second, we introduce a Laplace-

like prior [28] over softmax outputs in a way that uses in-

formation from the gating classifier. This additional infor-

mation allows the experts to estimate class confidence more

accurately.

This combined approach, named adaptive COnfidence

SMOothing (COSMO ), has significant advantages. It can

incorporate any state-of-the-art zero-shot learner as a mod-

ule, as long as it outputs class probabilities; It is very easy to

implement and apply (code provided) since it has very few

hyper-parameters to tune; Finally, it outperforms compet-

ing approaches on all four GZSL benchmarks (AWA, SUN,

CUB, FLOWER). Our main novel contributions are:

• A new soft approach to combine decisions of seen and

unseen classes for GZSL.

• A new “out-of-distribution” (OOD) classifier to separate

seen from unseen classes, and a negative result, showing

that modern OOD classifiers have limited effectiveness

on ZSL benchmarks.

• New state-of-the-art results for GZSL for all four main

benchmarks, AWA, SUN, CUB and FLOWER. COSMO

is the first model that is comparable to or better than gen-

erative models of GZSL, while being easy to train.

• A characterization of GZSL approaches on the seen-

unseen accuracy plane.

2. Related work

In a broad perspective, zero-shot learning is a task of

compositional reasoning [21, 22, 6, 4], where new concepts

are constructed by recombining primitive elements [22].

This ability resembles human learning, where humans can

easily recombine simple skills to solve new tasks [21]. ZSL

has attracted significant interest in recent years [47, 13, 23,

35, 18, 3, 52, 48, 25, 40]. As our main ZSL module, we

use LAGO [7], a state-of-the-art approach which learns to

combine attribute that describes classes using an AND-OR

group structure to estimate p(class|image).
Generalized ZSL extends ZSL to the more realistic sce-

nario where the test data contains both seen and unseen

classes. There are two kinds GZSL methods. First, some

approaches synthesize feature vectors of unseen classes us-

ing generative models like VAE of GAN, and then use them

in training [46, 10, 5, 29, 54]. Second, approaches that use

the semantic class descriptions directly during training and

inference [41, 52, 14, 51, 27, 39, 9]. To date, the first kind,

methods that augment data, perform better.

Among previous GZSL approaches, several are closely

related to COSMO . [39] uses a hard gating mechanism to

assign a sample to one of two domain experts. [9] calibrates

between seen and unseen class scores by subtracting a con-

stant value from seen class scores. [27] uses temperature

scaling [16] and an entropy regularizer to make seen class

scores less confident and unseen scores more confident.

Detecting out-of-distribution samples: Our approach

to soft gating builds on developing an out-of-distribution

detector, where unseen images are treated as “out-of-

distribution” samples. There is a large body of work on

1-class and anomaly detection which we do not survey

here. In this context, the most relevant recent work includes

[15, 26, 42, 37]. [15] detects an OOD sample if the largest

softmax score is below a threshold [26] scales the softmax

“temperature” [16] and perturbs the input with a small gra-

dient step. [37] represents each class by multiple word-

embeddings and compares output norms to a threshold. [42]

trains an ensemble of models on a set of “leave-out” classes,

with a margin loss that encourages high-entropy scores for

left-out samples.

When testing [26, 42] on the ZSL benchmarks studied in

this paper (CUB, SUN, AWA), we found the perturbation

approach of [26] hurts OOD detection, and that the loss of

[42] overfits on the leave-out classes. We discuss possible

explanation of these effects in Supplementary (B).

Mixture of experts (MoE): In MoE [17, 49, 38], given

a sample, a gating network first assigns weights to multiple

experts. The sample is then classified by those experts, and

their predictions are combined by the gating weights. All

parts of the model are usually trained jointly, often using

an EM approach. Our approach fundamentally differs from

MoE in that, at training time, it is known for every sam-

ple whether or not it was already seen. As a result, experts

can be trained separately without any need to infer latent

variables, ensuring that each module is an expert of its own

domain (seen or unseen).

3. Generalized zero-Shot learning

We start with a formal definition of zero-shot learning

(ZSL) and then extend it to generalized ZSL.
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COSMO Confidence Based Gating

Figure 2. Left, COSMO Architecture: We decompose the GZSL task into three sub-tasks that can be addressed separately. (1) A model

trained to classify seen S classes. (2) A model classifying unseen U classes, namely a ZSL model, conditioned on U . (3) A gating binary

classifier trained to discriminate between seen and unseen classes and to weigh the two models in a soft way; Before weighing (1) & (2)

softmax distributions, we add a prior for each if the gating network provides low confidence (Figure 1 and Sec 4.2). Right, The gating

network (Zoom-in): It takes softmax scores as inputs. We train it to be aware of the response of softmax scores to unseen images, with

samples from held-out classes. Because test classes are different from train classes, we pool the top-K scores, achieving invariance to class

identity (Section 4.1). The fully-connected layer only learns 10-50 weights (K is small) since this is a binary classifier.

In zero-shot learning, a training set D has N labeled

samples: D = {(xi, yi), i = 1 . . . N} , where each xi is

a feature vector and yi ∈ S is a label from a seen class

S = {1, 2, . . . |S|}.

At test time, a new set of samples D′ = {xi, i =
N + 1 . . . N + M} is given from a set of unseen classes

U = {|S| + 1, . . . |S| + |U|}. Our goal is to predict

the correct class of each sample. As a supervision sig-

nal, each class y ∈ S∪U is accompanied with a class-

description vector ay in the form of semantic attributes

[23] or natural language embedding [34, 54, 39]. The crux

of ZSL is to learn a compatibility score for samples and

class-descriptions F (ay,x), and predict the class y that

maximizes that score. In probabilistic approaches to ZSL

[23, 24, 44, 39, 7, 27] the compatibility function assigns a

probability for each class p(Y = y|x) = F (ay,x), with Y
viewed as a random variable for the label y of a sample x.

Generalized ZSL: While in ZSL test samples are drawn

from the unseen classes Y ∈ U , in GZSL samples are drawn

from either the seen or unseen domains: Y ∈ S∪U .

Notation: Below, we denote an unseen class by Y ∈ U
and a seen one by Y ∈ S . Given a sample x and a label

y we denote the conditional distribution that a class is seen

by p(S) = p(Y ∈ S|x), or unseen p(U) = p(Y ∈ U|x) =
1 − p(Y ∈ S|x), and the conditional probability of a label

by p(y) = p(Y = y|x), p(y|S) = p(Y = y|Y ∈ S,x) and

p(y|U) = p(Y = y|Y ∈ U ,x). For ease of reading, our

notation does not explicitly state the conditioning on x.

4. Our approach

We now describe COSMO, a probabilistic approach that

breaks the model into three modules. The key idea is

that these modules exchange information to improve each

other’s accuracy. Formally, by the law of total probability

p(y) = p(y|S)p(S) + p(y|U)p(U) . (1)

This formulation decomposes GZSL into three sub-tasks

that can be addressed separately. (1) p(y|S) can be es-

timated by any model trained to classify seen S classes,

whose prediction we denote by pS(y|S). (2) Similarly,

p(y|U) can be computed by a model classifying unseen U
classes, namely a ZSL model, whose prediction we denote

by pZS(y|U). (3) Finally, the two terms are weighted by

p(S) and p(U) = 1 − p(S), which can be computed by a

gating classifier, whose prediction we denote by pGate, that

is trained to distinguish seen from unseen classes. Together,

we obtain a GZSL mixture model:

p(y) = pS(y|S)pGate(S) + pZS(y|U)pGate(U) (2)

A hard variant of Eq. (2) was introduced in [39], where the

gating mechanism makes a hard decision to assign a test

sample to one of two expert classifiers, pZS or pS . Unfortu-

nately, although conceptually simple, using a soft mixture

model raises several problems.

First, combining models in a soft way means that each

model contributes its beliefs, even for samples from the

other “domain”. This tends to damage the accuracy because

multiclass models tend to assign most of the softmax distri-

bution mass to very few classes, even when their input is

random noise [15]. For instance, when the unseen classifier

is given an input image from a seen class, its output distri-

bution tends to concentrate on a few spurious classes. This

peaked distribution “confuses” the combined GZSL mix-

ture model, leading to a false-positive prediction of the spu-

rious classes. A second challenge for creating a soft gating
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model is to assign accurate weights to the two experts. This

is particularly complex when discriminating seen from un-

seen classes, because it requires access to training samples

of the unseen domain.

COSMO addresses these two problems using a novel

confidence-based gating network and by applying a novel

prior during inference. Its inference process is summarized

in Algorithm 1, and a walk-through example is provided in

Supplementary A. Next, we describe COSMO in detail.

4.1. Confidence­based gating model

The gating module aims to decide if an input image

comes from a seen class or an unseen class. Since no train-

ing samples are available for unseen classes, we can view

this problem in the context of Out-Of-Distribution detec-

tion by treating seen-class (S) images as “in-distribution”

and unseen-class (U ) images as “out-of-distribution”.

Several authors proposed training an OOD detector

on in-distribution data, and detect an image as out-of-

distribution if the largest softmax score is below a thresh-

old [15, 26, 42]. Here we improve this approach by train-

ing a network on top of the softmax output of the two ex-

perts, with the goal of discriminating U images from S im-

ages. Intuitively, this can improve the accuracy of the gating

module because the output response of the two experts dif-

fers for S images and U images. We name this network as

confidence-based gate (CBG). It is illustrated in Figure 2.

One important technical complication is that training the

CBG cannot observe any U images, because they must be

used as unseen. We therefore create a hold-out set from S
classes that are not used for training and use them to esti-

mate the output response of the experts over U images. Be-

low, we refer to this set of classes as held-out H classes, and

their images as H images. Note that due to similar reasons

we cannot train the gater jointly with the S and U experts.

See Supplementary D for details.

This raises a further complexity: Training the unseen ex-

pert on H classes means that at test time, when presented

with test classes, The unseen expert should have an output

layer that is different from its output layer during training.

Specifically, it corresponds to new (test) classes, possibly

with a different dimension. To become invariant to identity

and the order of H classes in the output of the expert, the

CBG takes the top-K scores of the soft max and sorts them.

This process, which we call top-k pooling, guarantees that

the CBG is invariant to the specific classes presented. Top-

K pooling generalizes max-pooling, and becomes equiva-

lent to max pooling for K=1.

4.2. Adaptive confidence smoothing

As we described above, probabilistic classifiers tend to

assign most of the softmax mass to very few classes, even

when a sample does not belong to any of the classes in

the vocabulary. Intuitively, when given an image of out-of-

vocabulary class as input, we would expect all classes to ob-

tain a uniformly low probability, since they are all “equally

wrong”. To include this prior belief in our model we borrow

ideas from Bayesian parameter estimation. Consider the set

of class-confidence values as the quantity that we wish to

estimate, based on the confidence provided by the model

(softmax output scores). In Bayesian estimation, one com-

bines the data (here, the predicted confidence) with a prior

distribution (here, our prior belief).

Specifically, for empirical categorical (multinomial)

data, Laplace smoothing [28] is a common technique to

achieve a robust estimate with limited samples. It amounts

to adding “pseudo counts” uniformly across all classes, and

functions as a prior distribution over classes. We can apply

a similar technique here, and combine the predictions with

an additive prior distribution πU = p0(y|U). This yields

pλ(y|U) = (1−λ) p(y|U) + λπU , (3)

where λ weighs the prior, and πU is not conditioned on x.

Similarly, for the seen distribution, we set pλ(y|S) = (1 −
λ)p(y|S) + λπS . When no other information is available

we set the prior to the maximum entropy distribution, which

is the uniform distribution πU = 1/(#unseen classes) and

πS = 1/(#seen classes).

An Adaptive Prior: How should the prior weight λ be

set? In Laplace smoothing, adding a constant pseudocount

has the property that its relative weight decreases as more

samples are available. Intuitively, this means that when

the data provides strong evidence, the prior is weighted

more weakly. We adopt this intuition for making the trade-

off parameter λ adaptive. Intuitively, if we believe that a

sample does not belongs to a seen class, we smooth the seen

classifier outputs (Figure 1). More specifically, we apply an

adaptive prior by replacing the constant λ with our belief

about each domain (for p′(y|U) set λ = p(U)):

p′(y|U) = p(U)p(y|U) + (1−p(U))πU

= p(y,U) + (1−p(U))πU . (4)

Similarly p′(y|S) = p(S)p(y|S) + (1 − p(S))πS . In

practice, we use the ZS model estimation for p(y,U), and

the gating model estimation for p(U), yielding p′(y|U) =
pZS(y,U) + (1− pGate(U))πU and similarly for p′(y|S).

The resulting model has two interesting properties. First,

it reduces hyper-parameter tuning, because prior weights

are determined automatically. Second, smoothing adds a

constant value to each score, hence it maintains the class

that achieves the maximum of each individual expert, but at

the same time affects their combined prediction in Eq. (2).
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Algorithm 1. COSMO Inference

1: Input: Image

2: Estimate pS(y,S) and pZS(y,U) of two experts

3: Estimate pGate(S) = f
(

pS(y,S), pZS(y,U)
)

; Fig. 2

4: Estimate p′(y|S) and p′(y|U) by smoothing; Eq. (4)

5: Estimate p(y) by soft-combining; Eq. (2)

5. Details of our approach

Our approach has three learning modules: A model for

seen classes, for unseen classes, and for telling them apart.

The three components are trained separately. Supp. section

D explains why they cannot be trained jointly in this setup.

A model for unseen classes. For unseen classes, we use ei-

ther LAGO [7] or fCLSWGAN [46] with the code provided

by the authors. Each of these models achieves state-of-the-

art results for part of ZSL benchmarks. LAGO predicts

pZS(y|x) by learning an AND-OR group structure over at-

tributes. fCLSWGAN [46] uses GAN to augment the train-

ing data with synthetic feature vectors of unseen classes,

and then trains a classifier to recognize the classes. We re-

trained the models on the GZSL split (Figure 4).

A model for seen classes. For seen classes, we trained a

logistic regression classifier to predict pS(y|x). We used

a LBFGS solver [11] with default aggressiveness hyper-

parameter (C=1) of sci-kit learn [33], as it exhibits good

performance over the Seen-Val set (Figure 4).

A confidence-based gating model. To discriminate be-

tween Seen and Unseen classes, we use a logistic regression

classifier to predict p(S|x), trained on the Gating-Train set

(Figure 4). For input features, we use softmax scores of

both the unseen expert (pZS) and seen expert (pS). We also

apply temperature scaling [26] to inputs from pS , Figure 2.

We used the sci-kit learn LBFGS solver with default ag-

gressiveness hyper parameter (C=1) because the number of

weights (∼10-50) is much smaller than the number of train-

ing samples (∼thousands). We tune the decision threshold

and softness of the gating model by adding constant bias β
and applying a sigmoid with γ gain on top of its scores:

p(S|x) = σ
{

γ[score− β]
}

. (5)

γ and β were tuned using cross validation.

6. Experiments

We tested COSMO on four GZSL benchmarks and com-

pared to 17 state-of-the art approaches.

The source code to reproduce our experiments is un-

der http://chechiklab.biu.ac.il/˜yuvval/

COSMO/.

6.1. Evaluation protocol

To evaluate COSMO we follow the protocol of Xian

[47, 45], which became the common experimental frame-

work for comparing GZSL methods. Our evaluation uses

its features (ResNet [20]), cross-validation splits, and eval-

uation metrics for comparing to state-of-the-art baselines.

Evaluation Metrics: By definition, GZSL aims at two

different sub-tasks: classify seen classes and classify un-

seen classes. The standard GZSL evaluation metrics there-

fore combine accuracy from these two sub-tasks. Fol-

lowing [45], we report the harmonic mean of Acctr -

the accuracy over seen classes, and Accts - the accu-

racy over unseen classes, see Eq. 21 in [45], AccH =
2(AcctsAcctr)/(Accts +Acctr).

As a second metric, we compute the full seen-unseen ac-

curacy curve using a parameter to sweep over the decision

threshold. Like the precision-recall curve or ROC curve, the

seen-unseen curve provides a tunable trade-off between the

performance over the seen and unseen domains.

Finally, we report the Area Under Seen-Unseen Curve

(AUSUC) [9].

6.2. Datasets

We tested COSMO on four generalized zero-shot learn-

ing benchmark datasets: CUB, AWA, SUN and FLOWER.

CUB [43]: is a task of fine-grained classification of bird-

species. CUB has 11,788 images of 200 bird species. Each

species described by 312 attributes (like wing-color-olive,

beak-shape-curved). It has 100 seen training classes, 50

unseen validation and 50 unseen test classes.

AWA: Animals with Attributes (AWA) [23] consists of

30,475 images of 50 animal classes. Classes and attributes

are aligned with the class-attribute matrix of [31, 19], using

a vocabulary of 85 attributes (like white, brown, stripes, eat-

fish). It has 27 seen training classes, 13 unseen validation

and 10 unseen test classes.

SUN [32]: is a dataset of complex visual scenes, having

14,340 images from 717 scene types and 102 semantic at-

tributes. It has 580 seen training classes, 65 unseen valida-

tion and 72 unseen test classes.

FLOWER [30]: is a dataset of fine-grained classification

of flowers, with 8189 images of 102 classes. Class descrip-

tions are based on sentence embedding from [34]. We did

not test COSMO+LAGO with this dataset because LAGO

cannot use sentence embedding.

6.3. Cross­validation

For selecting hyper-parameters for COSMO, we make

two additional splits: GZSL-val and Gating Train / Val. See

Figure 4 for details.

We used cross-validation to optimize the AccH metric

over β and γ of Eq. (5) on the GZSL-Val set. We tuned these
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Figure 3. The Seen-Unseen curve for COSMO+LAGO, compared with: (1) The curve of CS+LAGO [9] baseline, (2) 15 baseline GZSL

models. Dot markers denote samples of each curve. Squares: COSMO cross-validated model and its LAGO-based baselines. Triangles:

non-generative approaches, ’X’: approaches based on generative-models. Generative models tend to tend to be biased toward the Unseen

classes, while non-generative models tend to be biased toward the Seen classes. Importantly, the COSMO curve achieves a better or

equivalent performance compared to all methods, and allows to easily choose any operation point along the curve.

DATASET AWA SUN CUB FLOWER
Accts Acctr AccH Accts Acctr AccH Accts Acctr AccH Accts Acctr AccH

NON-GENERATIVE MODELS
ESZSL [36] 6.6 75.6 12.1 11 27.9 15.8 12.6 63.8 21 11.4 56.8 19
SJE [2] 11.3 74.6 19.6 14.7 30.5 19.8 23.5 59.2 33.6 13.9 47.6 21.5
DEVISE [12] 13.4 68.7 22.4 16.9 27.4 20.9 23.8 53 32.8 9.9 44.2 16.2
SYNC [8] 8.9 87.3 16.2 7.9 43.3 13.4 11.5 70.9 19.8 - - -
ALE [1] 16.8 76.1 27.5 21.8 33.1 26.3 23.7 62.8 34.4 34.4 13.3 21.9
DEM [52] 32.8 84.7 47.3 - - - 19.6 57.9 29.2 - - -
KERNEL [50] 18.3 79.3 29.8 19.8 29.1 23.6 19.9 52.5 28.9 - - -
ICINESS [14] - - - - - 30.3 - - 41.8 - - -
TRIPLE [51] 27 67.9 38.6 22.2 38.3 28.1 26.5 62.3 37.2 - - -
RN [41] 31.4 91.3 46.7 - - - 38.1 61.1 47 - - -

GENERATIVE MODELS
SE-GZSL [5] 56.3 67.8 61.5 40.9 30.5 34.9 41.5 53.3 46.7 - - -
FCLSWGAN [46] 59.7 61.4 59.6 42.6 36.6 39.4 43.7 57.7 49.7 59 73.8 65.6
FCLSWGAN* (BY PROVIDED CODE) 53.6 67 59.6 40.1 36 37.9 45.1 55.5 49.8 58.1 73.2 64.8
CYCLE-(U)WGAN [10] 59.6 63.4 59.8 47.2 33.8 39.4 47.9 59.3 53.0 61.6 69.2 65.2

COSMO AND BASELINES
CMT [39] 8.4 86.9 15.3 8.7 28 13.3 4.7 60.1 8.7 - - -
DCN [27] 25.5 84.2 39.1 25.5 37 30.2 28.4 60.7 38.7 - - -
LAGO [7] 21.8 73.6 33.7 18.8 33.1 23.9 24.6 64.8 35.6 - - -
CS [9] + LAGO 45.4 68.2 54.5 41.7 25.9 31.9 43.1 53.7 47.9 - - -
OURS: COSMO+FCLSWGAN* 64.8 51.7 57.5 35.3 40.2 37.6 41.0 60.5 48.9 59.6 81.4 68.8
OURS: COSMO+LAGO 52.8 80 63.6 44.9 37.7 41.0 44.4 57.8 50.2 - - -

Table 1. Comparing COSMO with state-of-the-art GZSL non-generative models and with generative models that synthesize feature vectors.

Acctr is the accuracy of seen classes, Accts is the accuracy of unseen classes and AccH is their harmonic mean. COSMO+LAGO uses

LAGO [7] as a baseline GZSL model, and respectively COSMO+fCLSWGAN uses fCLSWGAN [46]. COSMO+LAGO improves AccH
over state-of-the-art models by 34%, 35%, 7% respectively for AWA, SUN and CUB. Comparing with generative models, COSMO+LAGO

closes the non-generative:generative performance gap, and is comparable to or better than these models, while is very easy to train.

hyper params by first taking a coarse grid search, and then

making a finer search around the best performing values for

the threshold. Independently, we used cross-validation on

Gating-Train/Val to optimize the out-of-distribution AUC

over T (Temperature) and K (for top-K pooling).

We stress that training the gating network using Gating-

Train/Val is not considered as training with external data,

because in accordance with [45], once hyper parameters are

selected, models are retrained on the union of the training

and the validation sets (excluding the gating model).
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Figure 4. GZSL cross-validation splits. The data is organized

across classes and samples. We define Seen-Val as a subset of the

seen-training samples provided by [47, 45]. We define GZSL-Val

= Seen-Val ∪ Unseen-Val (in pink). We use GZSL-Val to select

the model’s hyper-parameters and learn (∼10-50) weights of the

gating network. We split GZSL-Val to Gating-Train and Gating-

Val subsets, and use Gating-Train as the held-out subset to train

the gating model and Gating-Val to evaluate its metrics.

6.4. Compared methods

We compare COSMO with 17 leading GZSL meth-

ods. These include widely-used baselines like ESZSL [36],

ALE [1], SYNC [8], SJE [2], DEVISE [12], recently pub-

lished approaches RN [41], DEM [52], ICINESS [14],

TRIPLE [51], Kernel [50] and methods that provide inter-

esting insight into the method, including CMT [39], DCN

[27], LAGO [7] and CS [9], which we reproduced using

LAGO as a ZSL module.

Recent work showed that generating synthetic samples

of unseen classes using GANs or VAEs [46, 10, 5, 54] can

substantially improve generalized zero-shot learning . The

recent literature considers this generative effort to be or-

thogonal to modelling, since the two efforts can be com-

bined [27, 7, 53, 14, 51]. Here we compare COSMO di-

rectly both with the approaches listed above, and with gen-

erative approaches fCLSWGAN [46], cycle-(U)WGAN

[10], SE-GZSL [5].

AWA SUN CUB FLOWER

ESZSL 39.8 12.8 30.2 25.7
LAGO [7] 43.4 16.3 34.3 -
FCLSWGAN 46.1 22 34.5 53.1
CYCLE-(U)WGAN 45 22.5 40.4 56.9

COSMO & FCLSWGAN 55.9 21 35.6 58.1
COSMO & LAGO 53.2 23.9 35.7 -

Table 2. Area Under Seen-Unseen Curve (AUSUC) on the test

set: On all datasets, COSMO improves AUSUC for LAGO and

fCLSWGAN. COSMO introduces new state-of-the-art results on

3 of 4 datasets.

7. Results

We first describe the performance of COSMO on the test

set of the four benchmarks and compare them with baseline

methods. We then study in greater depth the properties of

COSMO, through a series of ablation experiments.

Table 1 describes the test accuracy of COSMO+LAGO

, COSMO+fCLSWGAN and compared methods over the

four benchmark datasets. Compared with non-generative

models, COSMO+LAGO improves the harmonic accuracy

AccH by a large margin for all four datasets: 63.6% vs

47.3% in AWA, 41% vs 30.3% in SUN and 50.2% vs 47%

in CUB.

In addition, COSMO+LAGO closes the performance

gap with generative approaches. It wins in AWA (63.6%

versus 61.5%) and SUN (41% versus 39.4%), and loses in

CUB (50.2% versus 53%). Interestingly, COSMO+LAGO

reaches state-of-the-art performance although LAGO alone

performed poorly on the generalized ZSL task.

COSMO+fCLSWGAN provides a new state-of-the-art

result on FLOWER (68.8% vs 65.6%). On AWA, SUN and

CUB it achieves lower performance than fCLSWGAN and

COSMO+LAGO. This happens because the chosen operat-

ing point for (Acctr , Accts ), selected by cross validation,

was not optimal for the harmonic accuracy AccH . More

details are provided in Supplementary C.

7.1. The seen­unseen plane

By definition, the GZSL task aims to perform well in

two different metrics: accuracy on seen classes and on un-

seen classes. It is therefore natural to compare approaches

by their performance on the seen-unseen plane. This is im-

portant, because different approaches may select different

operating-points to trade seen and unseen accuracy.

In Figure 3 we provide a full Seen-Unseen curve (blue

dots) that shows how COSMO+LAGO trade-off the met-

rics. We compare it with a curve that we computed for the

CS+LAGO baseline (orange dots) and also show the results

(operation-points) reported for the compared methods. For

plotting the curves, we sweep over the decision threshold

(β) of the gating network, trading its true-positive-rate with

its false-positive-rate. In the blue-square we show our op-

erating point which was selected with cross-validation by

choosing the best AccH on GZSL-Val set.

An interesting observation is that different types of mod-

els populate different regions of the Seen-Unseen curve.

Generative models (X markers) tend to favor unseen-

classes accuracy over accuracy of seen classes, while non-

generative models (triangles) tend to favor seen classes. Im-

portantly, COSMO can be tuned to select any operation

point along the curve, and achieve better or equivalent per-

formance at all regions of the seen-unseen plane.

In Supplementary Figure S.2, we provide the curves

of COSMO+fCLSWGAN for AWA, SUN, CUB and

FLOWER.

Table 2 reports the AUSUC of COSMO compared to

four baseline models. To produce the full curve for the base-

lines, we used the code provided by the authors and applied
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GATING AWA SUN CUB
AccH AUC FPR AccH AUC FPR AccH AUC FPR

MAX-SOFTMAX-1 52.9 86.7 67.9 38.4 60.9 92.7 43.4 74.1 82.3
MAX-SOFTMAX-3 53.1 88.6 56.6 38.4 61 92.2 43.7 73.4 79.9

CB-GATING-3 (W/O pZS ) 52.8 88.8 56.4 38.4 61 91.6 43.7 74.2 80.4
CB-GATING-1 53.9 85.9 58.6 39.8 72.2 78.7 45.1 79.6 67.0
CB-GATING-3 56.6 91.2 39.8 40.1 72.2 82.5 44.8 80.5 70.7

Table 3. Ablation study for various gating model variants on validation set. AUC denotes Area-Under-Curve when sweeping over detection

threshold. FPR denotes False-Positive-Rate on the threshold that yields 95% True Positive Rate for detecting in-distribution samples.

calibrated-stacking [9] with a series of constants. On all

four datasets, COSMO improves AUSUC for LAGO and

fCLSWGAN. COSMO also introduces new state-of-the-art

AUSUC on AWA, SUN and FLOWER.

7.2. Ablation experiments

To understand the contribution of the different mod-

ules of COSMO , we carried ablation experiments on

COSMO+LAGO that quantify the benefits of the CBG net-

work and adaptive smoothing.

We first compared variants of the gating model, then

compared variants of the smoothing method, and finally,

compared how these modules work together.

Confidence-Based Gating : Table 3 describes: (1) The

OOD metrics AUC and False-Positive-Rate at 95% True-

Positive-Rate on Gating-Val. (2) AccH metric on GZSL-Val.

We test the effect of temperature scaling and of

confidence-based gating by comparing the following gat-

ing models: (1) CB-Gating-3 is our best confidence-based

gating model, from Section 4.1 with temperature T = 3.

(2) CB-Gating-1 is the same model with T = 1, reveal-

ing the effect of temperature scaling [26]. (3) CB-Gating-3

(w/o pZS) is like CB-Gating-3 without the inputs from the

ZS expert, revealing the importance of utilizing information

from both experts. (4) Max-Softmax-1 is a baseline gating

model of [15], instead of the CBG network, it classifies S/U
by comparing the largest softmax score to a threshold. (5)

Max-Softmax-3 is like Max-Softmax-1 , but with T = 3. In

these experiments, smoothing is disabled to only quantify

factors related to the gating model.

We find that both temperature scaling and confidence-

based gating improves the quality metrics. Importantly,

confidence-based gating has a strong contribution to per-

formance: The AUC increases from 86.3 to 91.2 for AWA,

60.9 to 72.2 for SUN and 74.1 to 80.5 for CUB.

Adaptive Confidence Smoothing: Table 4 shows the

contribution of adaptive smoothing to AccH on the valida-

tion set. In these experiments, gating is disabled, to only

quantify factors related to the smoothing. (1) Adaptive-

Smoothing corresponds to Eq. (4). (2) Const-Smoothing

uses a constant smoothing weight λ (Eq. 3) for all images.

λ was selected by cross validation. Adaptive-Smoothing

shows superior performance to Const-Smoothing (AWA:

54.3% vs 53%, SUN: 41.4% vs 38.4%, CUB: 45.7% vs

43.6%) and even to not using smoothing at all (λ = 0).

AWA SUN CUB

λ = 0 52.9 38.4 43.4
CONST-SMOOTHING 53 38.6 43.6
ADAPTIVE-SMOOTHING 54.3 41.4 45.7

Table 4. Ablation study for adaptive smoothing. Showing AccH
on GZSL-Val set.

AWA SUN CUB

INDEPENDENT-HARD 58.3 35.1 44.6
INDEPENDENT-SOFT 57.7 37.3 46.8
CB-GATING 64.3 39.7 49.1
ADAPTIVE-SMOOTHING 63.6 40.8 49.6
COSMO (GATING & SMOOTHING) 63.6 41.0 50.2

Table 5. Ablation study for combining smoothing and gating,

showing AccH on the test set.

Combining gating and smoothing: Table 5 reports test-

AccH when ablating the main modules of COSMO :

(1) Independent-Hard is the simplest approach, applying

Eq. (2) where the modules don’t exchange information, and

the gating is a hard decision over “Max of Softmax” [15].

It resembles reproducing CMT [39] but using LAGO as the

ZSL model and Max-of-softmax gate. (2) Independent-Soft

uses a soft gating following Eq. (5). (3) CB-Gating applies

the CBG network (Section 4.1) for the gating module. (4)

Adaptive-Smoothing uses Eq. (4), and max-of-softmax gat-

ing. (5) COSMO is our best model, applying both CB-

Gating and adaptive smoothing.

We find that both adaptive confidence smoothing and

confidence-based gating contribute to test accuracy. Com-

pared with Independent-Hard, COSMO shows a relative im-

provement from 58.3% to 63.6% on AWA, 35.1% to 41%

on SUN and 44.6% to 50.2% on CUB. Adaptive confidence

smoothing and confidence-based gating are weakly syner-

gistic, providing a 1.2% relative improvement for CUB,

0.5% for SUN and -1.1% for AWA.

Importantly, accuracy of COSMO is comparable with

state-of-the-art generative models. This is important be-

cause COSMO is much easier to train and tune than GAN-

based approaches.
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