
Ensemble Deep Manifold Similarity Learning using Hard Proxies

Nicolas Aziere and Sinisa Todorovic

School of EECS, Oregon State University

azieren@oregonstate.edu, sinisa@oregonstate.edu

Abstract

This paper is about deep image-similarity learning such

that images of the same class have more similar deep

feature representations than those belonging to different

classes. For learning, prior work typically specifies loss

in terms of ℓ2-distances or dot-products between deep fea-

tures, despite the well-known non-Euclidean nature of deep

feature spaces. Our first contribution is in specifying the

N -pair loss using a manifold similarity of deep features.

We introduce a new time- and memory-efficient estimation

of the manifold similarities that uses a closed-form conver-

gence solution of the Random Walk algorithm. We randomly

partition the deep feature space, and express the manifold

similarities via representatives of the resulting subspaces,

a.k.a. proxies. Multiple random partitions of the deep fea-

ture space gives an ensemble of proxies which can be jointly

used for estimating image similarity. Our second contri-

bution is aimed at reducing overfitting by estimating hard

proxies that are as close to one another as possible, but re-

main in their respective subspaces. We outperform the state

of the art in both image retrieval and clustering on the CUB-

200-2011, Cars196, and Stanford Online Products datasets

with the same complexity as related ensemble methods.

1. Introduction

This paper presents an approach to deep metric learn-

ing. Our objective is to learn deep representations of im-

ages such that images belonging to the same class have

more similar representations than those belonging to differ-

ent classes. This is an important problem with a wide range

of applications, including image retrieval [16, 17], image

clustering [18], and fine-grained image classification [4,11].

Recent work uses a convolutional neural network (CNN)

to compute the image’s deep feature which satisfies the

above objective. The CNN is typically trained with the

contrastive loss [2], triplet loss [7, 21], or N -pair loss [17].

These loss functions are usually specified in terms of ℓ2-

distances or dot-products which are ill-suited to the highly

non-Euclidean deep feature space.

Recent works address this issue by: (i) Specifying loss as

a function of manifold distances of deep features [1,8,9]; or

(ii) Partitioning the deep feature space first into subspaces,

then projecting data to a new space spanned by represen-

tatives of the subspaces, and finally estimating loss in the

new space [10, 12, 13, 23]. Both groups of methods have

shortcomings that we seek to alleviate.

The first group of methods uses the Random Walk algo-

rithm [24] for estimating a geodesic distance (or similarity)

between data points on a manifold, referred to as manifold

distance (or manifold similarity). However, incorporating

Random Walk in deep learning is difficult, because the for-

mer requires access to all data whereas deep learning orga-

nizes training in mini-batches. Also, Random Walk, being

iterative, significantly increases complexity of training.

Weaknesses of the second group of methods pertain to

specification of the new embedding space. For example,

deep features are projected onto the new space spanned by:

(a) One-hot vectors [23], or (b) Randomly sampled vectors,

a.k.a. proxies [12]. Both one-hot vectors and randomly

sampled proxies are heuristic and not learned end-to-end.

Toward addressing the aforementioned shortcomings,

we make two contributions in training of our CNN, as il-

lustrated in Fig. 1 (left). Our first contribution is in speci-

fying a time- and memory-efficient algorithm for estimating

loss in terms of manifold similarities between deep features.

Unlike prior work, we adapt Random Walk to estimate the

manifold similarities of only a small number of data in each

mini-batch of deep learning, rather than on all training data.

This allows for efficiently computing the manifold similari-

ties using the closed-form convergence solution of Random

Walk, rather than running its many iterations.

Following the above second group of approaches, we

randomly partition the training dataset, where each partition

represents a meta-class of images. A meta-class may com-

prise only a part of images belonging to one class, or images

from several distinct image classes. Similar to [12], we take

representatives of the meta-classes to stand in as proxies for

images when estimating the N-pair loss in training. Specif-

ically, the N-pair loss on all images that got assigned to a

meta-class is computed as a loss of the proxy vector repre-

7299

Figure 1. (Left) An overview of our two contributions in training of a CNN whose output deep representations of images x should satisfy

the objective that images belonging to the same class have more similar deep representations than those belonging to different classes.

(Right) Our training produces an ensemble of CNNs, where each is learned on a particular random partition of the deep feature space into

meta-classes. For testing, we integrate all learners in the ensemble for computing similarity between the query and other test images.

senting that meta-class. As the proxy set is much smaller

than the training dataset, the number of image triplets com-

monly considered when estimating the N-pair loss can be

significantly reduced. Also, as shown in [12], minimiz-

ing loss expressed in terms of proxies in place of images

amounts to minimizing an upper bound of the ranking loss

between images, and hence effectively enforces the desired

distance relationships of images.

Our second contribution is in specifying a new algo-

rithm for estimating hard proxies. This is aimed at tight-

ening the upper bound on the desired distance relationships

between training images. When the related work [12, 23]

randomly samples proxies, they risk overfitting to a rel-

atively “loose” upper bound of the ranking loss between

images. Rather than using random sampling, we optimize

proxies so that they incur a maximum N-pair loss. Essen-

tially, this means that we search in the deep space for prox-

ies that are as close to one another as possible, but still be-

long to their respective subspaces of the deep feature space

corresponding to the meta-classes. Because the proxies are

made very similar to one another, violating the distance re-

lationships between the images is made easier, and thus our

end-to-end training of deep features is enforced to be more

precise toward reducing these violations.

Some of the issues related to overfitting and random par-

titioning of the deep feature space can be overcome with

ensemble learning [10,13,23]. We follow this line of work,

and resort to multiple random splits of the deep feature

space, as the optimal partitioning is unknown. Each ran-

dom partitioning gives the corresponding dictionary of hard

proxies that are used to define the N-pair loss for learning

the CNN – that is, one learner in the ensemble.

In testing, the deep image representation is computed by

concatenating or averaging the deep features produced by

every CNNs of the ensemble, as illustrated in Fig. 1 (right).

Our evaluation demonstrates that we outperform the

state of the art in both image retrieval and clustering on

the benchmark datasets, including CUB-200-2011 [20],

Cars196 [11], and Stanford Online Products [19], with the

same computational complexity per one CNN in the ensem-

ble as non-ensemble methods.

In the following, Sec. 2 reviews prior work, Sec. 3 gives

an overview of our approach, Sec. 4 formulates hard prox-

ies, Sec. 5 explains how to compute manifold similarities

with Random Walk, Sec. 6 formulates two manifold loss

functions, Sec. 7 describes complexity, Sec. 8 specifies im-

plementation details, and Sec. 9 presents evaluation.

2. A Review of Related Work

Distance Metric Learning is a long-standing problem.

The section reviews only the most closely related work.

Loss formulations: Loss is usually defined on triplets of

images for taking into account image distances both within

a class and across distinct classes in training. For exam-

ple, the N-pair loss [17, 19] is computed on a mini-batch

of training images comprising one anchor, one positive im-

age from the same class of the anchor’s, and many negative

images from different classes. The angular loss [22] rep-

resents a variation of the N-pair loss, aimed at both min-

imizing the angles between intra-class features and maxi-

mizing the angles between inter-class features. The facility

location function is specified to improve image clustering

quality measured by normalized mutual information (NMI)

rather than directly optimize image distances [18]. A class-

level tree capturing intrinsic and contextual information of

the dataset is used to adaptively estimate the margin in the

triplet loss [5]. These loss functions are usually specified in

terms of ℓ2-distances or dot-products of deep features. In

this work, we use the N-pair loss for training, and advance

the related work by specifying the loss in terms of manifold

similarities between deep features as more appropriate for

the highly non-Euclidean deep feature space.

7300

Addressing the large number of image triplets: Se-

lecting optimal image triplets for more efficient and effec-

tive distance metric learning can be done, e.g., by smart

mining in the large space of training triplets [7], or by adver-

sarial metric learning on synthetic hard negatives generated

from the observed negative samples [3].

The most closely related method to ours in this group

uses proxies to substitute for the original data points (hence

reducing the large sampling space of image triplets), such

that a loss over the proxies is a tight upper bound of the orig-

inal loss over the images [12]. However, they use the same

or double the number of proxies as the number of images

classes, whereas we use significantly fewer proxies to avoid

overfitting. Also, their randomly sampled proxies are fixed,

while learning enforces the distribution of deep features to

choose the proxies as their cluster centers. In contrast, we

optimize the proxies to become hard examples that are diffi-

cult to learn. That is, we enforce the proxies to move away

from centers of their respective subspaces, and maximize

the N-pair loss, in order to avoid overfitting.

Manifold distance learning: A few approaches seek to

estimate a manifold structure of the image dataset for dis-

tance metric learning. To this end, they use the PageRank

algorithm [24], or the diffusion process on a region man-

ifold [1, 9]. Some of these methods also consider selec-

tion of optimal training examples via unsupervised mani-

fold guided selection of image triplets [8]. However, all

these approaches estimate the manifold distances in a post-

processing step by fixing the deep features. In contrast, we

integrate estimation of the manifold distances into our end-

to-end training of deep features.

Ensemble Learning: Ensemble learning is aimed at re-

ducing variance among a family of learners, which typi-

cally leads to performance improvements. In deep metric

learning, each member of the ensemble votes for a distance

between two points, and the final distance is estimated by

integrating all of the votes. For example, the last embed-

ding layer of a deep network can be divided into an embed-

ding ensemble, and trained using the online gradient boost-

ing [13]. Also, different learners can be defined using a

family of attention masks, resulting in an attention-based

ensemble [10]. Similar to [23], we use randomized ensem-

bles, where each learner is defined by a particular random

partitioning of the deep feature space.

3. Our Approach

Our approach learns an ensemble of CNNs,

E = {CNN(e) : e = 1, . . . , E}, where each CNN(e)

embeds an input image, I , to the normalized deep fea-

ture x(e) = x̃(e)

|x̃(e)|
, as illustrated in Fig. 1 (right). Thus,

in this work, all image embeddings are normalized to

the unit sphere. The CNNs in E have the same deep

architecture, but are independently learned on a given

random partitioning of the training set of images. Ran-

domized ensembles like ours, have been shown to improve

performance over individual members of the ensemble [23].

In testing, we first pass every test image In through E , re-

sulting in the deep representation xn = [x
(1)
n , · · · , x

(E)
n].

These deep features are then used for estimating image

similarities, and finally evaluation on the image retrieval

or clustering problems. We specify similarity between the

query image Iq and another test image In as

s(xq,xn) =
E
∑

e=1

α(e) s(x(e)
q , x(e)

n), (1)

where {α(e)} are relative importance weights of the CNNs

in the ensemble, and s(xq, xn) is defined as the dot-product

of input features:

s(xq, xn) = xq · xn. (2)

Note that when α(e) = 1, for e = 1, . . . , E, our ensem-

ble integration amounts to concatenating all outputs of the

CNNs in the ensemble for computing the image similarity

in (1), s(xq,xn) = xq · xn.

While {α(e)} could be estimated on a validation set

using various boosting algorithms, in our experiments, we

did not observe significant differences in our performance

from the case when the relative weights are all set to 1.

Therefore, in this paper, we use α(e) = 1, for e = 1, . . . , E.

In training, we learn independently each of the CNNs in

the ensemble on a given training set of images and their

class labels, D = {(In, yn)}. After the CNN computes

deep features of training images, we estimate their mani-

fold similarity relationships. Any violations of the desired

manifold similarity relationships incurs loss, which is then

backpropagated for training the CNN.

Following recent approaches [17, 19, 22], in this paper,

we use the smooth, differentiable N-pair loss which effi-

ciently takes advantage of all training images in a mini-

batch, rather than taking into account individual image

triplets. Specifically, in [17, 19, 22], each training mini-

batch consists of N samples, where one image x is called

anchor, another positive image x+ comes from the same

class as the anchor, and the remaining N − 2 negative im-

ages {x−
n } belong to classes that are different from the an-

chor’s. These approaches define the N-pair loss so as to

reduce similarity between the anchor x and the negatives

{x−
n }, and simultaneously increase similarity between the

anchor x and the positive image x+:

LN-pair(x, x
+, {x−

n }) = log
(

1+
N−2
∑

n=1

es(x,x
−

n)−s(x,x+)+m
)

,

(3)

7301

where m ≥ 0 is a constant margin, and s(·) is a similarity

function, e.g., given by (2).

Our extension of prior work is two-fold. Our N-pair loss

uses manifold similarity instead of their similarity, and an

optimized set of proxies in place of actual training images.

Before we specify our N-pair loss in Sec. 6, we first describe

how to estimate the proxies in Sec. 4, and how to compute

manifold similarities of a training mini-batch in Sec. 5.

4. Hard Proxies

We seek to address the following two challenges in our

CNN training: (1) How to accurately estimate similarity be-

tween images for computing the N-pair loss given by (3) in

the highly non-Euclidean deep feature space; and (2) How

to efficiently select optimal training images for (3) from the

large sampling space of image triplets.

4.1. Proxy N­pair Loss

To address the first challenge, we follow [23] and ran-

domly partition the training dataset D into K disjoint sub-

sets, D = ∪K
k=1Dk, where K is significantly less than the

number of image classes (e.g., 10%). We expect that deep

features of each partition Dk will exhibit properties closer

to a Euclidean space than the entire deep space of D. Im-

ages in Dk may come from one or more classes, and we

say that Dk defines a meta-class. Under such a partitioning,

we generalize the notion of positive and negative images of

an anchor, mentioned in Sec. 3. Specifically, for an anchor

image x from Dk, positive images x+ belong to the same

subset Dk, and negative images x− belong to the other sub-

sets Dj , j 6= k.

For the second challenge, we use a similar strategy as

that introduced in [12]. In every subset Dk, we randomly

select an image to represent this meta-class, and use its nor-

malized deep feature pk = p̃k

|p̃k|
as a proxy for all other im-

ages in Dk when estimating the N-pair loss. In this way, we

form the initial set of proxies P = {pk : k = 1, . . . ,K}.

After obtaining P , we estimate the proxy N-pair loss

LP(x, x
+, {x−

n }) in a similar way to the expression in (3).

For an anchor image x in Dk, we replace its positive x+

with pk, and the negatives {x−
n } with their respective prox-

ies {pj}, j 6= k, resulting in the proxy N-pair loss:

LP(x, x
+, {x−

n }) = log
(

1 +

K
∑

j=1,j 6=k

es(x,pj)−s(x,pk)+m
)

.

(4)

From (4), we effectively alleviate the issue of optimal se-

lection of the positive and negative images for the training

mini-batch, since the loss depends only of the anchor im-

age and the significantly fewer proxies than the number of

original image classes, LP(x, x
+, {x−

n }) = LP(x).
Importantly, the proxy loss LP in (4) maintains the char-

acteristics of the N-pair loss LN-pair in (3) and enforces

the desired similarity relationships between training im-

ages. This is because, our LP represents an upper bound of

LN-pair, so minimizing LP effectively reduces LN-pair. This

is straightforward to show by following very similar deriva-

tion steps to those presented in [12]. From (3)–(4) and the

triangle inequality, an absolute difference of the two losses

∆L = |LN-pair − LP | for an image triplet (x, x+, x−) can

be bounded as

∆L =

∣

∣

∣

∣

∣

log
1 + es(x,x

−)−s(x,x+)+m

1 + es(x,pj)−s(x,pk)+m

∣

∣

∣

∣

∣

,

≈ |[s(x, x−)− s(x, x+)]− [s(x, pj)− s(x, pk)]|,
= |[d(x, x+)− d(x, x−)]− [d(x, pk)− d(x, pj)]|,
≤ 2ǫ,

(5)

where we define feature distance d(x, x′) = 1 − s(x, x′)
as all our features are normalized to the unit sphere, and

ǫ = maxx d(x, p(x)), and p(x) is the proxy of x. It follows

that the expectation of the N-pair loss can be bounded over

training images as

E[LN-pair] ≤ E[LP] + Pr[|d(x, pk)− d(x, pj)| ≤ 2ǫ].
(6)

Since our deep features and proxies are normalized to the

unit sphere, the upper bound in (6) is tight.

4.2. Estimation of Hard Proxies

In this work, the initial set of images selected as proxies

is fixed for the entire duration of our training. But, in ev-

ery epoch of training, we first recompute their deep features

P , and then estimate an optimal set of proxies P∗ for com-

puting the optimal proxy loss LP∗ over all training mini-

batches in the next epoch.

This is our main difference from prior work [12], since

their proxies P remain unchanged in learning, and their

CNN is trained to produce deep features which cluster well

around the proxies with respect to a distance metric. In our

experiments, however, we observe that this leads to overfit-

ting, because, in part, clustering in the non-Euclidean deep

space using a distance metric gives suboptimal results. An-

other reason for overfitting comes from the random outcome

of selecting proxies, which may make the proxy loss LP a

looser upper bound of the N-pair loss LN-pair. Hence, min-

imizing such a LP may have little effect on enforcing the

desired similarity relationships between training images.

To address overfitting, our key idea is to estimate optimal

proxies, P∗ = {p∗k : k = 1, . . . ,K}, so as to maximally

reduce the difference in (6), |d(x, p∗k) − d(x, p∗j)|, j 6= k,

and in this way make LP∗ a tighter upper bound of LN-pair

than the initial LP . One way to achieve this is to make

all proxies similarly distant from all data points in the deep

feature space, resulting in ideal |d(x, pk) − d(x, pj)| ≈ 0,

for all x and pk 6= pj .

7302

Figure 2. Optimization of proxies: the white lines mark meta-

classes, black dots represent images xn, yellow dots mark the ini-

tial randomly sampled proxies pk, and white dots indicate the esti-

mated hard proxies p∗k. Our optimization “pushes” p∗k away from

images xn it represents toward the other meta-classes, while regu-

larizes that p∗k remains close to pk.

As illustrated in Fig. 2, this objective can be achieved

by maximizing distances between p∗k and images in Dk,

for every meta-class Dk. In turn, this will make every p∗k,

k = 1, . . . , N , closer to the other meta-classes. To avoid

a trivial solution, where all proxies are equal, we regularize

this objective such that the optimal p∗k is not too far from the

initial pk. This gives the following optimization for every

meta-class Dk:

p∗k = arg min
p∈Rl

log
(

1+
∑

xn∈Dk\{pk}

es(p,xn)−s(p,pk)
)

, (7)

where l is the length of deep features, the first term in the

exponent “pushes” the optimal proxy away from images xn

it represents toward other meta-classes, and the second term

in the exponent regularizes against trivial solutions. We effi-

ciently solve (7) with gradient descent, with the initial value

set to pk of a randomly selected image in Dk.

One consequence of making every p∗k become closer to

the other meta-classes Dj , j 6= k, is that all p∗k ∈ P∗ be-

come close to each other. This makes minimization of the

optimal proxy loss LP∗ given by (4) difficult, because the

CNN has to produce more accurate deep features for re-

specting the desired similarity relationships that x from Dk

should be more similar to pk than to the other proxies pj ,

j 6= k. Therefore, we call P∗ the set of hard proxies.

5. Manifold Similarity Estimation

We have empirically observed that estimating similari-

ties between images and the proxies in (4), exp(s(x, p∗j) −
s(x, p∗k)+m), j 6= k, often gives inaccurate results, because

meta-classes {Dk} are highly non-convex sets in the deep

feature space. Therefore, rather than using the dot-product

for estimating s(xn, p
∗
k), our next contribution is to estimate

geodesic similarities, {fnp∗

k
= f(xn, p

∗
k) : k = 1, . . . ,K},

on a manifold, which we call manifold similarities, and

Figure 3. Illustration of vectors of manifold similarities Fn, fn,

and fp∗
k

, where we use fn and fp∗
k

for estimating the manifold

proxy loss.

use them for computing the manifold proxy loss. Impor-

tantly, our key novelty is in estimating {f(xn, p
∗
k)} for ev-

ery mini-batch of our end-to-end training, rather than com-

puting manifold similarities pre- or post-training on all data,

as common in prior work [1, 8, 9].

We compute the manifold similarities of images in a

training mini-batch B with the Random Walk algorithm [24]

on a nearest neighbor graph. Each B is constructed from N

training images and K hard proxies:

B = {x1, . . . , xn, . . . , xN , p∗1, . . . , p
∗
k, . . . , p

∗
K}. (8)

For B, we first compute the (N +K)× (N +K) symmet-

rically normalized adjacency matrix, S̄ = D−1/2SD−1/2,

where elements of S are dot-products s(xn, xn′) = xn ·xn′

or s(xn, p
∗
k) = xn · p∗k, and D is the diagonal degree ma-

trix with elements D(n, n) equal to a sum of the nth row

in S. As similarity of each xn or p∗k to itself is irrelevant

(and also to avoid loops in Random Walk), we set all diag-

onal elements of S̄ to 0. Then, for each image xn ∈ B, we

estimate a vector of its manifold similarities to images in

B, Fn = [fn1, . . . , fnN , fnp1 , . . . , fnpK
], using the closed-

form convergence solution of Random Walk [24] as

Fn = (1− α)(I − αS̄)−1en (9)

where α ∈ (0, 1) is a probability of restarting Random Walk

from nth query point, en is the query one-hot vector with 1

at nth location, and I is the (N +K) × (N +K) identity

matrix. Since the size of mini-batch (N +K) is relatively

small, designed to fit the available RAM memory, comput-

ing the inverse matrix in (9) can be done efficiently.

As explained in the next section, the manifold proxy loss

is defined in terms of fn and fp∗

k
, which are parts of their

respective vectors Fn and Fp∗

k
. fn and fp∗

k
consist of only

manifold similarities of xn and p∗k to the proxies, respec-

tively, as illustrated in Fig. 3:

fn = [fnp∗

1
, . . . , fnp∗

k
, . . . , fnp∗

K
],

fp∗

k
= [fp∗

k
p∗

1
, . . . , fp∗

k
p∗

k
, . . . , fp∗

k
p∗

K
]. (10)

7303

6. Two Manifold Proxy Loss Functions

We extend the optimal proxy loss LP∗ given by (4) to

account for manifold similarities between images and the

hard proxies in a mini-batch of N training images. In this

paper, we consider two extensions: (1) Intrinsic Lint, and

(2) Contextual Lcxt loss functions.

The intrinsic manifold proxy loss is computed as

Lint({xn}) =
1

N

N
∑

n=1

log
(

1 +
K
∑

j=1,
j 6=k

e
fnp∗

j
−fnp∗

k
+m

)

, (11)

where p∗k is the hard proxy of image xn if xn ∈ Dk, and

fnp∗

·

are elements of the manifold similarity vector fn given

by (10). Having the similar formulation as LN-pair and LP∗ ,

the intrinsic loss Lint({xn}
N
1) in (11) inherits advantages of

the N-pair loss and the proxy loss in addressing the large

sampling space of image triplets, discussed in Sec. 3.

The contextual manifold loss introduces additional con-

straints relative to Lint for a stronger enforcement of the de-

sired similarity relationships. We additionally constrain that

each image xn ∈ Dk “sees” the set of hard proxies P ∗ as

its proxy p∗k “sees” P ∗. That is, if P ∗ represents well the

entire set of data D, then the desired similarity relationships

between every xn ∈ Dk and other images in D should be

close to the similarity relationships between p∗k and P ∗.

Lcxt({xn})=
1

N

N
∑

n=1

log
(

1+
K
∑

j=1,
j 6=k

e
s(fn,fp∗

j
)−s(fn,fp∗

k
)+m)

,

(12)

where p∗k is the hard proxy of image xn if xn ∈ Dk, fn and

fp∗

k
are given by (10), and s(fn, fp∗

k
) = fn · fp∗

k
.

7. Complexity Analysis

We are given a training dataset, D, with size |D| = M ,

and M3 image triplets for computing the triplet loss. We use

E random partitions of D into K meta classes for ensemble

learning. The E distinct CNNs are trained in parallel, so

our runtime actually does not increase E times.

Our training complexity per one epoch of a single CNN

is derived as follows. As illustrated in Fig. 1, we have

three main computational steps. First, we optimize K prox-

ies over M data by minimizing Eq. 7, which amounts to

O(MK). Second, in each iteration over M
N batches, where

N is the mini-batch size, we compute an inverse of the

(N+K)x(N+K) manifold-similarity matrix, which amounts

to O(MN (N + K)3) = O(MK2), as we set K ≈ N
2

(not sensitive, see Sec. 8). Third, we compute the N-pair

loss over M training data and K proxies, which amounts

to O(MK2). Finally, our total complexity is O(MK) +
O(MK2) +O(MK2) = O(MK2).

Tab. 1 compares our training complexity with that of the

state of the art. As can be seen, our training complexity is

the same as that of [23], and higher than that of [12] only

for the additional ensemble learning.

Methods Training Complexity

N-Pair [17] O(M3)
Proxy-NCA [12] O(MK2)

DREML [23] O(EMK2)
Our approach O(EMK2)

Table 1. Training complexity of the most related methods to ours.

8. Implementation Details

For implementation, we use Pytorch [14]. In pre-

processing, images are normalized and re-sized to 256×256
pixels. We used standard data augmentation techniques in-

cluding random image cropping and rotation. The mini-

batch size is set to N = 128. The size of our ensemble of

CNNs is E = 25. The Random Walk parameter α = 0.8,

and the margin m = 5×10−4. For the hard proxy optimiza-

tion, the learning rate is set to 10−3. The empirically-found

best number of proxies (one per meta-class) is K = 50
for all datasets. For comparison with prior work, we im-

plemented both ResNet18 and GoogLeNet pre-trained on

ImageNet [15]. The last fully-connected layer is modified

to set the dimension of deep features l = 128. We used an

Adam optimizer parameterized with the weight decay fac-

tor of 10−5. The learning rate is initialized at 10−4, and

decreased by a factor of 0.1 every three epochs, over a total

of 10 epochs per training. Overall, the training of one CNN

takes about 1 hour on a Tesla K80 GPU.

9. Results

Datasets: Evaluation is performed on the image retrieval

and clustering problems using the following three bench-

mark datasets. CUB 200-2011 [20] has 11,788 images

showing 200 bird classes. The data is split into 5,864 im-

ages of the first 100 classes are used for training, and 5,924

images of the remaining classes for testing. Cars196 [11]

has 16,185 images of 196 car classes. The data is split into

8,054 training images of the first 96 classes and 8,131 test

images of the remaining car classes. Stanford Online Prod-

uct [19] has 120,053 images with 22,634 classes. The data

is split into 59,551 training images of the first 11,318 classes

and 60,502 testing images of the remaining classes from the

dataset. The aforementioned training-test splits are standard

and used by all prior work that we compare with.

Evaluation Metrics: In image retrieval, given a query

test image, we find its K nearest neighbors from the test

set. We calculate a percentage of the retrieved images R@K

7304

that have the same class as the query. Image clustering is

performed using the K-means algorithm, where K is the

number of image classes, and evaluated with the normal-

ized mutual information (NMI). For the obtained set of clus-

ters, Ω̂ = {ω̂1, ..., ω̂K}, and the ground-truth image cluster-

ing by their classes, Ω = {ω1, ..., ωK}, NMI is defined as

NMI(Ω̂,Ω) = 2I(Ω̂,Ω)

H(Ω̂)+H(Ω)
, where I(·) denotes the mutual

information, and H(·) is entropy.

Ablation Study: We test performance effects of various

components of our approach, especially our claimed contri-

butions, using the following variants of our approach:

• EDMS (RW, P*) is our full approach Ensemble Deep

Manifold Similarity learning using Random Walk

(RW) and the hard proxies for estimating Lcxt. For

testing, we use the dot-product similarity, where the

ensemble of our CNNs is fused as specified in (1) (see

Sec. 3 and Fig. 1).

• EDMS (RW, P) does not optimize the proxies, but

computes Lcxt using the initial P , and thus tests the

effect of using P ∗ vs. P on performance.

• EDMS (RW-int, P*) replaces Lcxt with Lint, and thus

evaluates the contextual vs. intrinsic manifold loss.

• EDMS (P*) replaces Lcxt with LP∗ given by (4), and

thus tests the effect of Random Walk on performance.

• EDMS (w/o) replaces Lcxt with LN-pair given by (3).

We still perform random partitioning of the training

set, and compute LN-pair with respect to meta-classes.

• EDMS (RW) is similar to EDMS (w/o) but computes

LN-pair with manifold similarities f(xn, xn′) with re-

spect to meta-classes.

Baselines: We compare with with the following state-

of-the-art approaches using the same testing setup as theirs.

Proxy-NCA [12] uses the proxies to estimate the NCA loss

[6]. Lifted Structure [19], N-pair [17] and Angular [22] use

the N-pair loss. BIER [13], ABE [10] and DREML [23] use

ensemble learning. For comparison with DREML [23], we

use their latest results published on arXive and linked on the

Github page.

Method NMI R@1 R@2 R@4 R@8

EDMS (w/o) 66.4 58.7 71.4 81.2 89.4

EDMS (RW) 63.4 56.1 69.2 79.5 87.6

EDMS (RW, P) 66.8 60.3 71.5 81.3 89.1

EDMS (RW-int, P*) 66.9 61.1 72.2 81.7 89.3

EDMS (P*) 67.2 63.7 74.2 82.9 89.7

EDMS (RW, P*) 68.9 66.1 76.7 85.5 91.4

Table 2. Our ablation study on the CUB dataset: Image clustering

and retrieval results for different variants of our approach using

ResNet18.

9.1. Quantitative Results

Fig. 4 shows how performance of our EDMS (RW, P*)

changes as a function of the ensemble size, number of prox-

ies, and deep-feature dimension on CUB-200-2011. We ob-

serve on Fig. 4 (left) that the accuracy saturates after a cer-

tain ensemble size, and as a good trade off between com-

plexity and accuracy we set the number of CNNs in the

ensemble E = 25. From Fig. 4 (right), we get the best

results for K = 50 proxies, and deep-feature dimension of

l = 128. We use these parameters for all variants of our

approach on all three datasets.

Tab. 2 presents our ablation study with the six variants

of our approach on CUB-200-2011. For EDMS (RW) our

recall decreases relative to EDMS (w/o) when no prox-

ies are used. This suggests that our estimation of mani-

fold similarities on a relatively small mini-batch may not

be able to reliably capture the true geodesic distances be-

tween images without the help of the proxies. This is fur-

ther seen in EDMS (RW, P), where by adding the prox-

ies to EDMS (RW), we get performance improvement over

both EDMS (w/o) and EDMS (RW). A good performance

of EDMS (P*) suggests that our random partitioning of the

training set and the use of proxies help estimate image simi-

larities reliably, even without Random Walk. Using the con-

textual loss in EDMS (RW, P*) gives much better recall than

using the intrinsic loss in EDMS (RW-int, P*). Finally, our

optimization of hard proxies in EDMS (RW, P*) improves

performance relative to that of EDMS (RW, P).

Tables 3 and 4 compare our best performing EDMS (RW,

P*) with the baselines. When using ResNet18 as the CNN,

we outperform the state-of-the-art ensemble learning meth-

ods BIER, ABE and DREML. We observe that GoogLeNet

gives lower results than ResNet18 for our approach.

From Fig. 4, we can use small E < 5, and still sig-

nificantly outperform [12] (see Tab. 3). Our gains in per-

formance over non-ensemble-learning methods justify the

slight increase in runtime for fusing E CNNs.

Figure 4. Optimal selection of the ensemble size, number of prox-

ies, and deep-feature dimension for EDMS (RW, P*) on CUB-200-

2011 with respect to Recall. (Left) Our recall as a function of the

ensemble size. (Right) Recall@1 as a function of the number of

proxies, and size of deep features.

7305

Dataset CUB-200-2011 Car196

Method Network NMI R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8

Lifted [19] GoogLeNet 55.38 47.2 58.9 70.2 80.2 55.1 48.3 61.1 71.8 81.1

Proxy-NCA [12] InceptionBN 59.5 49.2 61.9 67.9 72.4 64.9 73.2 82.4 86.4 88.7

N-pair [17] GoogLeNet 60.4 51.0 63.3 74.3 83.2 64.0 71.1 79.7 86.5 91.6

Angular [22] GoogLeNet 61.1 54.7 66.3 76.0 83.9 63.2 71.4 81.4 87.5 92.1

BIER [13] GoogLeNet - 55.3 68.4 76.9 85.1 - 78.0 85.8 91.1 95.1

ABE [10] GoogLeNet - 60.6 71.5 79.8 87.7 - 85.2 90.5 94.0 96.1

DREML [23] ResNet18 67.8 63.9 75.0 83.1 89.7 76.4 86.0 91.7 95.0 97.2

EDMS (RW, P*) GoogLeNet 64.5 61.6 72.1 81.8 88.9 75.1 85.6 90.8 94.8 96.1

EDMS (RW, P*) ResNet18 68.9 66.1 76.7 85.5 91.4 76.7 87.6 92.1 95.2 97.3

Table 3. Image clustering and retrieval results on the CUB-200-2011 and Cars196 datasets.

Method NMI R@1 R@10 R@100 R@1000

Lifted [19] 87.4 63.0 80.5 91.7 97.5

N-pair [17] 87.9 67.7 83.8 93.0 97.8

Angular [22] 88.6 70.9 85.0 93.5 98.0

BIER [13] - 74.2 86.9 94.0 97.8

ABE [10] - 76.3 88.4 94.8 98.2

Ours+G 89.0 77.2 89.1 94.9 98.1

Ours+R 90.1 78.5 90.7 95.2 98.5

Table 4. Image clustering and retrieval results on Stanford On-

line Products. All the competing approaches use the GoogLeNet.

Ours+G = EDMS (RW, P*) with GoogLeNet, and Ours+R =

EDMS (RW, P*) with ResNet18.

Figure 5. Our sample retrieval results on the CUB-200-2011

(Left) and Car196 datasets (Right). For each query, we show

4 top retrieved images, where the top row shows the results

with EDMS (P*), and the bottom row shows the results with

EDMS (RW, P*). Using manifold similarities gives more visu-

ally accurate results. Errors in our retrieval are highlighted with

the black frame.

9.2. Qualitative Results

Fig. 5 shows a few sample retrieval results on CUB-200-

2011 and Car196 for EDMS (P*) and EDMS (RW, P*). As

can be seen, using manifold similarities in EDMS (RW, P*)

gives more visually accurate results not only in terms of the

correctly retrieved images from the same class as the query,

but also regarding the 3D pose and background. There are

also some failure cases, which seem to be due to confusing

foreground and background in the images. This could be

addressed in the future by incorporating recent visual atten-

tion techniques.

10. Conclusion

We have presented a new approach to ensemble learn-

ing of deep image representations that should respect their

desired similarity relationships within and across image

classes. Toward addressing the non-Euclidean properties

of the deep feature space, we have made two key contri-

butions in training. First, we have specified two new loss

functions, called contextual and intrinsic manifold loss, in

terms of geodesic similarity of images on a manifold, which

is efficiently estimated for each training mini-batch using

the closed-form solution of Random Walk. For computing

our manifold loss, training images are partitioned into sub-

sets, and their manifold similarity is estimated via randomly

selected representatives of the subsets, called proxies. Our

second contribution pertains to optimizing the proxies such

that the proposed manifold loss enforces stronger con-

straints on learning of the desired similarity relationships.

We have presented an ablation study and comparison with

the state of the art on image retrieval and clustering using

the CUB-200-2011, Cars196, and Stanford Online Prod-

ucts datasets. Our results suggest that estimation of man-

ifold similarities on a relatively small mini-batch may not

be able to reliably capture the true geodesic distances be-

tween images without the help of the proxies. Also, our

random partitioning of the training set and the use of proxies

help estimate image similarities reliably, leading to a com-

petitive performance, even without Random Walk. Our full

approach outperforms the state of the art on both image re-

trieval and clustering, on all three datasets.

Acknowledgment

This work was supported in part by DARPA XAI Award

N66001-17-2-4029.

7306

References

[1] S. Bai, Z. Zhou, J. Wang, X. Bai, L. J. Latecki, and Q. Tian.

Ensemble diffusion for retrieval. In ICCV, pages 774–783,

2017. 1, 3, 5

[2] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similar-

ity metric discriminatively, with application to face verifica-

tion. In Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on, vol-

ume 1, pages 539–546. IEEE, 2005. 1

[3] Y. Duan, W. Zheng, X. Lin, J. Lu, and J. Zhou. Deep ad-

versarial metric learning. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2780–2789, 2018. 3

[4] J. Fu, H. Zheng, and T. Mei. Look closer to see better: Recur-

rent attention convolutional neural network for fine-grained

image recognition. In CVPR, volume 2, page 3, 2017. 1

[5] W. Ge, W. Huang, D. Dong, and M. R. Scott. Deep met-

ric learning with hierarchical triplet loss. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 269–285, 2018. 2

[6] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov.

Neighbourhood components analysis. In NIPS, 2004. 7

[7] B. Harwood, V. K. BG, G. Carneiro, I. Reid, and T. Drum-

mond. Smart mining for deep metric learning. space,

9(13):22. 1, 3

[8] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Mining on

manifolds: Metric learning without labels. arXiv preprint

arXiv:1803.11095, 2018. 1, 3, 5

[9] A. Iscen, G. Tolias, Y. S. Avrithis, T. Furon, and O. Chum.

Efficient diffusion on region manifolds: Recovering small

objects with compact cnn representations. In CVPR, vol-

ume 1, page 4, 2017. 1, 3, 5

[10] W. Kim, B. Goyal, K. Chawla, J. Lee, and K. Kwon.

Attention-based ensemble for deep metric learning. arXiv

preprint arXiv:1804.00382, 2018. 1, 2, 3, 7, 8

[11] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object rep-

resentations for fine-grained categorization. In 4th Interna-

tional IEEE Workshop on 3D Representation and Recogni-

tion (3dRR-13), Sydney, Australia, 2013. 1, 2, 6

[12] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and

S. Singh. No fuss distance metric learning using proxies.

arXiv preprint arXiv:1703.07464, 2017. 1, 2, 3, 4, 6, 7, 8

[13] M. Opitz, G. Waltner, H. Possegger, and H. Bischof. BIER–

boosting independent embeddings robustly. In International

Conference on Computer Vision (ICCV), 2017. 1, 2, 3, 7, 8

[14] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017. 6

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015. 6

[16] O. Seddati, S. Dupont, and S. Mahmoudi. Quadruplet net-

works for sketch-based image retrieval. In Proceedings of

the 2017 ACM on International Conference on Multimedia

Retrieval, pages 184–191. ACM, 2017. 1

[17] K. Sohn. Improved deep metric learning with multi-class n-

pair loss objective. In Advances in Neural Information Pro-

cessing Systems, pages 1857–1865, 2016. 1, 2, 3, 6, 7, 8

[18] H. O. Song, S. Jegelka, V. Rathod, and K. Murphy. Deep

metric learning via facility location. In Computer Vision and

Pattern Recognition (CVPR), 2017. 1, 2

[19] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep

metric learning via lifted structured feature embedding. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2016. 2, 3, 6, 7, 8

[20] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-

port CNS-TR-2011-001, California Institute of Technology,

2011. 2, 6

[21] J. Wang, T. Leung, C. Rosenberg, J. Wang, J. Philbin,

B. Chen, Y. Wu, et al. Learning fine-grained image simi-

larity with deep ranking. arXiv preprint arXiv:1404.4661,

2014. 1

[22] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin. Deep met-

ric learning with angular loss. In 2017 IEEE International

Conference on Computer Vision (ICCV), pages 2612–2620.

IEEE, 2017. 2, 3, 7, 8

[23] H. Xuan, R. Souvenir, and R. Pless. Deep random-

ized ensembles for metric learning. arXiv preprint

arXiv:1808.04469, 2018. 1, 2, 3, 4, 6, 7, 8

[24] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and

B. Schölkopf. Ranking on data manifolds. In Advances

in neural information processing systems, pages 169–176,

2004. 1, 3, 5

7307

