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Abstract

Scene text detection methods based on neural networks

have emerged recently and have shown promising results.

Previous methods trained with rigid word-level bounding

boxes exhibit limitations in representing the text region in

an arbitrary shape. In this paper, we propose a new scene

text detection method to effectively detect text area by ex-

ploring each character and affinity between characters. To

overcome the lack of individual character level annotations,

our proposed framework exploits both the given character-

level annotations for synthetic images and the estimated

character-level ground-truths for real images acquired by

the learned interim model. In order to estimate affinity be-

tween characters, the network is trained with the newly

proposed representation for affinity. Extensive experiments

on six benchmarks, including the TotalText and CTW-1500

datasets which contain highly curved texts in natural im-

ages, demonstrate that our character-level text detection

significantly outperforms the state-of-the-art detectors. Ac-

cording to the results, our proposed method guarantees high

flexibility in detecting complicated scene text images, such

as arbitrarily-oriented, curved, or deformed texts.

1. Introduction

Scene text detection has attracted much attention in the

computer vision field because of its numerous applications,

such as instant translation, image retrieval, scene parsing,

geo-location, and blind-navigation. Recently, scene text de-

tectors based on deep learning have shown promising per-

formance [7, 40, 20, 3, 9, 8, 10, 11, 16, 23, 24, 31, 25].

These methods mainly train their networks to localize word-

level bounding boxes. However, they may suffer in difficult

cases, such as texts that are curved, deformed, or extremely

long, which are hard to detect with a single bounding box.

Alternatively, character-level awareness has many advan-

tages when handling challenging texts by linking the suc-

cessive characters in a bottom-up manner. Unfortunately,
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Figure 1. Visualization of character-level detection using CRAFT.

(a) Heatmaps predicted by our proposed framework. (b) Detection

results for texts of various shape.

most of the existing text datasets do not provide character-

level annotations, and the work needed to obtain character-

level ground truths is too costly.

In this paper, we propose a novel text detector that local-

izes the individual character regions and links the detected

characters to a text instance. Our framework, referred to as

CRAFT for Character Region Awareness For Text detec-

tion, is designed with a convolutional neural network pro-

ducing the character region score and affinity score. The

region score is used to localize individual characters in

the image, and the affinity score is used to group each

character into a single instance. To compensate for the

lack of character-level annotations, we propose a weakly-

supervised learning framework that estimates character-

level ground truths in existing real word-level datasets.

Figure. 1 is a visualization of CRAFT’s results on

various shaped texts. By exploiting character-level re-

gion awareness, texts in various shapes are easily repre-

sented. We demonstrate extensive experiments on ICDAR

datasets [13, 12, 27] to validate our method, and the experi-
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ments show that the proposed method outperforms state-of-

the-art text detectors. Furthermore, experiments on MSRA-

TD500, CTW-1500, and TotalText datasets [36, 38, 2] show

the high flexibility of the proposed method on complicated

cases, such as long, curved, and/or arbitrarily shaped texts.

2. Related Work

The major trend in scene text detection before the

emergence of deep learning was bottom-up, where hand-

crafted features were mostly used – such as MSER [26] or

SWT [4]– as a basic component. Recently, deep learning-

based text detectors have been proposed by adopting pop-

ular object detection/segmentation methods like SSD [19],

Faster R-CNN [29], and FCN [22].

Regression-based text detectors Various text detectors

using box regression adapted from popular object detec-

tors have been proposed. Unlike objects in general, texts

are often presented in irregular shapes with various as-

pect ratios. To handle this problem, TextBoxes [17] mod-

ified convolutional kernels and anchor boxes to effectively

capture various text shapes. DMPNet [21] tried to further

reduce the problem by incorporating quadrilateral sliding

windows. In recent, Rotation-Sensitive Regression Detec-

tor (RSDD) [18] which makes full use of rotation-invariant

features by actively rotating the convolutional filters was

proposed. However, there is a structural limitation to cap-

turing all possible shapes that exist in the wild when using

this approach.

Segmentation-based text detectors Another common

approach is based on works dealing with segmentation,

which aims to seek text regions at the pixel level. These ap-

proaches that detect texts by estimating word bounding ar-

eas, such as Multi-scale FCN [6], Holistic-prediction [37],

and PixelLink [3] have also been proposed using segmen-

tation as their basis. SSTD [7] tried to benefit from both

the regression and segmentation approaches by using an at-

tention mechanism to enhance text related area via reduc-

ing background interference on the feature level. Recently,

TextSnake [23] was proposed to detect text instances by pre-

dicting the text region and the center line together with ge-

ometry attributes.

End-to-end text detectors An end-to-end approach

trains the detection and recognition modules simultaneously

so as to enhance detection accuracy by leveraging the recog-

nition result. FOTS [20] and EAA [8] concatenate popu-

lar detection and recognition methods, and train them in

an end-to-end manner. Mask TextSpotter [24] took advan-

tage of their unified model to treat the recognition task as a

semantic segmentation problem. It is obvious that training

with the recognition module helps the text detector be more

robust to text-like background clutters.
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Figure 2. Schematic illustration of our network architecture.

Most methods detect text with words as its unit, but

defining the extents to a word for detection is non-trivial

since words can be separated by various criteria, such as

meaning, spaces or color. In addition, the boundary of

the word segmentation cannot be strictly defined, so the

word segment itself has no distinct semantic meaning. This

ambiguity in the word annotation dilutes the meaning of

the ground truth for both regression and segmentation ap-

proaches.

Character-level text detectors Zhang et al. [39] pro-

posed a character level detector using text block candidates

distilled by MSER [26]. The fact that it uses MSER to iden-

tify individual characters limits its detection robustness un-

der certain situations, such as scenes with low contrast, cur-

vature, and light reflection. Yao et al. [37] used a prediction

map of the characters along with a map of text word re-

gions and linking orientations that require character level

annotations. Instead of an explicit character level predic-

tion, Seglink [31] hunts for text grids (partial text seg-

ments) and associates these segments with an additional

link prediction. Even though Mask TextSpotter [24] predicts

a character-level probability map, it was used for text recog-

nition instead of spotting individual characters.

This work is inspired by the idea of WordSup [10], which

uses a weakly supervised framework to train the character-

level detector. However, a disadvantage of Wordsup is that

the character representation is formed in rectangular an-

chors, making it vulnerable to perspective deformation of

characters induced by varying camera viewpoints. More-

over, it is bound by the performance of the backbone struc-

ture (i.e. using SSD and being limited by the number of

anchor boxes and their sizes).
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Figure 3. Illustration of ground truth generation procedure in our framework. We generate ground truth labels from a synthetic image that

has character level annotations.

3. Methodology

Our main objective is to precisely localize each individ-

ual character in natural images. To this end, we train a deep

neural network to predict character regions and the affin-

ity between characters. Since there is no public character-

level dataset available, the model is trained in a weakly-

supervised manner.

3.1. Architecture

A fully convolutional network architecture based on

VGG-16 [33] with batch normalization is adopted as our

backbone. Our model has skip connections in the decoding

part, which is similar to U-net [30] in that it aggregates low-

level features. The final output has two channels as score

maps: the region score and the affinity score. The network

architecture is schematically illustrated in Fig. 2.

3.2. Training

3.2.1 Ground Truth Label Generation

For each training image, we generate the ground truth label

for the region score and the affinity score with character-

level bounding boxes. The region score represents the prob-

ability that the given pixel is the center of the character,

and the affinity score represents the center probability of the

space between adjacent characters.

Unlike a binary segmentation map, which labels each

pixel discretely, we encode the probability of the character

center with a Gaussian heatmap. This heatmap representa-

tion has been used in other applications, such as in pose es-

timation works [1, 28] due to its high flexibility when deal-

ing with ground truth regions that are not rigidly bounded.

We use the heatmap representation to learn both the region

score and the affinity score.

Fig. 3 summarizes the label generation pipeline for a syn-

thetic image. Computing the Gaussian distribution value di-

rectly for each pixel within the bounding box is very time-

consuming. Since character bounding boxes on an image

are generally distorted via perspective projections, we use

the following steps to approximate and generate the ground

truth for both the region score and the affinity score: 1) pre-

pare a 2-dimensional isotropic Gaussian map; 2) compute

perspective transform between the Gaussian map region and

each character box; 3) warp Gaussian map to the box area.

For the ground truths of the affinity score, the affinity

boxes are defined using adjacent character boxes, as shown

in Fig. 3. By drawing diagonal lines to connect opposite cor-

ners of each character box, we can generate two triangles –

which we will refer to as the upper and lower character tri-

angles. Then, for each adjacent character box pair, an affin-

ity box is generated by setting the centers of the upper and

lower triangles as corners of the box.

The proposed ground truth definition enables the model

to detect large or long-length text instances sufficiently, de-

spite using small receptive fields. On the other hand, pre-

vious approaches like box regression require a large recep-

tive field in such cases. Our character-level detection makes

it possible for convolutional filters to focus only on intra-

character and inter-character, instead of the entire text in-

stance.

3.2.2 Weakly-Supervised Learning

Unlike synthetic datasets, real images in a dataset usu-

ally have word-level annotations. Here, we generate char-

acter boxes from each word-level annotation in a weakly-

supervised manner, as summarized in Fig. 4. When a real

image with word-level annotations is provided, the learned

interim model predicts the character region score of the

cropped word images to generate character-level bound-

ing boxes. In order to reflect the reliability of the interim

model’s prediction, the value of the confidence map over

each word box is computed proportional to the number of

the detected characters divided by the number of the ground

truth characters, which is used for the learning weight dur-
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Figure 4. Illustration of the overall training stream for the proposed method. Training is carried out using both real and synthetic images in

a weakly-supervised fashion.

ing training.

Fig. 6 shows the entire procedure for splitting the char-

acters. First, the word-level images are cropped from the

original image. Second, the model trained up to date pre-

dicts the region score. Third, the watershed algorithm [35]

is used to split the character regions, which is used to make

the character bounding boxes covering regions. Finally, the

coordinates of the character boxes are transformed back into

the original image coordinates using the inverse transform

from the cropping step. The pseudo-ground truths (pseudo-

GTs) for the region score and the affinity score can be gen-

erated by the steps described in Fig. 3 using the obtained

quadrilateral character-level bounding boxes.

When the model is trained using weak-supervision, we

are compelled to train with incomplete pseudo-GTs. If the

model is trained with inaccurate region scores, the output

might be blurred within character regions. To prevent this,

we measure the quality of each pseudo-GTs generated by

the model. Fortunately, there is a very strong cue in the

text annotation, which is the word length. In most datasets,

the transcription of words is provided and the length of the

words can be used to evaluate the confidence of the pseudo-

GTs.

For a word-level annotated sample w of the training data,

let R(w) and l(w) be the bounding box region and the word

length of the sample w, respectively. Through the charac-

ter splitting process, we can obtain the estimated character

bounding boxes and their corresponding length of charac-

ters lc(w). Then the confidence score sconf (w) for the sam-

ple w is computed as,

sconf (w) =
l(w)−min(l(w), |l(w)− lc(w)|)

l(w)
, (1)

Epoch #1

Epoch #2

Epoch #3

Epoch #4

Epoch #10

Charbox

Wordbox

.
.
.

.
.
.

Figure 5. Character region score maps during training.

and the pixel-wise confidence map Sc for an image is com-

puted as,

Sc(p) =

{

sconf (w) p ∈ R(w),

1 otherwise,
(2)

where p denotes the pixel in the region R(w). The objective

L is defined as,

L =
∑

p

Sc(p)·
(

||Sr(p)− S∗

r (p)||
2

2
+ ||Sa(p)− S∗

a(p)||
2

2

)

,

(3)

where S∗

r (p) and S∗

a(p) denote the pseudo-ground truth re-

gion score and affinity map, respectively, and Sr(p) and

Sa(p) denote the predicted region score and affinity score,

respectively. When training with synthetic data, we can ob-

tain the real ground truth, so Sc(p) is set to 1.

As training is performed, the CRAFT model can pre-

dict characters more accurately, and the confidence scores

sconf (w) are gradually increased as well. Fig. 5 shows the

character region score map during training. At the early

stages of training, the region scores are relatively low for

unfamiliar text in natural images. The model learns the ap-
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Figure 6. Character split procedure for achieving character-level annotation from word-level annotation: 1) crop the word-level image; 2)

predict the region score; 3) apply the watershed algorithm; 4) get the character bounding boxes; 5) unwarp the character bounding boxes.

pearances of new texts, such as irregular fonts, and synthe-

sized texts that have a different data distribution against that

of the SynthText dataset.

If the confidence score sconf (w) is below 0.5, the esti-

mated character bounding boxes should be neglected since

they have adverse effects when training the model. In this

case, we assume the width of the individual character is con-

stant and compute the character-level predictions by simply

dividing the word region R(w) by the number of characters

l(w). Then, sconf (w) is set to 0.5 to learn unseen appear-

ances of texts.

3.3. Inference

At the inference stage, the final output can be delivered

in various shapes, such as word boxes or character boxes,

and further polygons. For datasets like ICDAR, the evalua-

tion protocol is word-level intersection-over-union (IoU), so

here we describe how to make word-level bounding boxes

QuadBox from the predicted Sr and Sa.

The post-processing for finding bounding boxes is sum-

marized as follows. First, the binary map M covering the

image is initialized with 0. M(p) is set to 1 if Sr(p) > τr
or Sa(p) > τa, where τr is the region threshold and τa is

the affinity threshold. Second, Connected Component La-

beling (CCL) on M is performed. Lastly, QuadBox is ob-

tained by finding a rotated rectangle with the minimum area

enclosing the connected components corresponding to each

of the labels. The functions like connectedComponents and

minAreaRect provided by OpenCV can be applied for this

purpose.

Note that an advantage of CRAFT is that it does not need

: Character region

Scanning direction

: Local maxima along scanning direction

: Center line of local maxima

: Line of control points (tilted from local maxima)

: Control points of text polygon

: Polygon text instance

q
q

QuadBox

Polygon

Figure 7. Polygon generation for arbitrarily-shaped texts.

any further post-processing methods, like Non-Maximum

Suppression (NMS). Since we have image blobs of word

regions separated by CCL, the bounding box for a word is

simply defined by the single enclosing rectangle. On a dif-

ferent note, our character linking process is conducted at

a pixel-level, which differs from other linking-based meth-

ods [31, 10] relying on searching relations between text

components explicitly.

Additionally, we can generate a polygon around the en-

tire character region to deal with curved texts effectively.

The procedure of polygon generation is illustrated in Fig. 7.

The first step is to find the local maxima line of character

regions along the scanning direction, as shown in the figure

with arrows in blue. The lengths of the local maxima lines
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Method
IC13(DetEval) IC15 IC17 MSRA-TD500

FPS
R P H R P H R P H R P H

Zhang et al. [39] 78 88 83 43 71 54 - - - 67 83 74 0.48
Yao et al. [37] 80.2 88.8 84.3 58.7 72.3 64.8 - - - 75.3 76.5 75.9 1.61
SegLink [31] 83.0 87.7 85.3 76.8 73.1 75.0 - - - 70 86 77 20.6

SSTD [7] 86 89 88 73 80 77 - - - - - - 7.7
Wordsup [10] 87.5 93.3 90.3 77.0 79.3 78.2 - - - - - - 1.9
EAST∗ [40] - - - 78.3 83.3 80.7 - - - 67.4 87.3 76.1 13.2
He et al. [9] 81 92 86 80 82 81 - - - 70 77 74 1.1
R2CNN [11] 82.6 93.6 87.7 79.7 85.6 82.5 - - - - - - 0.4

TextSnake [23] - - - 80.4 84.9 82.6 - - - 73.9 83.2 78.3 1.1
TextBoxes++∗ [16] 86 92 89 78.5 87.8 82.9 - - - - - - 2.3

EAA [8] 87 88 88 83 84 83 - - - - - - -
Mask TextSpotter [24] 88.1 94.1 91.0 81.2 85.8 83.4 - - - - - - 4.8

PixelLink∗ [3] 87.5 88.6 88.1 82.0 85.5 83.7 - - - 73.2 83.0 77.8 3.0
RRD∗ [18] 86 92 89 80.0 88.0 83.8 - - - 73 87 79 10

Lyu et al.∗ [25] 84.4 92.0 88.0 79.7 89.5 84.3 70.6 74.3 72.4 76.2 87.6 81.5 5.7
FOTS [20] - - 87.3 82.0 88.8 85.3 57.5 79.5 66.7 - - - 23.9

CRAFT(ours) 93.1 97.4 95.2 84.3 89.8 86.9 68.2 80.6 73.9 78.2 88.2 82.9 8.6

Table 1. Results on quadrilateral-type datasets, such as ICDAR and MSRA-TD500. ∗ denote the results based on multi-scale tests. Methods

in italic are results solely from the detection of end-to-end models for a fair comparison. R, P, and H refer to recall, precision and H-mean,

respectively. The best score is highlighted in bold. FPS is for reference only because the experimental environments are different. We report

the best FPSs, each of which was reported in the original paper.

are equally set as the maximum length among them to pre-

vent the final polygon result from becoming uneven. The

line connecting all the center points of the local maxima is

called the center line, shown in yellow. Then, the local max-

ima lines are rotated to be perpendicular to the center line

to reflect the tilt angle of characters, as expressed by the red

arrows. The endpoints of the local maxima lines are the can-

didates for the control points of the text polygon. To fully

cover the text region, we move the two outer-most tilted lo-

cal maxima lines outward along the local maxima center

line, making the final control points (green dots).

4. Experiment

4.1. Datasets

ICDAR2013 (IC13) was released during the ICDAR 2013

Robust Reading Competition for focused scene text detec-

tion, consisting of high-resolution images, 229 for training

and 233 for testing, containing texts in English. The anno-

tations are at word-level using rectangular boxes.

ICDAR2015 (IC15) was introduced in the ICDAR 2015

Robust Reading Competition for incidental scene text de-

tection, consisting of 1000 training images and 500 testing

images, both with texts in English. The annotations are at

the word level using quadrilateral boxes.

ICDAR2017 (IC17) contains 7,200 training images, 1,800

validation images, and 9,000 testing images with texts in 9

languages for multi-lingual scene text detection. Similar to

IC15, the text regions in IC17 are also annotated by the 4

Method
TotalText CTW-1500

R P H R P H

CTD+TLOC [38] - - - 69.8 77.4 73.4
MaskSpotter [24] 55.0 69.0 61.3 - - -
TextSnake [23] 74.5 82.7 78.4 85.3 67.9 75.6

CRAFT(ours) 79.9 87.6 83.6 81.1 86.0 83.5

Table 2. Results on polygon-type datasets, such as TotalText and

CTW-1500. R, P and H refer to recall, precision and H-mean, re-

spectively. The best score is highlighted in bold.

vertices of quadrilaterals.

MSRA-TD500 (TD500) contains 500 natural images,

which are split into 300 training images and 200 testing im-

ages, collected both indoors and outdoors using a pocket

camera. The images contain English and Chinese scripts.

Text regions are annotated by rotated rectangles.

TotalText (TotalText), recently presented in ICDAR 2017,

contains 1255 training and 300 testing images. It especially

provides curved texts, which are annotated by polygons and

word-level transcriptions.

CTW-1500 (CTW) consists of 1000 training and 500 test-

ing images. Every image has curved text instances, which

are annotated by polygons with 14 vertices.

4.2. Training strategy

The training procedure includes two steps: we first use

the SynthText dataset [5] to train the network for 50k iter-

ations, then each benchmark dataset is adopted to fine-tune
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the model. Some “DO NOT CARE” text regions in ICDAR

2015 and ICDAR 2017 datasets are ignored in training by

setting sconf (w) to 0. We use the ADAM [15] optimizer in

all training processes. For multi-GPU training, the training

and supervision GPUs are separated, and pseudo-GTs gen-

erated by the supervision GPUs are stored in the memory.

During fine-tuning, the SynthText dataset is also used at a

rate of 1:5 to make sure that the character regions are surely

separated. In order to filter out texture-like texts in natural

scenes, On-line Hard Negative Mining [32] is applied at a

ratio of 1:3. Also, basic data augmentation techniques like

crops, rotations, and/or color variations are applied.

Weakly-supervised training requires two types of data;

quadrilateral annotations for cropping word images and

transcriptions for calculating word length. The datasets

meeting these conditions are IC13, IC15, and IC17. Other

datasets such as MSRA-TD500, TotalText, and CTW-1500

do not meet the requirements. MSRA-TD500 does not pro-

vide transcriptions, while TotalText and CTW-1500 provide

polygon annotations only. Therefore, we trained CRAFT

only on the ICDAR datasets, and tested on the others with-

out fine-tuning. Two different models are trained with the

ICDAR datasets. The first model is trained on IC15 to eval-

uate IC15 only. The second model is trained on both IC13

and IC17 together, which is used for evaluating the other

five datasets. No extra images are used for training. The

number of iterations for fine-tuning is set to 25k. All exper-

iments are performed with NAVER Smart Machinie Learn-

ing (NSML) platform [14, 34].

4.3. Experimental Results

Quadrilateral-type datasets (ICDARs, and MSRA-

TD500) All experiments are performed with a single image

resolution. The longer side of the images in IC13, IC15,

IC17, and MSRA-TD500 are resized to 960, 2240, 2560,

and 1600, respectively. Table 1 lists the experimental results

of various methods on ICDAR and MSRA-TD500 datasets.

To have a fair comparison with end-to-end methods, we in-

clude their detection-only results by referring to the origi-

nal papers. We achieve state-of-the-art performances on all

the datasets. In addition, CRAFT runs at 8.6 FPS on IC13

dataset, which is comparatively fast, thanks to the simple

yet effective post-processing.

For MSRA-TD500, annotations are provided at the line-

level, including the spaces between words in the box. There-

fore, a post-processing step for combining word boxes is

applied. If the right side of one box and the left side of an-

other box are close enough, the two boxes are combined

together. Even though fine-tuning is not performed on the

TD500 training set, CRAFT outperforms all other methods

as shown in Table 1.

Polygon-type datasets (TotalText, CTW-1500) It is chal-

lenging to directly train the model on TotalText and CTW-

Method IC13 IC15 IC17

Mask TextSpotter [24] 91.7 86.0 -

EAA [8] 90 87 -

FOTS [20] 92.8 89.8 70.8

CRAFT(ours) 95.2 86.9 73.9

Table 3. H-mean comparison with end-to-end methods. Our

method is not trained in an end-to-end manner, yet shows com-

parable results, or even outperforms popular methods.

1500 because their annotations are in polygonal in shape,

which complicates text area cropping for splitting character

boxes during weakly-supervised training. Consequently, we

only used the training images from IC13 and IC17, and fine-

tuning was not conducted to learn the training images pro-

vided by these datasets. At the inference step, we used the

polygon generation post-processing from the region score

to cope with the provided polygon-type annotations.

The experiments for these datasets are performed with a

single image resolution, too. The longer sides of the images

within TotalText and CTW-1500 are resized to 1280 and

1024, respectively. The experimental results for polygon-

type datasets are shown in Table 2. The individual-character

localization ability of CRAFT enables us to achieve more

robust and superior performance in detecting arbitrarily

shaped texts compared to other methods. Particularly, the

TotalText dataset has a variety of deformations, including

curved texts as shown in Fig. 8, for which adequate in-

ference by quadrilateral-based text detectors is infeasible.

Therefore, a very limited number of methods can be evalu-

ated on those datasets.

In the CTW-1500 dataset’s case, two difficult character-

istics coexist, namely annotations that are provided at the

line-level and are of arbitrary polygons. To aid CRAFT in

such cases, a small link refinement network, which we call

the LinkRefiner, is used in conjunction with CRAFT. The

input of the LinkRefiner is a concatenation of the region

score, the affinity score, and the intermediate feature map of

CRAFT, and the output is a refined affinity score adjusted

for long texts. To combine characters, the refined affinity

score is used instead of the original affinity score, then the

polygon generation is performed in the same way as it was

performed for TotalText. Only LinkRefiner is trained on the

CTW-1500 dataset while freezing CRAFT. The detailed im-

plementation of LinkRefiner is addressed in the supplemen-

tary materials. As shown in Table 2, the proposed method

achieves state-of-the-art performance.

4.4. Discussions

Robustness to Scale Variance We solely performed single-

scale experiments on all the datasets, even though the size of

texts are highly diverse. This is different from the majority

of other methods, which rely on multi-scale tests to handle
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Figure 8. Results on the TotalText dataset. First row: each column shows the input image (top) with its respective region score map (bottom

left) and affinity map (bottom right). Second row: each column only shows the input image (left) and its region score map (right).

the scale variance problem. This advantage comes from the

property of our method localizing individual characters, not

the whole text. The relatively small receptive field is suf-

ficient to cover a single character in a large image, which

makes CRAFT robust in detecting scale variant texts.

Multi-language issue The IC17 dataset contains Bangla

and Arabic characters, which are not included in the syn-

thetic text dataset. Moreover, both languages are difficult

to segment into characters individually because every char-

acter is written cursively. Therefore, our model could not

distinguish Bangla and Arabic characters as well as it does

Latin, Korean, Chinese, and Japanese. In East Asian char-

acters’ cases, they can be easily separated with a constant

width, which helps train the model to high performance via

weakly-supervision.

Comparison with End-to-end methods Our method is

trained with the ground truth boxes only for detection, but

it is comparable with other end-to-end methods, as shown

in Table. 3. From the analysis of failure cases, we expect

our model to benefit from the recognition results, especially

when the ground truth words are separated by semantics,

rather than visual cues.

Generalization ability Our method achieved state-of-the-

art performances on 3 different datasets without additional

fine-tuning. This demonstrates that our model is capable of

capturing general characteristics of texts, rather than over-

fitting to a particular dataset.

5. Conclusion

We have proposed a novel text detector called CRAFT,

which can detect individual characters even when character-

level annotations are not given. The proposed method pro-

vides the character region score and the affinity score that,

together, fully cover various text shapes in a bottom-up

manner. Since real datasets provided with character-level

annotations are rare, we proposed a weakly-supervised

learning method that generates pseudo-ground truthes from

an interim model. CRAFT shows state-of-the-art perfor-

mances on most public datasets and demonstrates general-

ization ability by showing these performances without fine-

tuning. As our future work, we hope to train our model

with a recognition model in an end-to-end fashion to see

whether the performance, robustness, and generalizability

of CRAFT translates to a better scene text spotting system

that can be applied in more general settings.
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