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Figure 1. Our approach synthesizes images from a label mask by non-parametric matching of shapes, parts, and pixels. We show

example results for diverse “in-the-wild” scenes containing large amounts of variation in object composition and deformation.

Abstract

We introduce a data-driven model for interactively syn-

thesizing in-the-wild images from semantic label input

masks. Our approach is dramatically different from re-

cent work in this space, in that we make use of no learn-

ing. Instead, our approach uses simple but classic tools

for matching scene context, shapes, and parts to a stored

library of exemplars. Though simple, this approach has

several notable advantages over recent work: (1) because

nothing is learned, it is not limited to specific training data

distributions (such as cityscapes, facades, or faces); (2) it

can synthesize arbitrarily high-resolution images, limited

only by the resolution of the exemplar library; (3) by ap-

propriately composing shapes and parts, it can generate

an exponentially large set of viable candidate output im-

ages (that can say, be interactively searched by a user). We

present results on the diverse COCO dataset, significantly

outperforming learning-based approaches on standard im-

age synthesis metrics. Finally, we explore user-interaction

and user-controllability, demonstrating that our system can

be used as a platform for user-driven content creation.

1. Introduction

We introduce a data-driven model for interactively syn-

thesizing diverse images from semantic label input masks.

Specifically, we seek to design a system for in-the-wild im-

age synthesis that is controllable and interpretable. While

content creation is a compelling task in of itself (a classic

goal of computer graphics), image synthesis is also useful

for generating data that can be used to train discriminative

visual recognition systems [29]. Synthesized data can be

used to explore scenarios that are difficult or too dangerous

to sample directly (e.g., training an autonomous perception

system on unsafe urban scenes [31]). Figure 1 shows im-

ages synthesized using our approach, where the input is a

semantic label image.

Parametric vs Nonparametric: Current approaches for

image synthesis and editing can be broadly classified into

three categories. The first category uses parametric machine

learning models. The current state-of-the-art [10, 33, 55]

relies on deep neural networks [39] trained with adversar-

ial losses (GANs) [21] or perceptual losses [34] to create

images. These approaches work remarkably well when

trained on datasets with somewhat limited diversity, such

as cityscapes [11], faces [2, 52], or facades [54]. But it

is unclear how to extend such approaches for “in-the-wild”

image synthesis or editing: parametric models trained on

one data distribution (e.g. cityscapes) do not seem to gen-

eralize to others (e.g. facades), a problem widely known as

dataset bias [53]. The second category of work [1, 14, 15,

27, 38, 48] uses non-parametric nearest neighbors to create

content.These approaches have been demonstrated on inter-

active image editing tasks such as object insertion [38] or

scene completion [25]. Though a large inspiration for our

own work, such approaches have interestingly fallen out of

favor in recent history.

Does more data help? A peculiar property of many

parametric synthesis methods is that they do better with less

data [2, 21, 33, 45, 58, 62]. The culprit seems to be that such
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Figure 2. Limitations of current approaches for images synthesis: (a) Current image synthesis models tend to be trained on datasets with

somewhat limited diversity, such as cityscapes [11], faces [52], or facades [54]. For example, the average label mask for Cityscapes [11]

clearly reveals redundant structure such as a car hood, road, and foliage. In contrast, the average image for COCO [40] is much less

structured, suggesting it is a more varied dataset. (b) Indeed, we train state-of-the-art neural architectures [33, 55] on COCO and observe

poor convergence (even after a month of training!) resulting in a mode collapsed and averaged outputs. (c) In contrast, our simple matching-

based approach is able to synthesize realistic image content by matching to exemplar shapes. In order to generate high-quality images, we

find it crucial to encode scene context and part deformation in the matching process - i.e., matching global shapes alone will produce poor

images with missing regions due to shape mismatches.

methods don’t do well on diverse training sets, and in prac-

tice larger training sets tend to be diverse. This is in contrast

with truly non-parametric methods that do better with more

data [25]. Figure 2-(a) highlights the differences between

limited and diverse datasets, using illustrative examples of

Cityscapes [11] and COCO [40]. While parametric meth-

ods do well on limited data distributions, they struggle to

perform on diverse datasets. Recent works [9, 43] have at-

tempted to overcome this challenge by using enormously

large model sizes and crazy big compute.

Composition by parts: In this work, we make three ob-

servations that influence our final approach; (1) humans can

imagine multiple plausible output images given a particular

input label mask. We see this rich space of potential out-

puts as a vital part of the human capacity to imagine and

generate. Most parametric networks tend to formulate syn-

thesis as a one-to-one mapping problem, and so struggle to

provide diverse outputs (a phenomena also known as mode

collapse). Important exceptions include [3, 10, 20, 63] that

generated multiple outputs by employing various modifi-

cations. (2) visual scenes are exponentially complex due

to many possible compositions of constituent objects and

parts. It is tempting to combine both observations, and

generate multiple outputs by composing scene elements to-

gether. But these compositions cannot be arbitrary - one

cannot freely swap out a face with a wheel, or place a

elephant on a baseball field. To ensure consistency, our

matching process makes use of implicit contextual seman-

tics present in the library of exemplar label masks. (3) given

an exemplar set of sufficient size, nearest neighbor meth-

ods may still perform well with simple features that are not

learned (e.g., pixel values). We combine our observations to

construct an image synthesis system that exemplar shapes

and parts using simple pixel features.

Our Contributions: (1) we study the problem of visual

content creation and manipulation for in-the-wild settings,

and observe that reliance on parametric models lead to aver-

aged or mode-collapsed outputs; (2) we present an approach

that utilize shapes and context to generate images consist-

ing of rigid and non-rigid objects in varied backgrounds,

and different environmental and illumination conditions; (3)

we demonstrate the controllable and interpretable aspects of
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our approach that enables a user to influence the generation

and select examples from many outputs.

2. Background

Our work combines various ideas on shapes, deformable

parts, context, and non-parametric approaches developed in

last two decades. We position each separately and the spe-

cific insights for their particular usage.

Shapes & Non-parametric approaches: Shapes [37, 41,

46] emerge naturally in our world due to its compositional

structure. If we had an infinite data-source with all potential

shapes for all the objects, then our world could be repre-

sented by a linear combination of different shapes [23, 46].

In this work, we aim to generate images from seman-

tic and instance label maps as input. Meaningful shapes

and contours [5, 24] makes for an obvious interpretation

for such input. In an unconstrained in-the-wild data dis-

tribution consisting of both rigid and non-rigid objects,

it become non-trivial to model such shapes for a one-to-

many mappings. We, therefore, want to leverage the shape

information explicitly from the training data in our for-

mulation by simple copy-pasting. Non-parametric meth-

ods [14, 15, 16, 19, 27, 35] find their use for various com-

puter vision tasks such as texture-synthesis [15, 16], im-

age super-resolution [19], action recognition [14], or scene

completion [25].

Our work draws similarity to idea of scene compos-

ites [32, 44, 49, 48]. Russell et al [48] use shapes or scene

composites to query matches for semantic segmentation us-

ing LabelMe dataset [50]. In an another work, Russell et

al [49] use similar idea of composites for object discov-

ery. Isola and Liu [32] use this idea of composites for

scene parsing and collaging. Recently, Qi et al [44] used

shapes in a semi-parametric form to synthesize images from

a semantic label map. These different approaches [44, 48]

on scene composites or shapes are however constrained to

rigid and non-deformable objects from a constrained data-

distribution such as road-side scenarios from LabelMe [50],

or Cityscapes [11]. Our work extends the prior work to

non-rigid and deformable shapes from an unconstrained in-

the-wild data distribution. Figure 2-(c) shows how global

shapes are insufficient and one needs to consider local in-

formation about parts and pixels.

Deformable Objects & Parts: The global shape fitting can

be reliably estimated for non-deformable objects but local

shapes or parts [7, 18, 22] are required when considering

non-rigid objects. The prior work on local components [7],

regions [22], or parts [18, 51, 57] has largely been focused

on recognition. On the other hand, our work draws insight

from ideas on compositional matching [8, 17] and we use

the parts, components, and regions for synthesizing images.

In this work, we generate parts from various global shapes

to do image synthesis. This enables us to consider local

information without any explicit part labels.

Context as a major cue: Context is a natural and power-

ful tool to put things in perspective [6, 30]. There is a wide

literature on the use of context in computer vision commu-

nity [13, 42] and is beyond the scope of this work to illus-

trate them completely. In this work, we use contextual infor-

mation at both global and local level to do better and faster

matching of global shapes, parts, and pixels. The contextual

information, while itself remaining in background, enables

us to do an effective non-parametric matching.

User Controllable Content Synthesis & Manipulation:

Multiple works [3, 4, 38, 61, 59, 55] in computer graph-

ics and vision literature have demonstrated the importance

of user-controlled image operations. Grab-cut [47] enables

user-based segmentation of a given scene. Lalonde et al [38]

use a non-parametric approach to insert objects in a given

image. Kholgade et al [36] demonstrate a user-controlled

3D object manipulation. In this work, we demonstrate how

shapes can be used naturally and intuitively for a user con-

trollable content creation and manipulation.

3. Method

Given a semantic and an instance label map, X , our

goal is to synthesize a new image, Y . Our formulation is a

hierarchical non-parametric matching ensuring the follow-

ing stages in order: (1) global scene context; (2) instance

shape consistency; (3) local part consistency; and finally

(4) minute pixel-level consistency.

Global Scene Context: In a big data settings with hundred

thousands and million examples, doing nearest neighbors

could be a time-consuming process. We make this pro-

cess faster by using global scene context to prune the list

of training examples from which the shapes should be ex-

tracted. Only those examples are considered if they fall in

one of three categories: (1) their global image has same la-

bels as input; (2). the labels in input is its subset; (3). the

labels in input is its superset. This reduces the search space

from hundred thousand shapes to a few hundreds. We fur-

ther prune them to top-N images for searching shapes by

computing a global coverage and a pixel coverage score.

A global coverage score is computed to ensure the top-

N label maps in the training set have similar distribution of

labels as are in a given query label map. We compute the

normalized histogram of labels (both query and training),

and compute a l2 distance between query and training label

map. A pixel coverage score is computed to ensure we se-

lect the images with maximum pixel-to-pixel overlap. This

score is computed by aligning a query label map and an

example from training set, followed by the hamming dis-

tance between them. To make it faster, we resize the im-

ages to 100×100 and then compute the normalized ham-

ming distance between the respective labels. We sum both

global coverage and pixel coverage scores, and choose N
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Figure 3. Three stages of non-parametric matching: (1) Shape Consistency - Given an input label mask, we extract various shapes. We

extract shapes from the training set for a query shape by using a shape-and-context feature. We show examples of top-3 retrieved shapes

for a query shape on left. The image information from the retrieved shapes is then extracted by considering the mask of query shape and

retrieved shape; (2) Part Consistency - We observe that global shape retrieved in last stage is missing information about the hands and

legs of the query shape (human in this case). We define a local shape matching approach that looks in the neighborhood to synthesize

parts. The query and top-k shapes are resized to 256×256, and binned into 16×16 bins with each bin being a 16×16 patch. Each patch

is represented by label information contained in it, and an additional 8 neighboring patches. This provides contextual information about

the surroundings. The parts are looked in an adjacent 112×112 region and the ones with minimum hamming distance is considered. (3)

Hierarchical Composition: Given an input label mask (top-left), we show the outputs of three stages of our non-parametric matching

approach. The first column shows the output of composition of global shapes extracted using our shape consistency algorithm. The second

column shows the improved output by introducing local part consistency to previous output. Finally, minute pixel level holes are filled by

our pixel-consistency algorithm. See section 3 for more details.

images in the training set with the lowest scores. This use

of global scene context drastically reduces the search space

for our non-parametric approach, and enables to do synthe-

sis with a humble compute power (single core CPUs instead

of GPUs).

Shape Consistency: We seek shapes as the first step

to define different components in an image. We repre-

sent the shapes in an instance and semantic label mask as

{x1, x2, ..., xN} where N is the total number of shapes for

a given input. Each shape has an associated semantic label

l : l ∈ {1, 2, ..., L} where L is the number of unique la-

bels. We then make a tight bounding box around this shape

xi so that it could be used as a rectangular convolutional

filter (wi) to retrieve similar shapes from the training data.

We represent this filter using: (1) a simple logical opera-

tor: the part of a shape (xi) in the filter (wi) is set to 1,

and the remaining part is set to −1. This forces the filter to

search the composites with boundaries and details; and (2).

a contextual operator: we extract the labels from the input

label mask for this filter. This information is to force our

matching function to extract the shapes which have similar

context.

We use the logical operator (wl) and contextual operator

(wc) to rank the remaining shapes for our query component

using the scoring function:

Sshape(wi, wj) = wl
i ∗ w

l
j +

NsX

k=1

I(wc
i,k − wc

j,k), (1)

where I is an indicator function, and Ns is the total num-

ber of pixels in a given query component. Since we have

fixed the size to 50×50 in our formulation, Ns = 2500. We

use this scoring function (Eq. 1) to score different shapes in

our pruned list for a given shape. The RGB component for

an extracted shape is its intersection with the query shape,

i.e. only pixels active in both extracted and query shape are

considered. Figure 3-left shows the part of our algorithm to

compute shape-consistency score.

We ignore the shapes if the ratio of their aspect-ratio to

that of query component is either less than 0.5 or greater

than 2. Finally, we make this convolution processing faster

by using a fixed size filters and low-res label masks of

50×50. This also helps us to generate composite of arbitrar-

ily high resolution without any extra computational cost.

Part Consistency: Modeling occlusions and deformable

aspects of non-rigid objects in real world are extremely

hard. The problem is even aggravated with noisy shape in-

puts. The insufficient shape data and non-rigid objects in

real world leads to parts and local regions [7]. We seek

parts from top-k global shapes. Importantly, the part in-
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Figure 4. Non-parametric matching: Our approach for generating images from a label mask by non-parametric matching of global

shapes, local parts, and pixel-consistency. The above examples contain varying background, cluttered environment, varying weather and

illumination conditions, and multiple rigid and non-rigid objects in various shapes and forms.

formation is required when a global shape is not able to

capture. We extract the knowledge of parts from the global

shapes in a spirit similar to non-parametric texture synthe-

sis [16]. The shape components are resized to 256×256, so

that local information can be well searched. We extract a

16×16 patches from the resized global shape template. Lo-

cal contextual information (similar to HOG [12], or Group-

Normalization [56]) is used by considering the neighboring

8 patches. The parts are scored using:

Spart(w
p
i , w

p
j ) =

NpX

k=1

I(wp
i,k − w

p
j,k) (2)

where I is an indicator function, and each patch (wp),

is represented by a Np (256×9) dimensional vector con-

taining the label information in the patch. Importantly, we

do not need to look in a larger window for part matching

as we have weakly aligned global shapes. Therefore, we

restrict the patches to look in a surrounding 5×5 patch win-

dow. This corresponds to 112×112 pixel window in a re-

sized global shape template. To copy the RGB component,

we take an average of top-3 retrieved patch windows. Fig-

ure 3-middle shows the part of our algorithm to compute

part-consistency score.

Pixel Consistency: The shapes and parts have accounted

for most of the non-parametric image synthesis. How-

ever, they does not ensure pixel-level consistency and of-

ten ends up with minor holes in an image. We enforce a

pixel-level consistency in this process to account for the re-

maining holes in synthesized image. This process is simi-

lar to our part consistency algorithm, except that it is done

on every pixel. Each pixel is represented by a surround-

ing 11×11 window. We use the criterion in Eq. 2 to com-

pute similarity between two feature vectors. To expedite

this matching, we compute features for a low-res input la-

bel map (128×128) as pixel consistency is ensured to fill

minor holes alone. Finally, we look in surrounding region

of 5×5 from a 128×128 image to fill in the information as

global and local consistency have already been accounted

by shape and part consistency.

Hierarchical Composition: We combine the information

hierarchically from shapes, parts, and pixels to generate a

full image. Figure 3-right shows the composition starting

from an input label mask. Firstly, we use the global shape

component to fill the major chunk of images. The miss-

ing information is then filled using the local part consis-

tency. Finally, the minor holes are filled using the pixel-

level consistency. The combination of these three stages

enable us to generate a image from an input label mask by

simple non-parametric matching. Figure 4 shows outputs

generated by our approach for varying background, clut-

tered environment, varying weather and illumination con-

ditions, and multiple rigid and non-rigid objects in various

2321



input	 pix2pix	 rand-top-5-NN	ours	(global	shape)	 ours	(full)	 original	

Figure 5. Parametric vs. Non-parametric: We generate images from an input label mask (left). The second column shows the output

of Pix2Pix [33] specifically trained on Coco training set. The third and fourth column are the output of our approach with global shape

matching, and considering parts and pixel consistency respectively. The fifth column contains the original image. Finally, the last column

shows an image for randomly selected one of top-5 nearest neighbors for input label mask.

shapes and forms.

Generating Multiple-Outputs: A salient aspect of con-

sidering shapes and parts in a non-parametric matching pro-

vides multiple outputs for free. We use the extracted shapes

and parts, and can combine them in exponential ways with-

out any extra overhead. We show multiple examples syn-

thesized for a given label mask using our approach in Fig-

ure 6. Generating these multiple outputs is not trivial when

using parametric approaches [10, 33], and a substantial re-

search [20, 63] has been conducted for this process. How-

ever, it is just trivial for non-parametric matching.

User Controllable Content Creation: We finally demon-

strate the applicability of our approach for a user control-

lable content creation in Figure 7. Note how our approach

can be easily used to edit the label mask by inserting shapes

to generate a new output. More importantly, synthesis and

manipulation aspects go hand-in-hand for our approach. A

human user can clearly interpret and influence any stage of

synthesis, and can easily generate a different output by vary-

ing a shape. Manipulation naturally emerges in our non-

parametric approach without any additional efforts. This is

not true for prior parametric approaches that require a spe-

cialized machinery for this task.

4. Experiments

Dataset: We use semantic and instance label mask from

COCO [40] to study the problem of in-the-wild image syn-

thesis and manipulation. This dataset consists of 134 differ-

ent objects and stuff categories making it the most diverse

and varied publicly available dataset. There are 118, 287
images in the training set (40× more than cityscapes [11]),

and 5, 000 images in the validation set (100× more than

cityscapes). We use the paired data of labels and images

from training set to extract global shapes and synthesize

parts and pixels. The images are synthesized using seman-

tic and instance label masks in validation set. Our approach

does not require any training, and therefore can use the la-

bels and image component from anywhere. For the sake

of fair comparison with parametric approaches, we restrict

ourselves to COCO training data.

Baselines: To the best of our knowledge, there does not ex-

ist a non-parametric approach that has attempted the prob-

lem of the in-the-wild image synthesis from label masks.

We, therefore, compare our approach with parametric ap-

proaches: (1). Pix2Pix [33]; and (2). Pix2Pix-HD [55],

using their publicly available codes. The complexity, di-

versity, and size of this dataset makes it a computational

challenge for a generative parametric approach to deal with.

Training a simple Pix2Pix model took 20 days on a single
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Figure 6. Multiple Outputs: Our approach can easily generate exponentially large number of outputs by changing shapes and parts. We

show four outputs generated for each input label mask.

Nvidia Titan-X GPU. On the same compute, we trained a

Pix2Pix-HD model for a month but did not observe any con-

vergence. It may be possible that a reasonable Pix2Pix-HD

model be trained if we let the training go longer for an ex-

tra month or two, or use advanced computational resources.

It may also be due to design of architecture and hyper-

parameters specifically suited for Cityscapes, and that ef-

forts are required to tune hyper-parameters to make it work

for a large and diverse dataset as COCO. For the sake of

fair comparison, we additionally use Cityscapes to contrast

our approach with prior works [10, 33, 44, 55] even when

it comes at the cost of performance for our own approach

due to limited data. Additionally, we resize our generated

outputs to 256 × 256 just to make a fair comparison with

Pix2Pix on COCO. However, we can generate outputs hav-

ing same resolution as that of input label masks without any

increase in compute.

FID Scores: We compute FID scores [28] using the im-

ages generated from different approaches. Lower FID val-

ues suggest more realism. Table 1 contrast FID scores

computed on generated images (COCO) with Pix2Pix and

Pix2Pix-HD (resized to 256×256 and 64×64 resolution).

Without using any oracle, the top-1 example generated from

our approach significantly outperforms the prior work. Ad-

ditionally, note the performance improvement due to each

stage in our hierarchical composition.

Mask-RCNN Scores: We use a pre-trained Mask-

RCNN [26] to study the quality of synthesis on COCO [40]

for Pix2Pix and our approach. This model is trained for

80 object categories of COCO dataset. While it is trained

for instance segmentation, we use its output and convert it

to semantic labels for consistency in evaluation. Our goal

is to observe if we can get the same class labels from the

synthesized images as one would expect from a real image.

We, therefore, run it on original images from the validation

set and use these pseudo semantic labels as ground truth for

Method #examples Oracle FID score FID score

(256×256) (64×64)

Pix2Pix [33] 1 7 70.43 41.45

Pix2Pix-HD [55] 1 7 157.13 109.49

Ours (shapes) 1 7 37.26 23.22

Ours (shapes+parts) 1 7 32.62 18.02

Ours (shapes+parts+pixels) 1 7 31.63 16.61

Table 1. FID Scores on COCO: We compute FID score [28] to

contrast the realism in outputs produced by different approaches.

Lower FID values suggest more realism. We observe that our

approach outperforms prior approaches significantly. We also

demonstrate as how different stages in our hierarchical composi-

tion leads to better outputs.

evaluation. Next, we run it on synthesized images and con-

trast it with the labels from original image. To measure the

performance, we use three criterion: (1) mean pixel accu-

racy (PC); (2) mean class accuracy (AC); (3) mean inter-

section over union (IoU). Higher the score for each of the

criterion, better is the quality of synthesis. Table 2 con-

trasts the performance of our approach with Pix2Pix and

demonstrates substantially better results. Our performance

improves when an oracle is used to select the best from five

outputs. Note that top-100 examples from the training set

are used for global shape matching in our approach for this

experiment.

Human Studies: We did human studies on a randomly

selected 500 images. We show the outputs of Pix2Pix,

Pix2Pix-HD, and our approach (randomly picked one out-

put from multiple) to human subjects for as much time as

they need to make a decision. We asked them to pick one

that looks close to a real image. The users were advised to

use ‘none of these’ if all approaches are consistently bad.

51.2% times user picked an output generated from our ap-

proach, 7.8% times the outputs from Pix2Pix, and preferred

‘none of these’ 41% times. The human studies suggest that

while our approach is most likable but there are still many
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Figure 7. User-Intervention & Image Manipulation: The first two columns shows an original label mask and a synthesized output for it

using our approach. A user can add a shape to the label mask, and a new output will be generated by matching the corresponding shape.

Method #examples Oracle PC AC IoU

Parametric

Pix2Pix [33] 1 7 17.9 8.9 4.9

Non-Parametric

Ours 1 7 44.5 31.0 20.9

Ours 5 X 58.2 41.2 31.4

Table 2. Mask-RCNN Scores on COCO: We use a pre-trained

Mask-RCNN model [26] to study the quality of image synthesis.

We run it on synthesized images and contrast it with the labels

from original image. To measure the performance, we use three

criterion: (1) mean pixel accuracy (PC); (2) mean class accuracy

(AC); (3) mean intersection over union (IoU). Higher the score

for each of the criterion, better is the quality of synthesis. We

outperform Pix2Pix. The performance further improves signifi-

cantly when an oracle is used to select from five examples.

situations where our approach produced undesirable out-

puts.

Cityscapes: Table 3 contrasts the performance of our ap-

proach with prior approaches [10, 33, 44, 55] that have

specifically demonstrated on Cityscapes. Except Pix2Pix,

we used publicly available results for this evaluation. Our

approach performs second to Pix2Pix-HD and better than

prior parametric and semi-parametric approaches with just

25 images to extract shapes and parts to compose a new im-

age from semantic labels. The performance improves when

using an oracle to select best amongst the 5 generated out-

puts. Our performance may further improve as we increase

the number of global images to do shape and part extraction.

5. Discussion & Future Work

We present an exceedingly simple non-parametric ap-

proach for image synthesis and manipulation in-the-wild.

While the diverse data-distribution and large datasets make

it challenging for parametric approaches to operate on, it

Method #examples Oracle PC AC IoU

Parametric

Pix2Pix [33] 1 7 72.5 29.5 24.6

CRN [10] 1 7 49.0 22.5 18.2

Pix2Pix-HD [55] 1 7 79.0 43.3 37.8

Semi-Parametric

SIMS [44] 1 7 68.6 35.1 28.1

Non-Parametric

Ours (top-25) 1 7 67.1 38.0 30.5

Ours (top-25) 5 X 71.3 39.6 32.4

Table 3. PSP-Net Scores on Cityscapes: We use a pre-trained

PSP-Net model [60] to evaluate the quality of synthesized images

(1024×2048). This model is trained for semantic segmentation on

cityscapes. We run the synthesized images through this model, and

generate a semantic label map for each image. The semantic label

map from the synthesized images is contrasted with the semantic

label map from the original image. We compute three statistics

for each approach: (1) Mean Pixel Accuracy (PC); (2) Mean Class

Accuracy (AC); (3) Mean intersection over union (IoU). For each

of these criterion- higher the score, better is the quality of syn-

thesis. With just 25 global nearest neighbors to extract shapes and

parts, our non-parametric approach is competitive to the paramet-

ric models and semi-parametric models.

enables simple matching of shapes and parts to work well.

The non-parametric matching enables us to generate expo-

nentially large number of outputs by varying shapes and

parts. Importantly, shapes and parts are intuitive to a nor-

mal human user as well. This makes our approach inter-

pretable and suitable for user-controllable content creation

and editing. The future work in this direction may address

smarter ways of combining shapes and parts information,

and explore spatiotemporal consistency to do in-the-wild

video synthesis and manipulation.
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