
Exploring the Bounds of the Utility of Context for Object Detection

Ehud Barnea and Ohad Ben-Shahar

Dept. of Computer Science, Ben-Gurion University

Beer-Sheva, Israel

{barneaeh, ben-shahar}@cs.bgu.ac.il

Abstract

The recurring context in which objects appear holds

valuable information that can be employed to predict their

existence. This intuitive observation indeed led many re-

searchers to endow appearance-based detectors with ex-

plicit reasoning about context. The underlying thesis sug-

gests that stronger contextual relations would facilitate

greater improvements in detection capacity. In practice,

however, the observed improvement in many cases is mod-

est at best, and often only marginal. In this work we seek

to improve our understanding of this phenomenon, in part

by pursuing an opposite approach. Instead of attempting to

improve detection scores by employing context, we treat the

utility of context as an optimization problem: to what ex-

tent can detection scores be improved by considering con-

text or any other kind of additional information? With this

approach we explore the bounds on improvement by using

contextual relations between objects and provide a tool for

identifying the most helpful ones. We show that simple co-

occurrence relations can often provide large gains, while in

other cases a significant improvement is simply impossible

or impractical with either co-occurrence or more precise

spatial relations. To better understand these results we then

analyze the ability of context to handle different types of

false detections, revealing that tested contextual informa-

tion cannot ameliorate localization errors, severely limiting

its gains. These and additional insights further our under-

standing on where and why utilization of context for object

detection succeeds and fails.

1. Introduction

Historically, object detection has been performed by

“sliding” a window over an image and deciding whether it

contains an object by reasoning about its appearance inside

the window [12, 7]. Naturally, this type of calculation only

takes the object’s local context into account, as more dis-

tant context falls outside of the window. Contemporary de-

tectors based on convolutional neural networks are able to

expand their reasoning beyond local context since the recep-

tive field of neurons grows with depth, eventually covering

the entire image. However, the extent to which such a net-

work is able to incorporate context is still not entirely under-

stood [23]. To improve both types of detectors, many works

have sought to explicitly combine their results with contex-

tual reasoning to strengthen detections that appear in favor-

able context and to weaken detections that do not (among

others, see [9, 2, 20, 16, 25, 32, 31, 6, 24, 8, 30, 26, 18, 1]).

These approaches have shown significant gains in some

cases [24], but in many others the explicit application of

contextual information has shown negligible improvement

(or even diminished results) [35, 33]. This problem was

first discussed by Wolf and Bileschi [32], showing that con-

text learned from low-level features can be used instead of

an appearance-based detector, but provides little aid when

combined with an appearance based detector. Attempting to

explain this behavior, they observed that only few samples

were highly confident while being out of context. How-

ever, we are still left with no insights as to when context

can be expected to improve and whether the lack of im-

provement observed in many cases should be attributed to

(1) the limited capacity of extracting contextual informa-

tion, (2) the contextual relations employed, (3) the difficulty

of combining it with appearance-based confidence, or per-

haps, (4) that contextual information is simply redundant

once appearance information has been accounted for.

To investigate this matter we suggest a novel approach

to compute an upper bound on the improvement that can

be obtained by combining detections’ base confidence with

different contextual relations or any other kind of additional

information. In this formulation a detection’s context can

be represented as a real number that indicates, for example,

the extent to which the context supports the existence of an

object. Alternatively, it may be binary, separating detec-

tions into those for which a contextual relation holds and

those for which it does not (e.g., the relation “is next to

a person” separates detections into two groups). Apply-

ing this method we are able to identify the contextual re-

lations that have the largest improvement bounds, and so a
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Figure 1. Ranking detections for the evaluation of detection results (darker colors represent higher ratios #TP

#FP
of true to false detections

in each bin). To evaluate detections by average precision (AP), the confidence space is first discretized into bins with equal number of

true detections (a), which are then sorted by decreasing confidence (b) for the calculation of precision at different recall levels. When also

employing context, the space of confidence and context is similarly discretized into bins with equal number of true detections (c), and a

criterion for their ranking is required. We show that the non-parametric function over this space that ranks bins according to their ratio of

true to false detections, as shown in (d), provides the maximal AP.

greater potential for improving detection results. Similarly,

we identify object categories for which no relevant contex-

tual relation provides a large improvement bound. For these

categories the context is meaningless even if it is extracted

accurately and perfectly combined with the confidence pro-

vided by the base detector.

To better understand why employing some relations fails

to improve, we show which types of false detections can be

corrected by use of context. Specifically, we analyze the

ability of contextual relations to distinguish between true

detections and different types of false detections (i.e. local-

ization errors, confusion between categories, and confusion

with the background [17]). This analysis reveals that while

context in the form of object relations can identify confu-

sions with the background and between categories, it can-

not distinguish between true detections and localization er-

rors in most cases, often rendering it useless. This inability

to handle localization errors means that strengthening de-

tections in favorable context also strengthens localization

errors, an observation that may explain why context some-

times hurts detection results.

Taken together, the aspects studied in our paper tell a

story of detection with context. In a few cases the context

can provide very significant improvements, in most other

cases it can provide meaningful improvements if used cor-

rectly, while in some cases the context is simply not infor-

mative (cannot differentiate true and false detections of any

type). In all cases, when more accurate localization is re-

quired the benefits of employing context are reduced. The

goal of this analysis paper is to further our understanding

regarding the role of context and provide a tool for identi-

fying the most promising contextual relations, the maximal

improvement they can be expected to provide, and the ob-

ject categories that will be affected the most/least (if at all).

2. Background and Survey of Detection with

Context

Various contextual relations have been employed for ob-

ject detection, ranging from local context just outside a de-

tection’s window [13], to more global information such as

object co-occurrence [14] or spatial relations between ob-

jects [25] or surfaces [18]. Different models have been sug-

gested for combining such context with appearance-based

scores, employing probabilistic models [14], discrimina-

tive classifiers [6], and lately also recurrent neural networks

(RNNs) [2] and neural attention models [20]. Since this

work focuses on model results rather than methodology, we

refer the readers to Mottaghi et al. [24].

Despite the repeated attempts, dissatisfaction with pre-

sented results was expressed in various cases. Yao and Fei-

Fei [33] suggested that “most of the context information has

contributed relatively little to boost performances in recog-

nition tasks” and suggested the lack of strong context as a

reason (thus choosing to work on a different problem that

relies critically on context). Choi et al. [4] claimed that the

PASCAL dataset [11] is not suitable to test context-based

object recognition algorithms as most of its images contain

only a single object class. However, when the more elab-

orate SUN 09 dataset [4] was employed, the improvement

after including context was similar in both cases (a 1.05 in-

crease in AP over PASCAL and 1.31 over SUN09).

In a study of context selection, Yu et al. [35] noted that

“the performance gain from context itself has not been sig-

nificant” in previous works. Yu showed that contextual rela-

tions can predict object locations and that some relations are

more predictive than others. However, these observations

do not attest to the utility of context when combined with a

reasonably good detector, which was shown to be negligible

due to a shortage of confident false detections that were out

of context [32].
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To better understand the state of context models we stud-

ied the results presented in 12 papers [5, 2, 20, 4, 35, 9, 3,

16, 24, 6, 8, 34] over different detection datasets (PASCAL

VOC [11], SUN 09 [4], SUN RGB-D [29], and MSRC-21

[28]). We collected results from papers in which the base

detector’s AP (APbase) and the AP after including context

outside a detection window (APcontext) were reported sep-

arately for each category and presented without additional

algorithmic improvements that were not related to context.

We then calculated all improvements due to the considera-

tion of context by taking the difference APcontext−APbase.

These improvements (and occasional setbacks) are summa-

rized below while the results of each individual method are

provided in the supplementary material.

Examining the different methods, most papers display a

pattern similar to the method of Choi et al. [4] over PAS-

CAL (Fig. 2 blue). In particular, some object categories

exhibit a marked improvement, some show only marginal

improvement (which is defined in this work as an increase

of less than 2 AP units 1), and others suffer from reduced de-

tection results. Fig. 2 shows that applying the same method

to the SUN 09 dataset (that contains more objects and so

intuitively has more contextual information [4]) results in a

similar pattern of results (orange curve), albeit with greater

variance (i.e., larger improvements but also greater dimin-

ished results). That being said, selected works have shown

a different pattern of results with a marked improvement in

most object categories [6, 24, 16], or even in all or them

(green curve) [3].

To show the utility of context per object category, we

summarize the improvement of different algorithms over

PASCAL 2007-2010 in Fig. 3. As shown, while substantial

improvements were obtained for most methods on a few ob-

ject categories (bottle, horse, plane, train, and cat), for most

categories the majority of methods obtained an improve-

ment of less than 2 AP units. However, for each category

there exists a method that achieves a significant increase in

detection results. Thus, while a substantial improvement is

possible regardless of category, obtaining such general be-

havior by applying a single method is rather challenging.

3. Bounding the Utility of Context

In this section we present a method for finding the

best non-parametric function that combines the confidence

scores of appearance based detectors and additional infor-

mation (in this case: context) so as to maximize AP . We

assume that we are given a set of detections {x1, ..., xn},

where each detection xi = (confi , labeli, loci, ctxi) is de-

1Of course, there is no clear amount of improvement that is considered

substantial. We believe that a 2 AP threshold would seem reasonable to

many in the community and yet stress that it is indeed subjective and that

none of the conclusions presented in this paper hinge on a hard distinction

between results above and below this threshold.
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Figure 2. Improvement (or change) in detection results per cate-

gory following the incorporation of context. For each method the

change in average precision per object category is reported (where

categories are sorted within method and thus may be ordered dif-

ferently along the X axis in each method or dataset). Most methods

follow the pattern of Choi et al. [4], in which the change is some-

times positive and substantial (above the red line), or positive but

less substantial (below the red line), and it can also be negative.
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Figure 3. Box plot of the improvement (or change) in detection

results measured by average precision following the incorporation

of context by different methods over the PASCAL dataset. Orange

bars inside the boxes represent the median of methods’ context-

related change per category. Box top and bottom edges, as well

as the ends of extending lines, all represent different quartiles. As

can be seen (see also supplementary materials), only few object

categories are significantly improved by most methods (i.e., more

than 2 AP units, or above the red line).

fined by its location loci, object class label labeli, base-

confidence confi assigned by a base detector, and a value

ctxi that represents the detection’s context. ctxi can be a

boolean value, indicating whether some binary contextual
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relation holds for xi, e.g., it can indicate whether there is a

person to the left of detection xi. Alternatively, it can be a

real value indicating the extent that the context of xi sup-

ports its label assignment labeli. Formally, ctxi can rep-

resent any kind of additional information about xi that we

may wish to employ in order to improve detection results.

We formulate the problem as context-based re-scoring of

detections similar to most previous models [9, 6, 1, 35] and

define a context model as a function g that calculates a new

score conf ′
i

for each detection xi:

conf ′
i
= g(confi , ctxi) . (1)

We begin by describing the calculation of AP based on con-

fidence bins (depicted in Fig. 1a,b) and the non-parametric

function g that maximizes it given detections and their con-

text, exemplified in Fig. 1c,d. At first, ctxi is assumed to

be real valued and for which not many detections share the

same output, as can generally be expected from standard

parametric functions on image data. Later, we handle the

general case in which many detections can be assigned with

the exact same values ctxi. This allow us to experiment

with binary contextual relations based on ground-truth in-

formation, but as we show, the same definition of g does not

formally maximize AP but can be considered as a heuristic.

Following this, we experiment with different co-occurrence

and spatial contextual relations and state of the art detec-

tors, showing the largest possible improvement in AP by

employing each relation, and then provide evidence that

the suggested heuristic accurately approximates the maxi-

mal AP in the general case.

3.1. Bin­based representation of AP

For a given object category, the performance of a de-

tector is commonly evaluated using the average precision

(AP) metric calculated for the detector’s ranked output de-

tections. The AP metric summarizes the shape of the preci-

sion/recall curve, depicting the detector’s precision at each

level of recall. Specifically, precision is defined as the frac-

tion of all detections above a given rank which are from the

positive class, and recall is defined as the fraction of posi-

tive detections that are ranked above that rank. While the

AP represents an average of precision values, slightly dif-

ferent methods have been used for its calculation [10]. In

PASCAL VOC 2007, it was defined as the mean precision

at a set of eleven equally spaced recall levels [0, 0.1,..., 1]:

AP =
1

11

11∑

i=1

pi , (2)

with interpolation of precision values pi. We note that while

AP is in the range [0, 1], in this text we report AP percentage

values between [0, 100] for clarity.

The calculation of AP is based on a ranking of detections

according to their confidence, where detections are ranked

higher when the detector is more confident. In practice, de-

tections are ranked by sorting them according to decreasing

confidence. Iterating over the sorted detections from start

to end, the recall at each rank gradually increases by 1

POS

with every true detection encountered, where POS is the

number of positive examples or objects. Thus, an example

recall value of 1

10
corresponds to some confidence such that

the number of more confident detections is a tenth of POS,

or POS
10

. Similarly, a recall of 1

m
corresponds to POS

m
true

detections, a recall of 2

m
corresponds to 2POS

m
true detec-

tions, and so on. Therefore, considering m equally spaced

recall levels [ 1

m
, 2

m
, ..., m

m
], each level corresponds to POS

m

true detections in addition to the previous level.

We follow a procedure similar to PASCAL 2007 without

interpolation, and define the AP as the mean precision at a

set of m recall levels [ 1

m
, 2

m
, ..., m

m
]:

AP =
1

m

m∑

i=1

pi . (3)

These m increasing recall levels correspond to m decreas-

ing confidence values c1, ..., cm that discretize the practical

confidence range [cm,∞), into m confidence bins. Each

confidence bin contains an equal number of true detections

t = POS
m

. We note that the confidence values are not neces-

sarily equally spaced, and pi = 0 is set for recall levels that

cannot be obtained due to missed objects. This discretiza-

tion is depicted in Fig. 1a and the corresponding recalls

in Fig. 1b. Let us denote by ti, fi the number of true and

false detections in bin i. The AP can now be similarly rep-

resented according to the confidence bins:

AP =
1

m

m∑

i=1

∑i

j=1
tj

∑i

j=1
(tj + fj)

, (4)

and since bins have equal values of ti = t:

AP =
1

m

m∑

i=1

it

it+
∑i

j=1
fj

. (5)

3.2. Real­valued representation of context

A non-parametric function g : R2 → R defined over de-

tections’ confidence and context (as in Eq. 1) discretizes its

input domain into 2D bins and assigns new confidence val-

ues to detections according to the input bin in which they

fall. The definition of a non-parametric function requires

to define this discretization, i.e., the bounding values of its

bins. Since the calculation of AP discretizes the confidence

space into m bins, we similarly discretize the range of con-

text values into m bins of equal number of true detections
POS
m

. This way, the bins of g coincide with those of AP .
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To do so, we first discretize the confidence axis into m1 bins

with POS
m1

positives, and then similarly discretize the con-

text axis for each confidence bin into m2 bins, each with
POS
m1m2

positives. The total number of bins in this case is

m = m1m2. The result of this process is exemplified in

Fig. 1c.

Following this discretization, the definition of g requires

to assign a new confidence value to each bin (or rather,

to detections inside it). The calculation of AP for the re-

sults of g begins with the ranking of detections according

to this new confidence. Because of this, what is important

are not the exact values assigned by g, but rather the rank-

ing they induce, or more specifically, the ranking of g’s m

bins. Thus, the question is which bin ranking provides the

maximal AP and how to find it.

The bins in Eq. 5 are ordered by increasing recall. As

can be seen, bins ordered by increasing number of false de-

tections fi maximize AP since the divisors of some sum-

mands will become larger by switching fi terms with larger

fj terms, thus decreasing AP. Therefore, we define the new

confidence assigned to detections in bin i to be ti
fi

, as shown

in Fig. 1c,d. Since ti is equal for each i, the confidence de-

creases when the number of false detections increases, pro-

viding the ranking that maximizes AP.

It is important to note that the presented method maxi-

mizes AP for a given discretization. More complicated bin-

ning schemes for g may also have an equal number of true

detections while providing a larger AP , but in this work we

chose to consider a more standard discretization scheme.

Finally, we note that the parameters m1,m2 that form m

are predetermined according to the wanted number of recall

bins in the calculation of AP. Choosing m = 11 corresponds

to a calculation similar to PASCAL 2007 that employs 11

recall bins, and the maximal m corresponds to newer PAS-

CAL versions that use a recall bin for each true detection

(m = POS).

3.3. General representation of context

In cases when the context value of several true detections

is the same they may not be possible to divide with a thresh-

old. A discretization into bins with equal number of true

detections cannot be ensured in such cases, as well as an

accurate calculation of AP. In practice, when only few true

detections are inseparable the results may not be highly af-

fected, but this may become problematic when many such

true detections exist. While such a result is probably un-

likely with the real-valued context functions often used in

previous works and in Sec. 3.2, it indeed occurs when us-

ing binary contextual relations as we use for experiments in

Section 3.4.

In this section we handle the general case of non-

parametric functions g under arbitrary discretization, in

which the number of true detections in each bin may vary.

The formulation of AP in Eq. 4 and Eq. 5 can be seen

as an approximation of the area under the precision/recall

curve as a Riemann sum with rectangles of heights pi and

equal width 1

m
. As a generalization, we consider an approx-

imation based on a Riemann sum with rectangles of heights

pi and different widths ∆ri. For recall levels [r1, ..., rm]
that are not necessarily equally spaced, we define ∆ri =
(ri − ri−1) with ∆r1 = r1 and represent AP as:

AP =

m∑

i=1

pi∆ri . (6)

The new confidence of ti
fi

suggested in Sec. 3.2 does

not generally maximize this AP. For example, we consider

a function with three bins such that t1 = 277, t2 = 371,

t3 = 69, and f1 = 16, f2 = 955, f3 = 178, when the num-

ber of all positives is POS = t1 + t2 + t3. The assigned

confidence values in this case are 17.3, 0.3884, 0.3876, re-

spectively, and the ranking this induces provides an AP of

60.9. However, switching the confidence values of the sec-

ond and third bins provides a ranking with a larger AP of

62.6. Therefore, in the general case we consider this new

confidence as a heuristic for the maximization of AP. While

a maximal AP is not always achieved, we show in Section

3.4 that it likely provides an accurate approximation of AP.

3.4. Exploring the relations between objects

Using this framework, we can now examine the upper

bound of AP for different co-occurrence and spatial contex-

tual relations where a single relation is considered in each

experiment. We then explore the relations that provide the

highest and lowest AP upper bounds per object category and

present various insights.

Specifically, we experiment with co-occurrence relations

(e.g. ctxi indicates for detection xi whether a mouse exists

in the image without overlapping xi), spatial relations (e.g.

ctxi indicates whether a mouse exists in a specific image

location relative to xi), random context (ctxi is random bi-

nary number), or no context (ctxi = 0 for any i). Spatial

relations are calculated in a manner invariant to object size

and image location by examining the center point of each

object in a reference frame centered on xi with bins whose

size is determined as a factor of the height of xi (see Fig.

4). Since different combinations of these relations may be

more meaningful, for each object category we also experi-

ment with and/or pairs of the 50 most improving relations.

More specifically, for binary relations rel1 and rel2 we in-

clude binary relations rel1 ∧ rel2 and rel1 ∨ rel2.

We test the described contextual relations using detec-

tion results provided by the Faster R-CNN detector [27, 19]

over the COCO [21] validation set containing 80 object cat-

egories. Detections are considered correct/true if they over-

lap a ground-truth object with an intersection over union
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Figure 4. The spatial context of a detection (in green) is deter-

mined relative to its location and height. In this case, the value of

the contextual relation “bin [0,3] has mouse” is true, where [0,0]

represents the central bin.

(IoU) of more than 0.5. Toasters and hair dryers are ig-

nored due to their very few appearances. We assume that

the context of each detection is known, and of course, in a

real-world setting the obtained AP will be lower than the

calculated bound since the context will not be perfectly ex-

tracted. As a discretization scheme for function g, the base

confidence values are split into 10 bins and the context val-

ues, that are all binary, are naturally split into 2 bins.

For each object category and contextual relation we find

the AP upper bound and define the best relation as the one

with the largest upper bound. The maximal obtainable im-

provement is then defined as the difference between the best

relation’s AP upper bound and the upper bound without

context (ctxi = 0). We generate a detailed report contain-

ing the best contextual relation per object category as well

as the best relation’s amount of improvement. In the inter-

est of space, we present notable examples and then show

data in aggregate form. The entire report is provided in the

supplementary material.

Two examples from the categories with highest obtain-

able improvement are hot-dog and suitcase, with improve-

ments of 4.7 and 5.5 AP units respectively, while two of

those with the least possible improvement are zebra and cat,

with improvements of 1.5 and 1.6 AP units respectively.

The best relations for these categories were “image has a

person and another hot dog” for hot dog, “image has an-

other suitcase” for suitcase, “bin [0, -1] (left) has a zebra

or bin [0, 2] (right) has a zebra” for zebra, and “image has

a bowl or another cat” for cat. Note that a detection’s cen-

ter defines bin [0,0] as shown in Fig. 4. Interestingly, for

70% of the categories the best relation consist of only co-

occurrence information (without bin locations), and when

employing a stricter localization criteria of 0.75 IoU (in-

stead of 0.5), this ratio goes down to 45%. Therefore, sig-

nificant improvements can be gained simply by recognizing

and employing the existence of other objects in the image,

but unfortunately, this kind of information becomes less rel-

evant when the number of localization errors increases.

Aggregated results are presented in Fig. 5, providing

more general insights into the use of context. The blue

curve presents the maximal obtainable improvement per ob-

ject category. As can be seen, the largest improvement for

most categories is above the red line that marks an improve-

ment of at least 2 AP units, but please remember that the

calculated bounds are based on the best function g and the

context was assumed to be known. Therefore, for many ob-

ject categories the maximal improvement that could be ob-

tained in real conditions is expected to be lower or maybe

even marginal at best.

Due to the reliance on ground-truth information this

method will always yield an improvement and may unjus-

tifiably increase its measured amount. We therefore test

the noise in this method by examining the improvement ob-

tained by employing random context. More specifically, we

show the average improvement of 10 trials with randomly

generated binary context (black curve). As can be seen, the

black curve is significantly lower than the blue curve, indi-

cating that the present noise does not have a large effect.

We perform an additional experiment as in the blue curve

in Fig. 5 but this time with a stricter localization criteria of

0.75 IoU. The results can be seen in the green curve that

is now significantly lower than the blue and quite similar

to the black curve based on random context. The best ob-

tainable improvement dropped dramatically in most cases,

suggesting that object relations are not suitable when more

accurate localization is required. In Sec. 4 we show that

context is simply unable of handling localization errors, ex-

plaining this drop.

In addition to COCO and Faster-RCNN, we repeat the

same experiment with the SSD detector [22] over the KITTI

dataset [15] containing road scenes for autonomous driving.

The largest improvements for cars, pedestrians, and cyclists

are 0.7, 1.8, and 1.6 AP units, respectively. With localiza-

tion criteria of 0.75 IoU the improvements reduce to 0.7, 1,

and 1.2 AP units. Object relations are much less significant

in this case, and still a similar drop is observed with stricter

localization. A drop was not observed for cars, but that may

be due to the already large number of strong localization er-

rors (83% of the errors at recall lower than 0.1 are due to

localization).

Finally, to test the ability of the heuristic suggested in

Section 3.3 to maximize AP we attempt to reach a better AP

by examining all bin orders. For each object category we re-

visit the relation that provided the highest AP upper bound

and re-calculate the AP for any permutation of the bins. To

allow such a costly procedure, we discretize the confidence
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Figure 5. The maximal AP improvement that can be obtained per

object category with any type of context (blue and green), and

with random binary context (black). X axis categories are sorted

according to the blue curve, the blue and black curves are based

on an overlap criteria of 0.5 IoU while the green curve represents

a stricter case requiring 0.75 IoU.

into 5 bins instead of 10 and the context is still discretized

into 2 since the tested context is binary. This requires to ex-

amine 10! bin combinations. Examining the largest AP up-

per bound found for each of the 78 object categories in the

COCO dataset reveals that the AP based on our suggested

heuristic is indeed maximal for most categories apart from

several cases in which it provided a bound that is lower than

the maximal by a negligible amount of at most 0.17 (where

the AP is reported here between the range of 0 and 100).

This result raises our confidence that the ranking of input

bins according to the ratio of true to false detections well

approximates the maximal AP.

4. Analysis of Classification Capacity

When given the results of a detector it is reasonable to

wonder what exactly is required of context to improve them.

Considering the role of context as strengthening true detec-

tions and weakening false detections may be generally cor-

rect, but this alone is uninformative. The method described

above enables to analyze the gains that can be expected us-

ing different contextual relations, but it does little to explain

why context may be helpful in some cases and unhelpful

in others. In this section we view the role of context as a

means of distinguishing between true and false detections

with similar base confidence. We then follow with an intu-

itive experiment to show just that by measuring the capacity

of context to classify strong true and false detection.

The immediate effect of context on a set of detections be-

comes apparent when comparing Fig. 1a and Fig. 1c. In the

former, detections of similar base confidence are grouped

into bins, and the distribution of true and false detections

inside the bins determine the AP. In the latter, an additional

context dimension is introduced, further separating detec-

tions that were previously inseparable and allowing new

confidence values to be assigned. All things considered,

the role of context is thus to further separate detections with

similar base confidence.

For a more intuitive understanding of why context helps,

we analyze the capacity of context to classify a set of strong

detections that consists of the same number of true and false

detections. Guided by the discouraging decrease in im-

provement for larger overlap thresholds (Fig. 5), we con-

sider different types of false detections. We follow the anal-

ysis of detection errors by Hoiem et al. [17] and define

three error types – localization errors, confusion with other

classes, and confusion with the background. Localization

errors are defined as detections with a label that matches

the most overlapping ground-truth object with IoU overlap

larger than 0.1. Confusions with other classes are detec-

tions for which the most overlapping ground-truth object

overlaps by more than 0.1 but has a different label. Finally,

confusions with background are false detections for which

no ground-truth object overlaps by more than 0.1.

To test the classification capacity of a contextual relation

for some object category, we collect the n most confident

true detections and n most confident false detections of one

of the error types described above. The number n is de-

fined as the minimum between the available number of true

and false detections (of the given error type). A binary rela-

tion separates the 2n detections into two groups containing

a different number of true and false detections. Treating

the context as a classifier, we label each detection as true

if its group contains mostly true detections and false other-

wise. To measure the wellness of classification we employ

the accuracy of assigned labels and note that the minimal

obtainable accuracy is 0.5 due to our use of ground-truth

information in this analysis.

We employ the contextual relations described in Sec. 3.4

on Faster R-CNN over COCO. For each object category we

report the maximal accuracy obtained by any of the rela-

tions (see Fig. 6). As can be seen, co-occurrence and spatial

context is better at classifying, i.e. distinguishing between

true and false detections, when errors are only due to confu-

sion with other categories than when errors are only due to

confusion with the background. While it has some capac-

ity to distinguish between true detections and localization

errors, it is significantly lower and not much above the 0.5

threshold in most cases. This is likely to be the underlying

cause for the significant drop in context-based improvement

when increasing the localization threshold to an IoU of 0.75,

as shown by the green curve in Fig. 5. It also affects the im-

provement at the standard IoU of 0.5 (as shown by the blue
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Figure 6. The maximal classification capacity of context per object

category. The context is used to classify detections as true or false,

when only errors due to confusion with the background are em-

ployed as false detections (blue), when only confusions with other

object categories are employed (orange), and when only localiza-

tion errors are employed (green). X axis categories have the same

order as in Fig. 5.

curve), or it might be the reason why context often hurts de-

tection results (since strengthening true detections similarly

affects localization errors).

A similar trend is observed when repeating the experi-

ment with the SSD detector over the KITTI dataset that con-

tains cars, pedestrians, and cyclists. For these three classes

respectively, the maximal classification accuracy is 65%,

61%, 64% for confusions with the background, it is 75%,

67%, 58% for confusions with other categories, and 57%,

55%, 54% for localization errors.

5. Discussion

Despite the large body of work done on the inclusion of

context for object detection it still remains somewhat mis-

understood. Our survey of results in Sec. 2 clarifies the

current state of research on the topic, showing that in many

cases context does improve results and in many other cases

the improvement is only marginal or even harmful. The

theoretical analysis and empirical experiments in Sections

3.4 and 4 point to localization errors as one aspect that ex-

plains the low utility of context observed in many cases.

This severely limits applications that require accurate local-

ization. However, there may also be other applications for

which accurate localization is not important, and reporting

results that are based on an IoU of 0.5 or more may un-

expectedly make the context appear non worthwhile. Of

course, in some cases the ability of context to classify de-

tections as true or false is rather low regardless or error type

(Fig. 6), implying that for such object categories the tested

context is simply not informative.

In addition to the reported AP, the inability to treat true

detections and localization errors differently may have fur-

ther discouraging properties. As context models are gen-

erally defined to increase the confidence of detections in

favorable context, the same applies to localization errors.

This problem, together with the issue that models are usu-

ally trained on different loss functions than AP, may be the

reason for the large decrease in detection results that is of-

ten observed. For the same reason, it may be possible that

the parameters learned by context models would provide a

weaker context so as to avoid strengthening localization er-

rors. In such cases, for applications that do not require ac-

curate localization it may be preferable to train with a lower

IoU (instead of just evaluating results with a lower IoU).

Another important point is the types of context em-

ployed. The experiments in this work focused on rela-

tions between objects via co-occurrence and spatial rela-

tions. However, there may be other kinds of additional in-

formation that could help when object relations cannot. For

example, it is likely that the aspect ratio of a detection’s

bounding box or additional segmentation of its pixels may

help correct localization errors [9]. These approaches too

can be examined using the suggested analysis method but

are outside the scope of this work.

6. Conclusions

Seeking to shed light on the use of context for object de-

tection we have suggested a method for finding the function

that combines contextual relations with standard detection

results so as to maximize the detection score. Using this

method we are able to show which relations are not infor-

mative, and to point to those that are more worthwhile to

pursue and to the object categories that benefit the most.

Further experiments highlight that a reason for the often

discouraging results of employing context is its inability to

handle localization errors, thus limiting the possibilities for

improvement when confident localization errors are abun-

dant. As a general guideline, the context can provide a sig-

nificant improvement depending on the type of errors and

when it is different for true and false detections with similar

base confidence. Finally, we invite researchers to employ

the tools developed here to analyze the improvement they

can expect by incorporating context, and the contextual re-

lations that provide it, in order to improve detection results.
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