
A General and Adaptive Robust Loss Function

Jonathan T. Barron

Google Research

Abstract

We present a generalization of the Cauchy/Lorentzian,

Geman-McClure, Welsch/Leclerc, generalized Charbon-

nier, Charbonnier/pseudo-Huber/L1-L2, and L2 loss func-

tions. By introducing robustness as a continuous param-

eter, our loss function allows algorithms built around ro-

bust loss minimization to be generalized, which improves

performance on basic vision tasks such as registration and

clustering. Interpreting our loss as the negative log of a

univariate density yields a general probability distribution

that includes normal and Cauchy distributions as special

cases. This probabilistic interpretation enables the training

of neural networks in which the robustness of the loss auto-

matically adapts itself during training, which improves per-

formance on learning-based tasks such as generative im-

age synthesis and unsupervised monocular depth estima-

tion, without requiring any manual parameter tuning.

Many problems in statistics and optimization require ro-

bustness — that a model be less influenced by outliers than

by inliers [17, 19]. This idea is common in parameter es-

timation and learning tasks, where a robust loss (say, ab-

solute error) may be preferred over a non-robust loss (say,

squared error) due to its reduced sensitivity to large errors.

Researchers have developed various robust penalties with

particular properties, many of which are summarized well

in [3, 39]. In gradient descent or M-estimation [16] these

losses are often interchangeable, so researchers may exper-

iment with different losses when designing a system. This

flexibility in shaping a loss function may be useful because

of non-Gaussian noise, or simply because the loss that is

minimized during learning or parameter estimation is dif-

ferent from how the resulting learned model or estimated

parameters will be evaluated. For example, one might train

a neural network by minimizing the difference between the

network’s output and a set of images, but evaluate that net-

work in terms of how well it hallucinates random images.

In this paper we present a single loss function that is a

superset of many common robust loss functions. A single

continuous-valued parameter in our general loss function

can be set such that it is equal to several traditional losses,

and can be adjusted to model a wider family of functions.

This allows us to generalize algorithms built around a fixed

robust loss with a new “robustness” hyperparameter that can

be tuned or annealed to improve performance.

Though new hyperparameters may be valuable to a prac-

titioner, they complicate experimentation by requiring man-

ual tuning or time-consuming cross-validation. However,

by viewing our general loss function as the negative log-

likelihood of a probability distribution, and by treating the

robustness of that distribution as a latent variable, we show

that maximizing the likelihood of that distribution allows

gradient-based optimization frameworks to automatically

determine how robust the loss should be without any manual

parameter tuning. This “adaptive” form of our loss is par-

ticularly effective in models with multivariate output spaces

(say, image generation or depth estimation) as we can intro-

duce independent robustness variables for each dimension

in the output and thereby allow the model to independently

adapt the robustness of its loss in each dimension.

The rest of the paper is as follows: In Section 1 we de-

fine our general loss function, relate it to existing losses,

and enumerate some of its useful properties. In Sec-

tion 2 we use our loss to construct a probability distri-

bution, which requires deriving a partition function and a

sampling procedure. Section 3 discusses four representa-

tive experiments: In Sections 3.1 and 3.2 we take two

Figure 1. Our general loss function (left) and its gradient (right)

for different values of its shape parameter α. Several values of α

reproduce existing loss functions: L2 loss (α = 2), Charbonnier

loss (α = 1), Cauchy loss (α = 0), Geman-McClure loss (α =

−2), and Welsch loss (α = −∞).

14331

vision-oriented deep learning models (variational autoen-

coders for image synthesis and self-supervised monocular

depth estimation), replace their losses with the negative log-

likelihood of our general distribution, and demonstrate that

allowing our distribution to automatically determine its own

robustness can improve performance without introducing

any additional manually-tuned hyperparameters. In Sec-

tions 3.3 and 3.4 we use our loss function to generalize

algorithms for the classic vision tasks of registration and

clustering, and demonstrate the performance improvement

that can be achieved by introducing robustness as a hyper-

parameter that is annealed or manually tuned.

1. Loss Function

The simplest form of our loss function is:

f (x, α, c) =
|α− 2|

α





(

(x/c)
2

|α− 2| + 1

)α/2

− 1



 (1)

Here α ∈ R is a shape parameter that controls the robust-

ness of the loss and c > 0 is a scale parameter that controls

the size of the loss’s quadratic bowl near x = 0.

Though our loss is undefined when α = 2, it approaches

L2 loss (squared error) in the limit:

lim
α→2

f (x, α, c) =
1

2
(x/c)

2
(2)

When α = 1 our loss is a smoothed form of L1 loss:

f (x, 1, c) =
√

(x/c)2 + 1− 1 (3)

This is often referred to as Charbonnier loss [5], pseudo-

Huber loss (as it resembles Huber loss [18]), or L1-L2 loss

[39] (as it behaves like L2 loss near the origin and like L1

loss elsewhere).

Our loss’s ability to express L2 and smoothed L1 losses

is shared by the “generalized Charbonnier” loss [34], which

has been used in flow and depth estimation tasks that require

robustness [6, 23] and is commonly defined as:

(

x2 + ǫ2
)α/2

(4)

Our loss has significantly more expressive power than the

generalized Charbonnier loss, which we can see by set-

ting our shape parameter α to nonpositive values. Though

f (x, 0, c) is undefined, we can take the limit of f (x, α, c)
as α approaches zero:

lim
α→0

f (x, α, c) = log

(

1

2
(x/c)

2
+ 1

)

(5)

This yields Cauchy (aka Lorentzian) loss [2]. By setting

α = −2, our loss reproduces Geman-McClure loss [13]:

f (x,−2, c) =
2 (x/c)

2

(x/c)
2
+ 4

(6)

In the limit as α approaches negative infinity, our loss be-

comes Welsch [20] (aka Leclerc [25]) loss:

lim
α→−∞

f (x, α, c) = 1− exp

(

−1

2
(x/c)

2

)

(7)

With this analysis we can present our final loss function,

which is simply f (·) with special cases for its removable

singularities at α = 0 and α = 2 and its limit at α = −∞.

ρ (x, α, c) =































1
2 (

x/c)
2

if α = 2

log
(

1
2 (

x/c)
2
+ 1
)

if α = 0

1− exp
(

− 1
2 (

x/c)
2
)

if α = −∞
|α−2|

α

(

(

(x/c)2

|α−2| + 1
)α/2

− 1

)

otherwise

(8)

As we have shown, this loss function is a superset of

the Welsch/Leclerc, Geman-McClure, Cauchy/Lorentzian,

generalized Charbonnier, Charbonnier/pseudo-Huber/L1-

L2, and L2 loss functions.

To enable gradient-based optimization we can derive the

derivative of ρ (x, α, c) with respect to x:

∂ρ

∂x
(x, α, c) =



























x
c2 if α = 2

2x
x2+2c2 if α = 0
x
c2 exp

(

− 1
2 (

x/c)
2
)

if α = −∞
x
c2

(

(x/c)2

|α−2| + 1
)(α/2−1)

otherwise

(9)

Our loss and its derivative are visualized for different values

of α in Figure 1.

The shape of the derivative gives some intuition as to

how α affects behavior when our loss is being minimized by

gradient descent or some related method. For all values of α
the derivative is approximately linear when |x| < c, so the

effect of a small residual is always linearly proportional to

that residual’s magnitude. If α = 2, the derivative’s magni-

tude stays linearly proportional to the residual’s magnitude

— a larger residual has a correspondingly larger effect. If

α = 1 the derivative’s magnitude saturates to a constant 1/c
as |x| grows larger than c, so as a residual increases its ef-

fect never decreases but never exceeds a fixed amount. If

α < 1 the derivative’s magnitude begins to decrease as |x|
grows larger than c (in the language of M-estimation [16],

the derivative, aka “influence”, is “redescending”) so as the

residual of an outlier increases, that outlier has less effect

during gradient descent. The effect of an outlier diminishes

as α becomes more negative, and as α approaches −∞ an

outlier whose residual magnitude is larger than 3c is almost

completely ignored.

We can also reason about α in terms of averages. Be-

cause the empirical mean of a set of values minimizes total

squared error between the mean and the set, and the empir-

ical median similarly minimizes absolute error, minimizing

4332

our loss with α = 2 is equivalent to estimating a mean, and

with α = 1 is similar to estimating a median. Minimizing

our loss with α = −∞ is equivalent to local mode-finding

[35]. Values of α between these extents can be thought of

as smoothly interpolating between these three kinds of av-

erages during estimation.

Our loss function has several useful properties that we

will take advantage of. The loss is smooth (i.e., in C∞)

with respect to x, α, and c > 0, and is therefore well-suited

to gradient-based optimization over its input and its param-

eters. The loss is zero at the origin, and increases monoton-

ically with respect to |x|:

ρ (0, α, c) = 0
∂ρ

∂|x| (x, α, c) ≥ 0 (10)

The loss is invariant to a simultaneous scaling of c and x:

∀k>0 ρ(kx, α, kc) = ρ(x, α, c) (11)

The loss increases monotonically with respect to α:

∂ρ

∂α
(x, α, c) ≥ 0 (12)

This is convenient for graduated non-convexity [4]: we can

initialize α such that our loss is convex and then gradually

reduce α (and therefore reduce convexity and increase ro-

bustness) during optimization, thereby enabling robust esti-

mation that (often) avoids local minima.

We can take the limit of the loss as α approaches infinity,

which due to Eq. 12 must be the upper bound of the loss:

ρ (x, α, c) ≤ lim
α→+∞

ρ (x, α, c) = exp

(

1

2
(x/c)

2

)

− 1

(13)

We can bound the magnitude of the gradient of the loss,

which allows us to better reason about exploding gradients:

∣

∣

∣

∣

∂ρ

∂x
(x, α, c)

∣

∣

∣

∣

≤







1
c

(

α−2
α−1

)(α−1

2)
≤ 1

c if α ≤ 1
|x|
c2 if α ≤ 2

(14)

L1 loss is not expressible by our loss, but if c is much

smaller than x we can approximate it with α = 1:

f (x, 1, c) ≈ |x|
c

− 1 if c ≪ x (15)

See the supplement for other potentially-useful properties

that are not used in our experiments.

2. Probability Density Function

With our loss function we can construct a general prob-

ability distribution, such that the negative log-likelihood

(NLL) of its PDF is a shifted version of our loss function:

p (x | µ, α, c) = 1

cZ (α)
exp (−ρ (x− µ, α, c)) (16)

Z (α) =

∫ ∞

−∞

exp (−ρ (x, α, 1)) (17)

where p (x | µ, α, c) is only defined if α ≥ 0, as Z (α) is

divergent when α < 0. For some values of α the partition

function is relatively straightforward:

Z (0) = π
√
2 Z (1) = 2eK1(1)

Z (2) =
√
2π Z (4) = e

1/4K1/4(1/4) (18)

where Kn(·) is the modified Bessel function of the second

kind. For any rational positive α (excluding a singularity at

α = 2) where α = n/d with n, d ∈ N, we see that

Z
(n

d

)

=
e| 2dn −1|

√

∣

∣

2d
n − 1

∣

∣

(2π)(d−1)
G 0,0

p,q

(

ap
bq

∣

∣

∣

∣

(

1

n
− 1

2d

)2d
)

bq =

{

i

n

∣

∣

∣

∣

i = −1

2
, ..., n− 3

2

}

∪
{

i

2d

∣

∣

∣

∣

i = 1, ..., 2d− 1

}

ap =

{

i

n

∣

∣

∣

∣

i = 1, ..., n− 1

}

(19)

where G(·) is the Meijer G-function and bq is a multiset

(items may occur twice). Because the partition function is

difficult to evaluate or differentiate, in our experiments we

approximate log(Z (α)) with a cubic hermite spline (see the

supplement for details).

Just as our loss function includes several common loss

function as special cases, our distribution includes several

common distributions as special cases. When α = 2 our

distribution becomes a normal (Gaussian) distribution, and

when α = 0 our distribution becomes a Cauchy distri-

bution. These are also both special cases of Student’s t-
distribution (ν = ∞ and ν = 1, respectively), though these

are the only two points where these two families of distribu-

tions intersect. Our distribution resembles the generalized

Gaussian distribution [28, 33], except that it is “smoothed”

so as to approach a Gaussian distribution near the origin re-

gardless of the shape parameter α. The PDF and NLL of our

distribution for different values of α can be seen in Figure 2.

In later experiments we will use the NLL of our general

distribution − log(p(·|α, c)) as the loss for training our neu-

ral networks, not our general loss ρ (·, α, c). Critically, us-

ing the NLL allows us to treat α as a free parameter, thereby

allowing optimization to automatically determine the de-

gree of robustness that should be imposed by the loss be-

ing used during training. To understand why the NLL must

be used for this, consider a training procedure in which we

simply minimize ρ (·, α, c) with respect to α and our model

weights. In this scenario, the monotonicity of our general

loss with respect to α (Eq. 12) means that optimization can

trivially minimize the cost of outliers by setting α to be as

small as possible. Now consider that same training pro-

cedure in which we minimize the NLL of our distribution

4333

Figure 2. The negative log-likelihoods (left) and probability den-

sities (right) of the distribution corresponding to our loss function

when it is defined (α ≥ 0). NLLs are simply losses (Fig. 1) shifted

by a log partition function. Densities are bounded by a scaled

Cauchy distribution.

instead of our loss. As can be observed in Figure 2, reduc-

ing α will decrease the NLL of outliers but will increase

the NLL of inliers. During training, optimization will have

to choose between reducing α, thereby getting “discount”

on large errors at the cost of paying a penalty for small er-

rors, or increasing α, thereby incurring a higher cost for

outliers but a lower cost for inliers. This tradeoff forces op-

timization to judiciously adapt the robustness of the NLL

being minimized. As we will demonstrate later, allowing

the NLL to adapt in this way can increase performance on

a variety of learning tasks, in addition to obviating the need

for manually tuning α as a fixed hyperparameter.

Sampling from our distribution is straightforward given

the observation that − log (p (x | 0, α, 1)) is bounded from

below by ρ(x, 0, 1)+ log(Z(α)) (shifted Cauchy loss). See

Figure 2 for visualizations of this bound when α = ∞,

which also bounds the NLL for all values of α. This lets

us perform rejection sampling using a Cauchy as the pro-

posal distribution. Because our distribution is a location-

scale family, we sample from p (x | 0, α, 1) and then scale

and shift that sample by c and µ respectively. This sam-

pling approach is efficient, with an acceptance rate between

∼ 45% (α = ∞) and 100% (α = 0). Pseudocode for sam-

pling is shown in Algorithm 1.

Algorithm 1 Sampling from our general distribution

Input: Parameters for the distribution to sample {µ, α, c}
Output: A sample drawn from p (x | µ, α, c).

1: while True:

2: x ∼ Cauchy(x0 = 0, γ =
√
2)

3: u ∼ Uniform(0, 1)

4: if u < p(x | 0,α,1)
exp(−ρ(x,0,1)−log(Z(α))) :

5: return cx+ µ

3. Experiments

We will now demonstrate the utility of our loss function

and distribution with four experiments. None of these re-

sults are intended to represent the state-of-the-art for any

particular task — our goal is to demonstrate the value of our

loss and distribution as useful tools in isolation. We will

show that across a variety of tasks, just replacing the loss

function of an existing model with our general loss function

can enable significant performance improvements.

In Sections 3.1 and 3.2 we focus on learning based vi-

sion tasks in which training involves minimizing the differ-

ence between images: variational autoencoders for image

synthesis and self-supervised monocular depth estimation.

We will generalize and improve models for both tasks by

using our general distribution (either as a conditional dis-

tribution in a generative model or by using its NLL as an

adaptive loss) and allowing the distribution to automatically

determine its own degree of robustness. Because robustness

is automatic and requires no manually-tuned hyperparame-

ters, we can even allow for the robustness of our loss to

be adapted individually for each dimension of our output

space — we can have a different degree of robustness at

each pixel in an image, for example. As we will show, this

approach is particularly effective when combined with im-

age representations such as wavelets, in which we expect to

see non-Gaussian, heavy-tailed distributions.

In Sections 3.3 and 3.4 we will build upon existing al-

gorithms for two classic vision tasks (registration and clus-

tering) that both work by minimizing a robust loss that is

subsumed by our general loss. We will then replace each

algorithm’s fixed robust loss with our loss, thereby intro-

ducing a continuous tunable robustness parameter α. This

generalization allows us to introduce new models in which

α is manually tuned or annealed, thereby improving per-

formance. These results demonstrate the value of our loss

function when designing classic vision algorithms, by al-

lowing model robustness to be introduced into the algorithm

design space as a continuous hyperparameter.

3.1. Variational Autoencoders

Variational autoencoders [22, 30] are a landmark tech-

nique for training autoencoders as generative models, which

can then be used to draw random samples that resemble

training data. We will demonstrate that our general distribu-

tion can be used to improve the log-likelihood performance

of VAEs for image synthesis on the CelebA dataset [26]. A

common design decision for VAEs is to model images us-

ing an independent normal distribution on a vector of RGB

pixel values [22], and we use this design as our baseline

model. Recent work has improved upon this model by us-

ing deep, learned, and adversarial loss functions [8, 15, 24].

Though it’s possible that our general loss or distribution

can add value in these circumstances, to more precisely iso-

4334

late our contribution we will explore the hypothesis that the

baseline model of normal distributions placed on a per-pixel

image representation can be improved significantly with the

small change of just modeling a linear transformation of a

VAE’s output with our general distribution. Again, our goal

is not to advance the state of the art for any particular im-

age synthesis task, but is instead to explore the value of our

distribution in an experimentally controlled setting.

In our baseline model we give each pixel’s normal distri-

bution a variable scale parameter σ(i) that will be optimized

over during training, thereby allowing the VAE to adjust the

scale of its distribution for each output dimension. We can

straightforwardly replace this per-pixel normal distribution

with a per-pixel general distribution, in which each output

dimension is given a distinct shape parameter α(i) in ad-

dition to its scale parameter c(i) (i.e., σ(i)). By letting the

α(i) parameters be free variables alongside the scale param-

eters, training is able to adaptively select both the scale and

robustness of the VAE’s posterior distribution over pixel

values. We restrict all α(i) to be in (0, 3), which allows

our distribution to generalize Cauchy (α = 0) and Normal

(α = 2) distributions and anything in between, as well as

more platykurtic distributions (α > 2) which helps for this

task. We limit α to be less than 3 because of the increased

risk of numerical instability during training as α increases.

We also compare against a Cauchy distribution as an ex-

ample of a fixed heavy-tailed distribution, and against Stu-

dent’s t-distribution as an example of a distribution that can

adjust its own robustness similarly to ours.

Regarding implementation, for each output dimension

i we construct unconstrained TensorFlow variables {α(i)
ℓ }

and {c(i)ℓ } and define

α(i) = (αmax − αmin) sigmoid
(

α
(i)
ℓ

)

+ αmin (20)

c(i) = softplus
(

c
(i)
ℓ

)

+ cmin (21)

αmin = 0, αmax = 3, cmin = 10−8 (22)

The cmin offset avoids degenerate optima where likelihood

is maximized by having c(i) approach 0, while αmin and

αmax determine the range of values that α(i) can take. Vari-

ables are initialized such that initially all α(i) = 1 and

c(i) = 0.01, and are optimized simultaneously with the au-

toencoder’s weights using the same Adam [21] optimizer

instance.

Though modeling images using independent distribu-

tions on pixel intensities is a popular choice due to its sim-

plicity, classic work in natural image statistics suggest that

images are better modeled with heavy-tailed distributions

on wavelet-like image decompositions [9, 27]. We there-

fore train additional models in which our decoded RGB per-

pixel images are linearly transformed into spaces that bet-

ter model natural images before computing the NLL of our

Normal Cauchy t-dist. Ours

Pixels + RGB 8,662 9,602 10,177 10,240

DCT + YUV 31,837 31,295 32,804 32,806

Wavelets + YUV 31,505 35,779 36,373 36,316

Table 1. Validation set ELBOs (higher is better) for our varia-

tional autoencoders. Models using our general distribution better

maximize the likelihood of unseen data than those using normal

or Cauchy distributions (both special cases of our model) for all

three image representations, and perform similarly to Student’s t-

distribution (a different generalization of normal and Cauchy dis-

tributions). The best and second best performing techniques for

each representation are colored orange and yellow respectively.

Normal Cauchy t-distribution Ours

P
ix

el
s

+
R

G
B

D
C

T
+

Y
U

V
W

av
el

et
s

+
Y

U
V

Figure 3. Random samples from our variational autoencoders. We

use either normal, Cauchy, Student’s t, or our general distributions

(columns) to model the coefficients of three different image rep-

resentations (rows). Because our distribution can adaptively inter-

polate between Cauchy-like or normal-like behavior for each co-

efficient individually, using it results in sharper and higher-quality

samples (particularly when using DCT or wavelet representations)

and does a better job of capturing low-frequency image content

than Student’s t-distribution.

distribution. For this we use the DCT [1] and the CDF 9/7

wavelet decomposition [7], both with a YUV colorspace.

These representations resemble the JPEG and JPEG 2000

compression standards, respectively.

Our results can be seen in Table 1, where we report the

validation set evidence lower bound (ELBO) for all com-

binations of our four distributions and three image repre-

sentations, and in Figure 3, where we visualize samples

from these models. We see that our general distribution per-

4335

forms similarly to a Student’s t-distribution, with both pro-

ducing higher ELBOs than any fixed distribution across all

representations. These two adaptive distributions appear to

have complementary strengths: ours can be more platykur-

tic (α > 2) while a t-distribution can be more leptokurtic

(ν < 1), which may explain why neither model consistently

outperforms the other across representations. Note that the

t-distribution’s NLL does not generalize the Charbonnier,

L1, Geman-McClure, or Welsch losses, so unlike ours it

will not generalize the losses used in the other tasks we will

address. For all representations, VAEs trained with our gen-

eral distribution produce sharper and more detailed samples

than those trained with normal distributions. Models trained

with Cauchy and t-distributions preserve high-frequency

detail and work well on pixel representations, but systemat-

ically fail to synthesize low-frequency image content when

given non-pixel representations, as evidenced by the gray

backgrounds of those samples. Comparing performance

across image representations shows that the “Wavelets +

YUV” representation best maximizes validation set ELBO

— though if we were to limit our model to only normal dis-

tributions the “DCT + YUV” model would appear superior,

suggesting that there is value in reasoning jointly about dis-

tributions and image representations. After training we see

shape parameters {α(i)} that span (0, 2.5), suggesting that

an adaptive mixture of normal-like and Cauchy-like distri-

butions is useful in modeling natural images, as has been

observed previously [29]. Note that this adaptive robustness

is just a consequence of allowing {α(i)
ℓ } to be free variables

during training, and requires no manual parameter tuning.

See the supplement for more samples and reconstructions

from these models, and a review of our experimental proce-

dure.

3.2. Unsupervised Monocular Depth Estimation

Due to the difficulty of acquiring ground-truth direct

depth observations, there has been recent interest in “unsu-

pervised” monocular depth estimation, in which stereo pairs

and geometric constraints are used to directly train a neural

network [10, 11, 14, 41]. We use [41] as a representative

model from this literature, which is notable for its estima-

tion of depth and camera pose. This model is trained by

minimizing the differences between two images in a stereo

pair, where one image has been warped to match the other

according to the depth and pose predictions of a neural net-

work. In [41] that difference between images is defined as

the absolute difference between RGB values. We will re-

place that loss with different varieties of our general loss,

and demonstrate that using annealed or adaptive forms of

our loss can improve performance.

The absolute loss in [41] is equivalent to maximizing the

likelihood of a Laplacian distribution with a fixed scale on

RGB pixel values. We replace that fixed Laplacian distri-

lower is better higher is better

Avg AbsRel SqRel RMS logRMS <1.25 <1.252 <1.253

Baseline [41] as reported 0.407 0.221 2.226 7.527 0.294 0.676 0.885 0.954

Baseline [41] reproduced 0.398 0.208 2.773 7.085 0.286 0.726 0.895 0.953

Ours, fixed α = 1 0.356 0.194 2.138 6.743 0.268 0.738 0.906 0.960

Ours, fixed α = 0 0.350 0.187 2.407 6.649 0.261 0.766 0.911 0.960

Ours, fixed α = 2 0.349 0.190 1.922 6.648 0.267 0.737 0.904 0.961

Ours, annealing α = 2→0 0.341 0.184 2.063 6.697 0.260 0.756 0.911 0.963

Ours, adaptive α ∈ (0, 2) 0.332 0.181 2.144 6.454 0.254 0.766 0.916 0.965

Table 2. Results on unsupervised monocular depth estimation us-

ing the KITTI dataset [12], building upon the model from [41]

(“Baseline”). By replacing the per-pixel loss used by [41] with

several variants of our own per-wavelet general loss function in

which our loss’s shape parameters are fixed, annealed, or adap-

tive, we see a significant performance improvement. The top three

techniques are colored red, orange, and yellow for each metric.

In
p

u
t

B
as

el
in

e
O

u
rs

T
ru

th

Figure 4. Monocular depth estimation results on the KITTI bench-

mark using the “Baseline” network of [41]. Replacing only the

network’s loss function with our “adaptive” loss over wavelet co-

efficients results in significantly improved depth estimates.

bution with our general distribution, keeping our scale fixed

but allowing the shape parameter α to vary. Following our

observation from Section 3.1 that YUV wavelet representa-

tions work well when modeling images with our loss func-

tion, we impose our loss on a YUV wavelet decomposition

instead of the RGB pixel representation of [41]. The only

changes we made to the code from [41] were to replace its

loss function with our own and to remove the model compo-

nents that stopped yielding any improvement after the loss

function was replaced (see the supplement for details). All

training and evaluation was performed on the KITTI dataset

[12] using the same training/test split as [41].

Results can be seen in Table 2. We present the error

and accuracy metrics used in [41] and our own “average”

error measure: the geometric mean of the four errors and

one minus the three accuracies. The “Baseline“ models use

the loss function of [41], and we present both the numbers

in [41] (“as reported”) and our own numbers from running

4336

the code from [41] ourselves (“reproduced”). The “Ours”

entries all use our general loss imposed on wavelet coeffi-

cients, but for each entry we use a different strategy for set-

ting the shape parameter or parameters. We keep our loss’s

scale c fixed to 0.01, thereby matching the fixed scale as-

sumption of the baseline model and roughly matching the

shape of its L1 loss (Eq. 15). To avoid exploding gradients

we multiply the loss being minimized by c, thereby bound-

ing gradient magnitudes by residual magnitudes (Eq. 14).

For the “fixed” models we use a constant value for α for all

wavelet coefficients, and observe that though performance

is improved relative to the baseline, no single value of α is

optimal. The α = 1 entry is simply a smoothed version

of the L1 loss used by the baseline model, suggesting that

just using a wavelet representation improves performance.

In the “annealing α = 2 → 0” model we linearly inter-

polate α from 2 (L2) to 0 (Cauchy) as a function of train-

ing iteration, which outperforms all “fixed” models. In the

“adaptive α ∈ (0, 2)” model we assign each wavelet co-

efficient its own shape parameter as a free variable and we

allow those variables to be optimized alongside our network

weights during training as was done in Section 3.1, but with

αmin = 0 and αmax = 2. This “adaptive” strategy out-

performs the “annealing” and all “fixed” strategies, thereby

demonstrating the value of allowing the model to adaptively

determine the robustness of its loss during training. Note

that though the “fixed” and “annealed” strategies only re-

quire our general loss, the “adaptive” strategy requires that

we use the NLL of our general distribution as our loss —

otherwise training would simply drive α to be as small as

possible due to the monotonicity of our loss with respect

to α, causing performance to degrade to the “fixed α = 0”

model. Comparing the “adaptive” model’s performance to

that of the “fixed” models suggests that, as in Section 3.1,

no single setting of α is optimal for all wavelet coefficients.

Overall, we see that just replacing the loss function of [41]

with our adaptive loss on wavelet coefficients reduces aver-

age error by ∼17%.

In Figure 4 we compare our “adaptive” model’s output to

the baseline model and the ground-truth depth, and demon-

strate a substantial qualitative improvement. See the sup-

plement for many more results, and for visualizations of the

per-coefficient robustness selected by our model.

3.3. Fast Global Registration

Robustness is often a core component of geometric regis-

tration [37]. The Fast Global Registration (FGR) algorithm

of [40] finds the rigid transformation T that aligns point sets

{p} and {q} by minimizing the following loss:

∑

(p,q)

ρgm (‖p−Tq‖, c) (23)

Mean RMSE ×100 Max RMSE ×100
σ = 0 0.0025 0.005 0 0.0025 0.005

FGR [40] 0.373 0.518 0.821 0.591 1.040 1.767

shape-annealed gFGR 0.374 0.510 0.802 0.590 0.997 1.670

gFGR* 0.370 0.509 0.806 0.545 0.961 1.669

Table 3. Results on the registration task of [40], in which we

compare their “FGR” algorithm to two versions of our “gFGR”

generalization.

Figure 5. Performance (lower is better) of our gFGR algorithm

on the task of [40] as we vary our shape parameter α, with the

lowest-error point indicated by a circle. FGR (equivalent to gFGR

with α = −2) is shown as a dashed line and a square, and shape-

annealed gFGR for each noise level is shown as a dotted line.

where ρgm(·) is Geman-McClure loss. By using the Black

and Rangarajan duality between robust estimation and line

processes [3] FGR is capable of producing high-quality reg-

istrations at high speeds. Because Geman-McClure loss is a

special case of our loss, and because we can formulate our

loss as an outlier process (see supplement), we can gener-

alize FGR to an arbitrary shape parameter α by replacing

ρgm(·, c) with our ρ(·, α, c) (where setting α = −2 repro-

duces FGR).

This generalized FGR (gFGR) enables algorithmic im-

provements. FGR iteratively solves a linear system while

annealing its scale parameter c, which has the effect of grad-

ually introducing nonconvexity. gFGR enables an alterna-

tive strategy in which we directly manipulate convexity by

annealing α instead of c. This “shape-annealed gFGR” fol-

lows the same procedure as [40]: 64 iterations in which a

parameter is annealed every 4 iterations. Instead of anneal-

ing c, we set it to its terminal value and instead anneal α
over the following values:

2, 1, 1/2, 1/4, 0,−1/4,−1/2,−1,−2,−4,−8,−16,−32

Table 3 shows results for the 3D point cloud registration

task of [40] (Table 1 in that paper), which shows that an-

nealing shape produces moderately improved performance

over FGR for high-noise inputs, and behaves equivalently

in low-noise inputs. This suggests that performing gradu-

ated non-convexity by directly adjusting a shape parameter

that controls non-convexity — a procedure that is enabled

by our general loss – is preferable to indirectly controlling

non-convexity by annealing a scale parameter.

4337

Dataset A
C

-W

N
-C

u
ts

[3
2

]

L
D

M
G

I
[3

6
]

P
IC

[3
8

]

R
C

C
-D

R
[3

1
]

R
C

C
[3

1
]

g
R

C
C

*

R
el

.
Im

p
r.

YaleB 0.767 0.928 0.945 0.941 0.974 0.975 0.975 0.4%
COIL-100 0.853 0.871 0.888 0.965 0.957 0.957 0.962 11.6%
MNIST 0.679 - 0.761 - 0.828 0.893 0.901 7.9%
YTF 0.801 0.752 0.518 0.676 0.874 0.836 0.888 31.9%
Pendigits 0.728 0.813 0.775 0.467 0.854 0.848 0.871 15.1%
Mice Protein 0.525 0.536 0.527 0.394 0.638 0.649 0.650 0.2%
Reuters 0.471 0.545 0.523 0.057 0.553 0.556 0.561 1.1%
Shuttle 0.291 0.000 0.591 - 0.513 0.488 0.493 0.9%
RCV1 0.364 0.140 0.382 0.015 0.442 0.138 0.338 23.2%

Table 4. Results on the clustering task of [31] where we compare

their “RCC” algorithm to our “gRCC*” generalization in terms

of AMI on several datasets. We also report the AMI increase of

“gRCC*” with respect to “RCC”. Baselines are taken from [31].

Another generalization is to continue using the c-
annealing strategy of [40], but treat α as a hyperparameter

and tune it independently for each noise level in this task.

In Figure 5 we set α to a wide range of values and report

errors for each setting, using the same evaluation of [40].

We see that for high-noise inputs more negative values of

α are preferable, but for low-noise inputs values closer to

0 are optimal. We report the lowest-error entry for each

noise level as “gFGR*” in Table 3 where we see a signifi-

cant reduction in error, thereby demonstrating the improve-

ment that can be achieved from treating robustness as a hy-

perparameter.

3.4. Robust Continuous Clustering

In [31] robust losses are used for unsupervised cluster-

ing, by minimizing:

∑

i

‖xi − ui‖22 + λ
∑

(p,q)∈E

wp,qρgm (‖up − uq‖2) (24)

where {xi} is a set of input datapoints, {ui} is a set of “rep-

resentatives” (cluster centers), and E is a mutual k-nearest

neighbors (m-kNN) graph. As in Section 3.3, ρgm(·) is

Geman-McClure loss, which means that our loss can be

used to generalize this algorithm. Using the RCC code

provided by the authors (and keeping all hyperparameters

fixed to their default values) we replace Geman-McClure

loss with our general loss and then sweep over values of α.

In Figure 6 we show the adjusted mutual information (AMI,

the metric used by [31]) of the resulting clustering for each

value of α on the datasets used in [31], and in Table 4 we

report the AMI for the best-performing value of α for each

dataset as “gRCC*”. On some datasets performance is in-

sensitive to α, but on others adjusting α improves perfor-

mance by as much as 32%. This improvement demonstrates

the gains that can be achieved by introducing robustness as

a hyperparameter and tuning it accordingly.

Figure 6. Performance (higher is better) of our gRCC algorithm

on the clustering task of [31], for different values of our shape

parameter α, with the highest-accuracy point indicated by a dot.

Because the baseline RCC algorithm is equivalent to gRCC with

α = −2, we highlight that α value with a dashed line and a square.

4. Conclusion

We have presented a two-parameter loss function

that generalizes many existing one-parameter ro-

bust loss functions: the Cauchy/Lorentzian, Geman-

McClure, Welsch/Leclerc, generalized Charbonnier,

Charbonnier/pseudo-Huber/L1-L2, and L2 loss functions.

By reducing a family of discrete single-parameter losses

to a single function with two continuous parameters, our

loss enables the convenient exploration and comparison

of different robust penalties. This allows us to generalize

and improve algorithms designed around the minimiza-

tion of some fixed robust loss function, which we have

demonstrated for registration and clustering. When used

as a negative log-likelihood, this loss gives a general

probability distribution that includes normal and Cauchy

distributions as special cases. This distribution lets us train

neural networks in which the loss has an adaptive degree

of robustness for each output dimension, which allows

training to automatically determine how much robustness

should be imposed by the loss without any manual param-

eter tuning. When this adaptive loss is paired with image

representations in which variable degrees of heavy-tailed

behavior occurs, such as wavelets, this adaptive training ap-

proach allows us to improve the performance of variational

autoencoders for image synthesis and of neural networks

for unsupervised monocular depth estimation.

Acknowledgements: Thanks to Rob Anderson, Jesse En-

gel, David Gallup, Ross Girshick, Jaesik Park, Ben Poole,

Vivek Rathod, and Tinghui Zhou.

4338

References

[1] Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete

cosine transform. IEEE Transactions on Computers, 1974.

[2] Michael J Black and Paul Anandan. The robust estimation

of multiple motions: Parametric and piecewise-smooth flow

fields. CVIU, 1996.

[3] Michael J. Black and Anand Rangarajan. On the unification

of line processes, outlier rejection, and robust statistics with

applications in early vision. IJCV, 1996.

[4] Andrew Blake and Andrew Zisserman. Visual Reconstruc-

tion. MIT Press, 1987.

[5] Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert, and

Michel Barlaud. Two deterministic half-quadratic regular-

ization algorithms for computed imaging. ICIP, 1994.

[6] Qifeng Chen and Vladlen Koltun. Fast mrf optimization with

application to depth reconstruction. CVPR, 2014.

[7] Albert Cohen, Ingrid Daubechies, and J-C Feauveau.

Biorthogonal bases of compactly supported wavelets. Com-

munications on pure and applied mathematics, 1992.

[8] Alexey Dosovitskiy and Thomas Brox. Generating images

with perceptual similarity metrics based on deep networks.

NIPS, 2016.

[9] David J. Field. Relations between the statistics of natural

images and the response properties of cortical cells. JOSA A,

1987.

[10] John Flynn, Ivan Neulander, James Philbin, and Noah

Snavely. Deepstereo: Learning to predict new views from

the world’s imagery. CVPR, 2016.

[11] Ravi Garg, BG Vijay Kumar, Gustavo Carneiro, and Ian

Reid. Unsupervised cnn for single view depth estimation:

Geometry to the rescue. ECCV, 2016.

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. CVPR, 2012.

[13] Stuart Geman and Donald E. McClure. Bayesian image anal-

ysis: An application to single photon emission tomography.

Proceedings of the American Statistical Association, 1985.

[14] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. CVPR, 2017.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. NIPS, 2014.

[16] Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw,

and Werner A. Stahel. Robust Statistics: The Approach

Based on Influence Functions. Wiley, 1986.

[17] Trevor Hastie, Robert Tibshirani, and Martin Wainwright.

Statistical Learning with Sparsity: The Lasso and General-

izations. Chapman and Hall/CRC, 2015.

[18] Peter J. Huber. Robust estimation of a location parameter.

Annals of Mathematical Statistics, 1964.

[19] Peter J. Huber. Robust Statistics. Wiley, 1981.

[20] John E. Dennis Jr. and Roy E. Welsch. Techniques for non-

linear least squares and robust regression. Communications

in Statistics-simulation and Computation, 1978.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. ICLR, 2015.

[22] Diederik P. Kingma and Max Welling. Auto-encoding vari-

ational bayes. ICLR, 2014.

[23] Philipp Krähenbühl and Vladlen Koltun. Efficient nonlocal

regularization for optical flow. ECCV, 2012.

[24] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo

Larochelle, and Ole Winther. Autoencoding beyond pixels

using a learned similarity metric. ICML, 2016.

[25] Yvan G Leclerc. Constructing simple stable descriptions for

image partitioning. IJCV, 1989.

[26] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. ICCV, 2015.

[27] Stéphane Mallat. A theory for multiresolution signal decom-

position: The wavelet representation. TPAMI, 1989.

[28] Saralees Nadarajah. A generalized normal distribution. Jour-

nal of Applied Statistics, 2005.

[29] Javier Portilla, Vasily Strela, Martin J. Wainwright, and

Eero P. Simoncelli. Image denoising using scale mixtures

of gaussians in the wavelet domain. IEEE TIP, 2003.

[30] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-

stra. Stochastic backpropagation and approximate inference

in deep generative models. ICML, 2014.

[31] Sohil Atul Shah and Vladlen Koltun. Robust continuous

clustering. PNAS, 2017.

[32] Jianbo Shi and Jitendra Malik. Normalized cuts and image

segmentation. TPAMI, 2000.

[33] M Th Subbotin. On the law of frequency of error. Matem-

aticheskii Sbornik, 1923.

[34] Deqing Sun, Stefan Roth, and Michael J. Black. Secrets of

optical flow estimation and their principles. CVPR, 2010.

[35] Rein van den Boomgaard and Joost van de Weijer. On

the equivalence of local-mode finding, robust estimation and

mean-shift analysis as used in early vision tasks. ICPR, 2002.

[36] Yi Yang, Dong Xu, Feiping Nie, Shuicheng Yan, and Yueting

Zhuang. Image clustering using local discriminant models

and global integration. TIP, 2010.

[37] Christopher Zach. Robust bundle adjustment revisited.

ECCV, 2014.

[38] Wei Zhang, Deli Zhao, and Xiaogang Wang. Agglomerative

clustering via maximum incremental path integral. Pattern

Recognition, 2013.

[39] Zhengyou Zhang. Parameter estimation techniques: A tuto-

rial with application to conic fitting, 1995.

[40] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global

registration. ECCV, 2016.

[41] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G.

Lowe. Unsupervised learning of depth and ego-motion from

video. CVPR, 2017.

4339

