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Abstract

Recently, there has been a lot of interest in building com-

pact models for video classification which have a small

memory footprint (< 1 GB) [16]. While these models are

compact, they typically operate by repeated application of

a small weight matrix to all the frames in a video. For ex-

ample, recurrent neural network based methods compute

a hidden state for every frame of the video using a recur-

rent weight matrix. Similarly, cluster-and-aggregate based

methods such as NetVLAD have a learnable clustering ma-

trix which is used to assign soft-clusters to every frame in

the video. Since these models look at every frame in the

video, the number of floating point operations (FLOPs) is

still large even though the memory footprint is small. In this

work, we focus on building compute-efficient video classifi-

cation models which process fewer frames and hence have

less number of FLOPs. Similar to memory efficient mod-

els, we use the idea of distillation albeit in a different set-

ting. Specifically, in our case, a compute-heavy teacher

which looks at all the frames in the video is used to train a

compute-efficient student which looks at only a small frac-

tion of frames in the video. This is in contrast to a typi-

cal memory efficient Teacher-Student setting, wherein both

the teacher and the student look at all the frames in the

video but the student has fewer parameters. Our work thus

complements the research on memory efficient video clas-

sification. We do an extensive evaluation with three types

of models for video classification, viz., (i) recurrent models

(ii) cluster-and-aggregate models and (iii) memory-efficient

cluster-and-aggregate models and show that in each of

these cases, a see-it-all teacher can be used to train a com-

pute efficient see-very-little student. Overall, we show that

the proposed student network can reduce the inference time

by 30% and the number of FLOPs by approximately 90%

with a negligible drop in the performance.

∗Indian Institute of Technology Madras and Robert Bosch Centre for

Data Science and AI (RBC-DSAI)

1. Introduction

Today video content has become extremely prevalent on

the internet influencing all aspects of our life such as edu-

cation, entertainment, communication etc. This has led to

an increasing interest in automatic video processing with

the aim of identifying activities [32, 40], generating textual

descriptions [9], generating summaries [11, 27], answering

questions [15] and so on. On one hand, with the availability

of large-scale datasets [34, 36, 18, 1, 39] for various video

processing tasks, it has now become possible to train in-

creasingly complex models which have high memory and

computational needs but on the other hand there is a de-

mand for running these models on low power devices such

as mobile phones and tablets with stringent constraints on

latency, memory and computational cost. It is important to

balance the two and design models which can learn from

large amounts of data but still be computationally cheap at

inference time.

In this context, the recently concluded ECCV workshop

on YouTube-8M Large-Scale Video Understanding (2018)

[16] focused on building memory efficient models which

use less than 1GB of memory. The main motivation was to

discourage the use of ensemble based methods and instead

focus on memory efficient single models. One of the main

ideas explored by several participants [24, 28, 30] in this

workshop was to use knowledge distillation to build more

compact student models. More specifically, they first train

a teacher network which has a large number of parameters

and then use this network to guide a much smaller student

network which has limited memory requirements and can

thus be employed at inference time. Of course, in addi-

tion to requiring less memory, such a model would also re-

quire fewer FLOPs as the size of weight matrices, hidden

representations, etc. would be smaller. However, there is

scope for reducing the FLOPs further because existing mod-

els process all frames in the video which may be redundant.

Based on the results of the ECCV workshop [16], we

found that the two most popular paradigms for video classi-

fication are (i) recurrent neural network based methods and

(ii) cluster-and-aggregate based methods. Not surprisingly,

the third type of approaches based on C3D (3D convolu-
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tions) [3] were not so popular because they are expensive in

terms of their memory and compute requirements. For ex-

ample, the popular I3D model [3] is trained using 64 GPUs

as mentioned in the original paper. Hence, in this paper, we

focus only on the first two paradigms. We first observe that,

RNN based methods [28, 8, 31] compute a hidden represen-

tation for every frame in the video and then compute a final

representation for the video based on these frame represen-

tations. Hence, even if the model is compact due to smaller

weight matrix and/or hidden representations, the number of

FLOPs would still be large because this computation needs

to be done for every frame in the video. Similarly, cluster-

and-aggregate based methods [23, 24, 30, 35, 17] have a

learnable clustering matrix which is used for assigning soft

clusters to every frame in the video. Even if the model is

made compact by reducing the size of the clustering matrix

and/or hidden representations, the number of FLOPs would

still be large. To alleviate this problem, in this work, we

focus on building models which have fewer FLOPs and are

thus computationally efficient. Our work thus complements

existing work on memory efficient models for video classi-

fication.

We propose to achieve this by again using the idea of

distillation wherein we train a computationally expensive

teacher network which computes a representation for the

video by processing all frames in the video. We then train

a relatively inexpensive student network whose objective is

to process only a few frames of the video and produce a rep-

resentation which is very similar to the representation com-

puted by the teacher. This is achieved by minimizing (i) the

squared error loss between the representations of the student

network and the teacher network and/or (ii) by minimizing

the difference between the output distributions (class prob-

abilities) predicted by the two networks. Figure 1 illustrates

this idea where the teacher sees every frame of the video

but the student sees fewer frames, i.e., every j-th frame of

the video. At inference time, we then use the student net-

work for classification thereby reducing the time required

for processing the video.

We experiment with two different methods of training

the Teacher-Student network. In the first method (which we

call Serial Training), the teacher is trained independently

and then the student is trained to match the teacher with or

without an appropriate regularizer to account for the classi-

fication loss. In the second method (which we call Parallel

Training), the teacher and student are trained jointly using

the classification loss as well as the matching loss. This par-

allel training method is similar to on-the-fly knowledge dis-

tillation from a dynamic teacher as mentioned in [19]. We

experiment with different students, viz., (i) a hierarchical

RNN based model (ii) NetVLAD and (iii) NeXtVLAD which

is a memory efficient version of NetVLAD and was the best

single model in the ECCV’18 workshop. We experiment

with the YouTube-8M dataset and show that the smaller stu-

dent network reduces the inference time by upto 30% while

still achieving a classification performance which is very

close to that of the expensive teacher network.

2. Related Work

Since we focus on the task of video classification in

the context of the YouTube-8M dataset [1], we first review

some recent work on video classification and then some rel-

evant work on model compression.

2.1. Video Classification

One of the popular datasets for video classification is the

YouTube-8M dataset which contains videos having an av-

erage length of 200 seconds. We use this dataset in all our

experiments. The authors of this dataset proposed a simple

baseline model which treats the entire video as a sequence

of one-second frames and uses a Long Short-Term Mem-

ory network (LSTM) to encode this sequence. Apart from

this, they also propose some simple baseline models like

Deep Bag of Frames (DBoF) and Logistic Regression [1].

Various other classification models [23, 37, 20, 5, 33] have

been proposed and evaluated on this dataset (2017 version)

which explore different methods of: (i) feature aggregation

in videos (temporal as well as spatial) [5, 23], (ii) captur-

ing the interactions between labels [37] and (iii) learning

new non-linear units to model the interdependencies among

the activations of the network [23]. The state-of-the-art

model on the 2017 version of the Youtube-8M dataset uses

NetVLAD pooling [23] to aggregate information from all the

frames of a video.

In the recently concluded competition (2018 version),

many methods [24, 28, 30, 35, 8, 21, 31, 16] were proposed

to compress the models such that they fit in 1GB of mem-

ory. As mentioned by [16], the major motivation behind

this competition was to avoid the late-stage model ensem-

ble techniques and focus mainly on single model architec-

tures at inference time [31, 30, 8]. One of the top perform-

ing systems in this competition was NeXtVLAD [30], which

modifies NetVLAD [23] to squeeze the dimensionality of

modules (embeddings). However, this model still processes

all the frames of the video and hence has a large number

of FLOPs. In this work, we take this compact NeXtVLAD

model and make it compute efficient by using the idea of

distillation. One clear message from this workshop was

that the emphasis should be on single model architectures

and not ensembles. Hence, in this work, we focus on single

model-based solutions.

2.2. Model Compression

Recently, there has been a lot of work on model com-

pression ([7, 26, 12, 25]) in the context of image classifica-

tion. We refer the reader to survey paper by [7] for a thor-
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ough review of the field. For brevity, here we refer to only

those papers which use the idea of distillation. For exam-

ple, [2, 13, 22, 4] use Knowledge Distillation to learn a more

compact student network from a computationally expensive

teacher network. The key idea is to train a shallow student

network using soft targets (or class probabilities) generated

by the teacher instead of the hard targets present in the train-

ing data. There are several other variants of this technique

such as, [29] extend this idea to train a student model which

not only learns from the outputs of the teacher but also uses

the intermediate representations learned by the teacher as

additional hints. This idea of Knowledge Distillation has

also been tried in the context of pruning networks for multi-

ple object detection [4], speech recognition [38] and reading

comprehension [14].

In the context of video classification, there is some work

[24, 21] on using Quantization for model compression.

Some work on video-based action recognition [41] tries

to accelerate processing in a two-stream CNN architecture

by transferring knowledge from motion modality to optical

modality. In some very recent work on video classification

[10] and video captioning [6] the authors use a reinforce-

ment learning agent to select which frames to process. We

do not focus on the problem of frame selection but instead

focus on distilling knowledge from the teacher once fewer

frames have been selected for the student. While in this

work we simply select frames uniformly, the same ideas can

also be used on top of an RL agent which selects the best

frames but we leave this as a future work.

3. Video Classification Models

Given a fixed set of m classes y1, y2, y3, ..., ym ∈ Y

and a video V containing N frames (F0, F1, . . . , FN−1),

the goal of video classification is to identify all the classes

to which the video belongs. In other words, for each of

the m classes we are interested in predicting the probability

P (yi|V). This probability can be parameterized using a

neural network f which looks at all the frames in the video

to predict:

P (yi|V) = f(F0, F1, . . . , FN−1)

Given the setup, we now briefly discuss the two state-of-

the-art models that we have considered as teacher/student

for our experiments.

3.1. Recurrent Network Based Models

We consider the Hierarchical Recurrent Neural Network

(H-RNN) based model which assumes that each video con-

tains a sequence of b equal sized blocks. Each of these

blocks in turn is a sequence of l frames thereby making the

entire video a sequence of sequences. In the case of the

YouTube-8M dataset, these frames are one-second shots of

the video and each block b is a collection of l such one-

second frames. The model contains a lower level RNN to

encode each block (sequence of frames) and a higher level

RNN to encode the video (sequence of blocks).

3.2. Cluster and Aggregate Based Models

We consider the NetVLAD model with Context Gating

(CG) as proposed in [23]. This model does not treat the

video as a sequence of frames but simply as a bag of frames.

For every frame in this bag, it first assigns a soft cluster

to the frame which results is a M × k dimensional rep-

resentation for the frame where k is the number of clus-

ters considered and M is the size of the initial represen-

tation of the frame (say, obtained from a CNN). Instead

of using a standard clustering algorithm such as k-means,

the authors introduce a learnable clustering matrix which

is trained along with all the parameters of the network. The

cluster assignments are thus a function of a parameter which

is learned during training. The video representation is then

computed by aggregating all the frame representations ob-

tained after clustering. This video representation is then fed

to multiple fully connected layers with Context Gating (CG)

which help to model interdependencies among network ac-

tivations. We also experiment with NeXtVLAD [30] which

is a compact version of NetVLAD wherein the M×k dimen-

sional representation is downsampled by grouping which

effectively reduces the total number of parameters in the

network.

Note that all the models described above look at all the

frames in the video.

4. Proposed Approach

The focus of this work is to design a simpler network g

which looks at only a fraction of the N frames at inference

time while still allowing it to leverage the information from

all the N frames at training time. To achieve this, we pro-

pose a Teacher-Student network as described below wherein

the teacher has access to more frames than the student.

TEACHER: The teacher network can be any state-of-the-

art model described above (H-RNN, NetVLAD, NeXtVLAD).

This teacher network looks at all the N frames of video

(F0, F1, . . . , FN−1) and computes an encoding ET of the

video, which is then fed to a simple feedforward neural net-

work with a multi-class output layer containing a sigmoid

neuron for each of the Y classes. The parameters of the

teacher network are learnt using a standard multi-label clas-

sification loss LCE , which is a sum of the cross-entropy

loss for each of the Y classes. We refer to this loss as LCE

where the subscript CE stands for cross entropy between

the true labels y and predictions ŷ.

LCE = −

|Y |∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (1)
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0 1 2 3 4 N − 1

F0 F1 F2 F3 F4
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TEACHER (N frames)

ET

0 j 2j
N

j
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Fj F2j FN

j
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STUDENT (every j th frame)

ES

VIDEO

CLASSIFIER-1

VIDEO

CLASSIFIER-2

Lrep Lpred

LCE

backprop Lrep through STUDENT

backprop Lpred through STUDENT

backprop LCE through STUDENT

Figure 1: Architecture of TEACHER-STUDENT network for video classification

STUDENT: In addition to this teacher network, we in-

troduce a student network which only processes every jth

frame (F0, Fj , F2j , . . . , FN
j
−1

) of the video and computes

a representation ES of the video from these N
j

frames. We

use only same family distillation wherein both the teacher

and the student have the same architecture. For example,

Figure 1 shows the setup when the teacher is H-RNN and

the student is also H-RNN. Further, the parameters of the

output layer are shared between the teacher and the student.

The student is trained to minimize the squared error loss be-

tween the representation computed by the student network

and the representation computed by the teacher. We refer to

this loss as Lrep where the subscript rep stands for repre-

sentations.

Lrep = ||ET − ES ||
2 (2)

We also try a simple variant of the model, where in ad-

dition to ensuring that the final representations ES and ET
are similar, we also ensure that the intermediate representa-

tions (IS and IT ) of the models are similar. In particular,

we ensure that the representation of the frames j, 2j and so

on computed by the teacher and student network are very

similar by minimizing the squared error distance between

the corresponding intermediate representations. We refer to

this loss as LI
rep where the superscript I stands for interme-

diate.

LI
rep =

N
j
−1∑

i=j,2j,..

||Ii
T − Ii

S ||
2 (3)

Alternately, the student can also be trained to minimize the

difference between the class probabilities predicted by the

teacher and the student. We refer to this loss as Lpred

where the subscript pred stands for predicted probabili-

ties. More specifically if PT = {p1T , p
2

T , ...., p
m
T } and

PS = {p1S , p
2

S , ...., p
m
S } are the probabilities predicted for

the m classes by the teacher and the student respectively,

then

Lpred = d(PT ,PS) (4)

where d is any suitable distance metric such as KL diver-

gence or squared error loss.

TRAINING: Intuitively, it makes sense to train the teacher

first and then use this trained teacher to guide the student.

We refer to this as the Serial mode of training as the student

is trained after the teacher as opposed to jointly. For the sake

of analysis, we use different combinations of loss function

to train the student as described below:

(a) Lrep : Here, we operate in two stages. In the first

stage, we train the student network to minimize the

Lrep as defined above, i.e., we train the parameters of

the student network to produce representations which

are very similar to the teacher network. The idea is to

let the student learn by only mimicking the teacher and

not worry about the final classification loss. In the sec-

ond stage, we then plug in the classifier trained along

with the teacher (see Equation 1) and fine-tune all the

parameters of the student and the classifier using the

cross entropy loss, LCE . In practice, we found that the

fine-tuning done in the second stage helps to improve

the performance of the student.

(b) Lrep+LCE : Here, we train the student to jointly min-

imize the representation loss as well as the classifica-

tion loss. The motivation behind this was to ensure that
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while mimicking the teacher, the student also keeps an

eye on the final classification loss from the beginning

(instead of being fine-tuned later as in the case above).

(c) Lpred: Here, we train the student to only minimize the

difference between the class probabilities predicted by

the teacher and the student.

(d) Lpred+LCE : Here, in addition to mimicking the prob-

abilities predicted by the teacher, the student is also

trained to minimize the cross entropy loss.

(e) Lrep+LCE+Lpred: Finally, we combine all the 3 loss

functions. Figure 1 illustrates the process of training

the student with different loss functions.

For the sake of completeness, we also tried an alternate

mode in which we train the teacher and student in parallel

such that the objective of the teacher is to minimize LCE

and the objective of the student is to minimize one of the 3
combinations of loss functions described above. We refer

to this as Parallel training.

5. Experimental Setup

In this section, we describe the dataset used for our

experiments, the hyperparameters that we considered, the

baseline models that we compared with and the effect of

different loss functions and training methods.

1. Dataset: The YouTube-8M dataset (2017 version) [1]

contains 8 million videos with multiple classes associated

with each video. The average length of a video is 200s and

the maximum length of a video is 300s. The authors of the

dataset have provided pre-extracted audio and visual fea-

tures for every video such that every second of the video is

encoded as a single frame. The original dataset consists of

5,786,881 training (70%), 1,652,167 validation (20%) and

825,602 test examples (10%). Since the authors did not re-

lease the test set, we used the original validation set as test

set and report results on it. In turn, we randomly sampled

48,163 examples from the training data and used these as

validation data for tuning the hyperparameters of the model.

We trained our models using the remaining 5,738,718 train-

ing examples.

2. Hyperparameters: For all our experiments, we used

Adam Optimizer with the initial learning rate set to 0.001
and then decreased it exponentially with 0.95 decay rate.

We used a batch size of 256. For both the student and

teacher networks we used a 2-layered MultiLSTM Cell

with cell size of 1024 for both the layers of the hierarchi-

cal model. For regularization, we used dropout (0.5) and

L2 regularization penalty of 2 for all the parameters. We

trained all the models for 5 epochs and then picked the best

model-based on validation performance. We did not see any

benefit of training beyond 5 epochs. For the teacher network

we chose the value of l (number of frames per block ) to be

20 and for the student network, we set the value of l to 5 or

3 depending on the reduced number of frames considered

by the student.

In the training of NetVLAD model, we have used the

standard hyperparameter settings as mentioned in [23]. We

consider 256 clusters and 1024 dimensional hidden layers.

Similarly, in the case of NeXtVLAD, we have considered

the hyperparameters of the single best model as reported by

[30]. In this network, we are working with a cluster size of

128 with hidden size as 2048. The input is reshaped and

downsampled using 8 groups in the cluster as done in the

original paper. For all these networks, we have worked with

a batch size of 80 and an initial learning rate of 0.0002 expo-

nentially decayed at the rate of 0.8. Additionally, we have

applied dropout of 0.5 on the output of NeXtVLAD layer

which helps for better regularization.

3. Evaluation Metrics: We used the following metrics as

proposed in [1] for evaluating the performance of different

models :

• GAP (Global Average Precision): is defined as

GAP =

P∑

i=1

p(i)∇r(i)

where p(i) is the precision at prediction i, ∇r(i) is the

change in recall at prediction i and P is the number of

top predictions that we consider. Following the original

YouTube-8M Kaggle competition we use the value of P

as 20.

• mAP (Mean Average Precision) : The mean average pre-

cision is computed as the unweighted mean of all the per-

class average precisions.

4. Models Compared: We compare our Teacher-Student

network with the following models which helps us to better

contextualize our results.

a) Teacher-Skyline: The original teacher model which

processes all the frames of the video. This, in some

sense, acts as the upper bound on the performance.

b) Baseline Methods: As baseline, we consider a model

(H-RNN, NetVLAD or NeXtVLAD) which is trained

from scratch but uses only k frames of the video. How-

ever, unlike the student model this model is not guided

by a teacher. These k frames can be (i) separated by a

constant interval and are thus equally spaced (Uniform-

k) or (ii) sampled randomly from the video (Random-k)

or (iii) the first k frames of the video (First-k) or (iv) the

middle k frames of the video (Middle-k) or (v) the last

k frames of the video (Last-k) or (i) the first k
3

, middle
k
3

and last k
3

frames of the video (First-Middle-Last-k).
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MODEL k=6 k=10 k=15 k=20 k=30

GAP mAP GAP mAP GAP mAP GAP mAP GAP mAP

Model with k frames BASELINE METHODS

Uniform-k 0.715 0.266 0.759 0.324 0.777 0.35 0.785 0.363 0.795 0.378

Random-k 0.679 0.246 0.681 0.254 0.717 0.268 0.763 0.329 0.774 0.339

First-k 0.478 0.133 0.539 0.163 0.595 0.199 0.632 0.223 0.676 0.258

Middle-k 0.577 0.178 0.600 0.198 0.620 0.214 0.638 0.229 0.665 0.25

Last-k 0.255 0.062 0.267 0.067 0.282 0.077 0.294 0.083 0.317 0.094

First-Middle-Last-k 0.640 0.215 0.671 0.242 0.680 0.249 0.698 0.268 0.721 0.287

Training Student-Loss Teacher-Student METHODS

Parallel Lrep 0.724 0.280 0.762 0.331 0.785 0.365 0.794 0.380 0.803 0.392

Parallel Lrep, LCE 0.726 0.285 0.766 0.334 0.785 0.362 0.795 0.381 0.804 0.396

Parallel Lrep, Lpred, LCE 0.729 0.292 0.770 0.337 0.789 0.371 0.796 0.388 0.806 0.404

Serial Lrep 0.727 0.288 0.768 0.339 0.786 0.365 0.795 0.381 0.802 0.394

Serial Lpred 0.722 0.287 0.766 0.341 0.784 0.367 0.793 0.383 0.798 0.390

Serial Lrep, LCE 0.728 0.291 0.769 0.341 0.786 0.368 0.794 0.383 0.803 0.399

Serial Lpred, LCE 0.724 0.289 0.763 0.341 0.785 0.369 0.795 0.386 0.799 0.391

Serial Lrep, Lpred, LCE 0.731 0.297 0.771 0.349 0.789 0.375 0.798 0.390 0.806 0.405

Table 1: Performance comparison of proposed Teacher-Student models using different Student-Loss variants, with their

corresponding baselines using k frames. Teacher-Skyline model refers to the default model which process all the frames in

a video and achieves GAP and mAP score of 0.811 and 0.414 respectively.

We report results with different values of k : 6, 10, 15,

20, 30.

6. Discussion And Results

Since we have 3 different base models (H-RNN,

NetVLAD, NeXtVLAD), 5 different combinations of loss

functions (see section 4), 2 different training paradigms (Se-

rial and Parallel) and 5 different baselines for each base

model, the total number of experiments that we needed to

run to report all these results was very large. To reduce

the number of experiments we first consider only the H-

RNN model to identify the (a) best baseline (Uniform-k,

Random-k, First-k, Middle-k, Last-k, First-Middle-Last-k)

(b) best training paradigm (Serial v/s Parallel) and (c) best

combination of loss function. We then run the experiments

on NetVLAD and NeXtVLAD using only the best baseline,

best training paradigm and best loss function thus identified.

The results of our experiments using the H-RNN model are

summarized in Table 1 to Table 3 and are discussed first

followed by a discussion of the results using NetVLAD and

NeXtVLAD as summarized in Tables 5 and 6:

1. Comparisons of different baselines: First, we simply

compare the performance of different baselines listed in the

top half of Table 1. As is evident, the Uniform-k base-

line which looks at equally spaced k frames performs better

than all the other baselines. The performance gap between

Uniform-k and the other baselines is even more significant

when the value of k is small. The main purpose of this ex-

periment was to decide the right way of selecting frames for

the student network. Based on these results, we ensured that

for all our experiments, we fed equally spaced k frames to

Model Metric %age of training data

10% 25% 50%

Serial GAP 0.774 0.788 0.796

mAP 0.345 0.369 0.373

Uniform GAP 0.718 0.756 0.776

mAP 0.220 0.301 0.349

Table 2: Effect of amount of training data on performance

of Serial and Uniform models using 30 frames

the student.

2. Comparing Teacher-Student Network with Uniform-

k Baseline: As mentioned above, the Uniform-k baseline

is a simple but effective way of reducing the number of

frames to be processed. We observe that all the teacher-

student models outperform this strong baseline. Further,

in a separate experiment as reported in Table 2 we observe

that when we reduce the number of training examples seen

by the teacher and the student, then the performance of the

Uniform-k baseline drops and is much lower than that of

the corresponding Teacher-Student network. This suggests

that the Teacher-Student network can be even more useful

when the amount of training data is limited.

3. Serial Versus Parallel Training of Teacher-Student:

While the best results in Table 1 are obtained using Serial

training, if we compare the corresponding rows of Serial

and Parallel training we observe that there is not much dif-

ference between the two. We found this to be surprising

and investigated this further. In particular, we compared the
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(b) Training with Lrep and LCE
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(c) Training: Lrep,LCE ,Lpred

Figure 2: Performance comparison (GAP score) of different variants of Serial and Parallel methods in Teacher-Student

training.

performance of the teacher after different epochs in the Par-

allel training setup with the performance of a static teacher

trained independently (Serial). We plotted this performance

in Figure 2 and observed that after 3-4 epochs of training,

the Parallel teacher is able to perform at par with Serial

teacher (the constant blue line). As a result, the Parallel

student now learns from this trained teacher for a few more

epochs and is almost able to match the performance of the

Serial student. This trend is same across the different com-

binations of loss functions that we used.

4. Visualization of Teacher and Student Representa-

tions: Apart from evaluating the final performance of the

model in terms of mAP and GAP, we also wanted to check if

the representations learned by the teacher and student are in-

deed similar. To do this, we chose top-5 classes (class1: Ve-

hicle, class2: Concert, class3: Association football, class4:

Animal, class5: Food) in the Youtube-8M dataset and vi-

sualized the TSNE-embeddings of the representations com-

puted by the student and the teacher for the same video (see

Figure 3). We use the darker shade of a color to repre-

sent teacher embeddings of a video and a lighter shade of

the same color to represent the student embeddings of the

same video. We observe that the dark shades and the light

shades of the same color almost completely overlap show-

ing that the student and teacher representations are indeed

very close to each other. This shows that introducing the

Lrep indeed brings the teacher and student representations

close to each other.

5. Matching Intermediate v/s Final representations: In-

tuitively, it seemed that the student should benefit more if

we train it to match the intermediate representations of the

teacher at different timesteps as opposed to only the final

representation at the last time step. However, as reported in

Table 4, we did not see any benefit of matching intermediate

representations.

6. Computation time of different models: The main aim
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class2-t
class3-t
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class4-s
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Figure 3: TSNE-Embedding of teacher and student repre-

sentations. Here, class c refers to the cluster representation

obtained corresponding to cth class, whereas t and s denote

teacher and student embedding respectively.

Model Time (hrs.) FLOPs (Billion)

Teacher-Skyline 13.00 5.058

k= 10 7.61 0.167

k= 20 8.20 0.268

k= 30 9.11 0.520

Table 3: Comparison of FLOPs and evaluation time of mod-

els using k frames with Skyline model on original validation

set using Tesla k80s GPU

of this work was to ensure that the computational cost and

time is minimized at inference time. The computational
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MODEL Intermediate Final

GAP mAP GAP mAP

Parallel Lrep 0.803 0.393 0.803 0.392

Parallel Lrep + LCE 0.803 0.396 0.804 0.396

Parallel Lrep + Lpred 0.804 0.400 0.806 0.404

Serial Lrep 0.804 0.395 0.802 0.394

Serial Lrep + LCE 0.803 0.397 0.803 0.399

Serial Lrep + Lpred 0.806 0.405 0.806 0.405

Table 4: Comparison of Final and Intermediate representa-

tion matching by Student network using k=30 frames

Model: NetVLAD k=10 k=30

mAP GAP mAP GAP

Skyline 0.462 0.823

Uniform 0.364 0.773 0.421 0.803

Student 0.383 0.784 0.436 0.812

Table 5: Performance of NetVLAD model with k= 10, 30
frames in proposed Teacher-Student Framework

Model: NeXtVLAD k=30 FLOPs

mAP GAP (in Billion)

Skyline 0.464 0.831 1.337

Uniform 0.424 0.812 0.134

Student 0.439 0.818 0.134

Table 6: Performance and FLOPs comparison in

NeXtVLAD model with k=30 frames in proposed Teacher-

Student Framework

cost can be measured in terms of the number of FLOPs. As

shown in Table 3 when k=30, the inference time drops by

30% and the number of FLOPs reduces by approximately

90%, but the performance of the model is not affected. In

particular, as seen in Table 1, when k = 30, the GAP and

mAP drop by 0.5-0.9% and 0.9-2% respectively as com-

pared to the teacher skyline.

7. Performance using NetVLAD models: In Table 5

we summarize the results obtained using NetVLAD as the

base model in the Teacher-Student network. Here the stu-

dent network was trained using the best loss function (

Lrep, Lpred, LCE) and the best training paradigm (Serial)

as identified from the experiments done using the H-RNN

model. Further, we consider only the Uniform-k baseline

as that was the best baseline as observed in our previous ex-

periments. Here again we observe that the student network

does better than the Uniform-k baseline.

8. Combining with memory efficient models: Lastly, we

experiment with the compact NeXtVLAD model and show

that the student network performs slightly better than the

Uniform-k baseline in terms of mAP but not so much in

terms of GAP (note that mAP gives equal importance to all

classes but GAP is influenced more by the most frequent

classes in the dataset). Once again, there is a significant

reduction in the number of FLOPs (approximately 89%).

7. Conclusion and Future Work

We proposed a method to reduce the computation time

for video classification using the idea of distillation. Specif-

ically, we first train a teacher network which computes a

representation of the video using all the frames in the video.

We then train a student network which only processes k

frames of the video. We use different combinations of

loss functions which ensures that (i) the final representa-

tion produced by the student is the similar as that produced

by the teacher and (ii) the output probability distributions

produced by the student are similar to those produced by

the teacher. We compare the proposed models with a strong

baseline and skyline and show that the proposed model out-

performs the baseline and gives a significant reduction in

terms of computational time and cost when compared to

the skyline. In particular, we evaluate our model on the

YouTube-8M dataset and show that the computationally less

expensive student network can reduce the computation time

by 30% while giving an approximately similar performance

as the teacher network.

As future work, we would like to evaluate our model on

other video processing tasks such as summarization, ques-

tion answering and captioning. We would also like to train

a student with an ensemble of teachers (preferably from dif-

ferent families). Lastly, we would like to train a reinforce-

ment learning agent to first select the most favorable k (or

even fewer) frames in the video and use these as opposed to

simply using equally spaced k frames.
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