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Abstract

We present an entirely new geometric and probabilis-

tic approach to synchronization of correspondences across

multiple sets of objects or images. In particular, we present

two algorithms: (1) Birkhoff-Riemannian L-BFGS for op-

timizing the relaxed version of the combinatorially in-

tractable cycle consistency loss in a principled manner, (2)

Birkhoff-Riemannian Langevin Monte Carlo for generating

samples on the Birkhoff Polytope and estimating the con-

fidence of the found solutions. To this end, we first intro-

duce the very recently developed Riemannian geometry of

the Birkhoff Polytope. Next, we introduce a new probabilis-

tic synchronization model in the form of a Markov Random

Field (MRF). Finally, based on the first order retraction op-

erators, we formulate our problem as simulating a stochas-

tic differential equation and devise new integrators. We

show on both synthetic and real datasets that we achieve

high quality multi-graph matching results with faster con-

vergence and reliable confidence/uncertainty estimates.

1. Introduction

Correspondences fuel a large variety of computer vi-

sion applications such as structure-from-motion (SfM) [62],

SLAM [53], 3D reconstruction [20, 8, 6], camera re-

localization [60], image retrieval [44] and 3D scan stitch-

ing [38, 22]. In a typical scenario, given two scenes, an

initial set of 2D/3D keypoints is first identified. Then the

neighborhood of each keypoint is summarized with a lo-

cal descriptor [47, 23] and keypoints in the given scenes

are matched by associating the mutually closest descrip-

tors. In a majority of practical applications, multiple images

or 3D shapes are under consideration and ascertaining such

two-view or pairwise correspondences is simply not suffi-

cient. This necessitates a further refinement ensuring global

consistency. Unfortunately, at this stage even the well de-

veloped pipelines acquiesce either heuristic/greedy refine-

ment [21] or incorporate costly geometric cues related to

the linking of individual correspondence estimates into a
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Figure 1. Our algorithm robustly solves the multiway image

matching problem (a, b) and provides confidence maps (c) that

can be of great help in further improving the estimates (d). The

bar on the right is used to assign colors to confidences. For the

rest, incorrect matches are marked in red and correct ones in blue.

globally coherent whole [30, 62, 73].

In this paper, by using the fact that correspondences

are cycle consistent 1, we propose two novel algorithms

for refining the assignments across multiple images/scans

(nodes) in a multi-way graph and for estimating assignment

confidences, respectively. We model the correspondences

between image pairs as relative, total permutation matri-

ces and seek to find absolute permutations that re-arrange

the detected keypoints to a single canonical, global order.

This problem is known as map or permutation synchro-

nization [56, 70]. Even though in many practical scenar-

ios matches are only partially available, when shapes are

complete and the density of matches increases, total permu-

tations can suffice [36].

Similar to many well received works [84, 61], we re-

lax the sought permutations to the set of doubly-stochastic

(DS) matrices. We then consider the geometric structure of

DS, the Birkhoff Polytope [9]. We are - to the best of our

knowledge, for the first time introducing and applying the

recently developed Riemannian geometry of the Birkhoff

Polytope [26] to tackle challenging problems of computer

vision. Note that lack of this geometric understanding

caused plenty of obstacles for scholars dealing with our

problem [61, 77]. By the virtue of a first order retraction, we

1Composition of correspondences for any circular path arrives back at

the start node.
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can use the recent Riemannian limited-memory BFGS (LR-

BFGS) algorithm [82] to perform a maximum-a-posteriori

(MAP) estimation of the parameters of the consistency loss.

We coin our variation as Birkhoff-LRBFGS.

At the next stage, we take on the challenge of confi-

dence/uncertainty estimation for the problem at hand by

drawing samples on the Birkhoff Polytope and estimating

the empirical posterior distribution. To achieve this, we first

formulate a new geodesic stochastic differential equation

(SDE). Our SDE is based upon the Riemannian Langevin

Monte Carlo (RLMC) [31, 78, 58] that is efficient and ef-

fective in sampling from Riemannian manifolds with true

exponential maps. Note that similar stochastic gradient

geodesic MCMC (SG-MCMC) [46, 11] tools have already

been used in the context of synchronization of spatial rigid

transformations whose parameters admit an analytically de-

fined geodesic flow [7]. Unfortunately, for our manifold the

retraction map is only up to first order and hence we can-

not use off-the-shelf schemes. Alleviating this nuisance, we

further contribute a novel numerical integrator to solve our

SDE by replacing the intractable exponential map of DS

matrices by the approximate retraction map. This leads to

another new algorithm: Birkhoff-RLMC.

In a nutshell, our contributions are:

1. We function as an ambassador and introduce the Rie-

mannian geometry of the Birkhoff Polytope [26] to

solve problems in computer vision.

2. We propose a new probabilistic model for the permu-

tation synchronization problem.

3. We minimize the cycle consistency loss via a

Riemannian-LBFGS algorithm and outperfom the

state-of-the-art both in recall and in runtime.

4. Based upon the Langevin mechanics, we introduce a

new SDE and a numerical integrator to draw samples

on the high dimensional and complex manifolds with

approximate retractions, such as the Birkhoff Poly-

tope. This lets us estimate the confidence maps, which

can aid in improving the solutions and spotting consis-

tency violations or outliers.

Note that the tools developed herewith can easily ex-

tend beyond our application and would hopefully facilitate

promising research directions regarding the combinatorial

optimization problems in computer vision.

2. Related Work

Permutation synchronization is an emerging domain of

study due to its wide applicability, especially for the prob-

lems in computer vision. We now review the developments

in this field, as chronologically as possible. Note that multi-

way graph matching problem formulations involving spatial

geometry are well studied [18, 50, 43, 29, 79, 19], as well

as transformation synchronization [76, 13, 72, 75, 3, 4, 33].

For brevity, we omit these literature and focus on works that

explicitly operate on correspondence matrices.

The first applications of synchronization, a term coined

by Singer [67, 66], to correspondences only date back to

early 2010s [54]. Pachauri et al. [56] gave a formal def-

inition and devised a spectral technique. The same au-

thors quickly extended their work to Permutation Diffu-

sion Maps [55] finding correspondence between images.

Unfortunately, this first method was quadratic in the num-

ber of images and hence was not computationally friendly.

In a sequel of works called MatchLift, Huang, Chen and

Guibas [36, 15] were the firsts to cast the problem of es-

timating cycle-consistent maps as finding the closest pos-

itive semidefinite matrix to an input matrix. They also

addressed the case of partial permutations. Due to the

semidefinite programming (SDP) involved, this perspec-

tive suffered from high computational cost in real applica-

tions. Similar to Pachauri [56], for N images and M edges,

this method required computing an eigendecomposition of

an NM × NM matrix. Zhou et al. [85] then introduced

MatchALS, a new low-rank formulation with nuclear-norm

relaxation, globally solving the joint matching of a set of

images without the need of SDP. Yu et al. [81] formulated

a synchronization energy similar to our method and pro-

posed proximal Gauss-Seidel methods for solving a relaxed

problem. However, unlike us, this paper did not use the ge-

ometry of the constraints or variables and thereby resorted

to complicated optimization procedures involving Frank-

Wolfe subproblems for global constraint satisfaction. Ar-

rigoni et al. [2] and Maset et al. [2] extended Pachauri [56]

to operate on partial permutations using spectral decompo-

sition. To do so, they considered the symmetric inverse

semigroup of the partial matches that are typically hard to

handle. Their closed form methods did not need initializa-

tion steps to synchronize, but also did not establish an ex-

plicit cycle consistency. Tang et al. [71] opted to use or-

dering heuristics improving upon Pachauri [56]. Cosmo et

al. [19] brought an interesting solution to the problem of es-

timating consistent correspondences between multiple 3D

shapes, without requiring initial pairwise solutions as in-

put. Schiavinato and Torsello [61] tried to overcome the

lack of group structure of the Birkhoff polytope by trans-

forming any graph-matching problem into a multi-graph

matching one. Bernard et al. [5] used an NMF-based ap-

proach to generate a cycle-consistent synchronization. Park

and Yoon [57] used multi-layer random walks framework to

address the global correspondence search problem of multi-

attributed graphs. Starting from a multi-layer random-walks

initialization, the authors proposed a robust solver by itera-

tive reweighting. Hu et al. [35] revisited the MatchLift and

developed a scalable, distributed solution with the help of

ADMMs, called DMatch. Their idea of splitting the input

into sub-collections can still lead to global consistency un-

der mild conditions while improving the efficiency. Finally,

Wang et al. [77] made use of the domain knowledge and

added the geometric consistency of image coordinates as a
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low-rank term to increase the recall.

The aforementioned works have neither considered the

Riemennian structure of the common Birkhoff convex re-

laxation nor have they provided a probabilistic framework,

which can pave the way to uncertainty estimation while

simultaneously solving the optimization problem. This is

what we propose in this work.

3. Preliminaries and Technical Background

Definition 1 (Permutation Matrix). A permutation matrix

is defined as a sparse, square binary matrix, where each

column and each row contains only a single true (1) value:

Pn := {P ∈ {0, 1}n×n : P1n = 1n , 1
⊤
nP = 1

⊤
n }. (1)

where 1n denotes a n-dimensional ones vector. Every P ∈
Pn is a total permutation matrix and Pij = 1 implies that

element i is mapped to element j. Permutation matrices

are the only strictly non-negative elements of the orthogonal

group Pn ∈ On = {O : O⊤
O = I}, a special case of the

Stiefel manifold of m—frames in Rn when m = n.

Definition 2 (Center of Mass). The center of mass for all

the permutations on n objects is defined in R
n×n as [59]:

Cn =
1

n!

∑

Pi∈Pn

Pi =
1

n!
(n− 1)!1n1

⊤
n =

1

n
1n1

⊤
n .

(2)

Notice that Cn /∈ Pn as shown in Fig. 2.

Definition 3 (Relative Permutation). We define a permuta-

tion matrix to be relative if it is the ratio (or difference) of

two group elements (i→ j): Pij = PiP
⊤
j .

Definition 4 (Permutation Synchronization Problem).

Given a redundant set of measures of ratios {Pij} :
(i, j) ∈ E ⊂ {1, . . . , N} × {1, . . . , N}, where E denotes

the set of the edges of a directed graph of N nodes, the

permutation synchronization [56] can be formulated as the

problem of recovering {Pi} for i = 1, . . . , N such that the

group consistency constraint is satisfied: Pij = PiP
−1
j .

If the input data is noise-corrupted, this consistency will

not hold and to recover the absolute permutations {Pi},
some form of a consistency error is minimized. Typically,

any form of minimization on the discrete space of permu-

tations is intractable and these matrices are relaxed by their

doubly-stochastic counterparts [10, 84, 61] (see Fig. 2).

Definition 5 (Doubly Stochastic (DS) Matrix). A DS matrix

is a non-negative, square matrix whose rows and columns

sum to 1. The set of DS matrices is defined as:

DPn = { X ∈ R
n×n
+ :

n
∑

i=1

xij = 1 ∧
n
∑

j=1

xij = 1 }.

(3)

Birkhoff Polytope 𝓓𝓟𝒏
Tangent Space 𝓣𝓧𝓓𝓟𝒏
Orthogonal Hypersphere 𝑶 : 𝑆𝑛−1

Common center of mass

Permutation Matrices 𝓟 = 𝓓𝓟𝒏 ∩𝑶
Probability Simplex Δ𝑛

Figure 2. Simplified (matrices are vectorized) illustration of ge-

ometries we consider: (i) ∆n is convex, (ii) DPn is strictly con-

tained in ∆n. In low dimensions, such configuration cannot exist

as there is no convex shape that touches ∆n only on the corners.

Theorem 1 (Birkhoff-von Neumann Theorem). The con-

vex hull of the set of all permutation matrices is the set

of doubly-stochastic matrices and there exists a potentially

non-unique θ such that any DS matrix can be expressed as

a linear combination of k permutation matrices [9, 39]:

X = θ1P1 + · · ·+ θkPk , θi > 0 ∧ θ⊤
1k = 1. (4)

While finding the minimum k is shown to be NP-hard [27],

by Marcus-Ree theorem, we know that there exists one con-

structible decomposition where k < (n− 1)2 + 1.

Definition 6 (Birkhoff Polytope). The multinomial mani-

fold of DS matrices is incident to the convex object called

the Birkhoff Polytope [9], an (n − 1)2 dimensional con-

vex submanifold of the ambient R
n×n with n! vertices:

Bn ≡ DPn. We use DPn to refer to the Birkhoff Polytope.

It is interesting to see that this convex polytope is

co-centered with Pn at Cn, Cn ∈ DPn and over-

parameterizes the convex hull of the permutation vectors,

the permutahedron [32]. Pn can now be considered as an

orthogonal subset of DPn: Pn = {X ∈ DPn : XX
⊤ =

I}, i.e. the discrete set of permutation matrices is the inter-

section of the convex set of DS matrices and the On.

3.1. Riemannian Geometry of the Birkhoff Polytope

Recently, Douik et al. [26] endowed DPn with the

Fisher information metric, resulting in the Riemannian

manifold of DPn. To the best of our knowledge, we are the

first to exploit this manifold in the domain of computer vi-

sion, and hence will now recall the main results of Douik et

al. [26] and summarize the main constructs of Riemannian

optimization on DPn. The proofs can be found in [26].

Definition 7 (Tangent Space and Bundle). The tangent

bundle is referred to as the union of all tangent spaces

T DPn = ∪X∈DPn
TXDPn one of which is defined as:

TXDPn := {Z ∈ R
n×n : Z1n = 0n , Z

⊤
1n = 0n}. (5)

Theorem 2. The projection operator ΠX(Y),Y ∈ DPn

onto the tangent space of X ∈ DPn, TXDPn is written as:

ΠX(Y) = Y − (α1
⊤ + 1β⊤)⊙X, with (6)
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α = (I−XX
⊤)+(Y −XY

⊤)1, β = Y
⊤
1−X

⊤α,

+ depicts the left pseudo-inverse and⊙ the Hadamard prod-

uct. Note that there exists a numerically more stable way to

compute the same concise formulation of ΠX(Y) [26].

Theorem 3. For a vector ξX ∈ TXDPn lying on the tan-

gent space of X ∈ DPn, the first order retraction map RX

is given as follows:

RX(ξX) = Π(X⊙ exp(ξX ⊘X)), (7)

where the operator Π denotes the projection onto DPn, ef-

ficiently computed using the Sinkhorn algorithm [68] and

⊘ is the Hadamard division.

Plis et al. [59] showed that on the n-dimensional

Birkhoff Polytope all permutations are equidistant from the

center of mass Cn, and thus the extreme points ofDPn, that

are the permutation matrices, are located on an (n − 1)2-

dimensional hypersphere S(n−1)2 of radius
√
n− 1, cen-

tered at Cn. This hypersphere is incident to the Birkhoff

Polytope on the vertices.

Proposition 1. The gap as a ratio between DPn and both

S(n−1)2 and On grows to infinity as n grows.

The proof is given in the supplementary document. While

there exists polynomial time projections of the n!-element

permutation space onto the continuous hypersphere repre-

sentation and back [59], Prop. 1 prevents us from using hy-

persphere relaxations, as done in preceding works [59, 83].

4. Proposed Probabilistic Model

We assume that we are provided a set of pairwise, total

permutations Pij ∈ Pn for (i, j) ∈ E and we are inter-

ested in finding the underlying absolute permutations Xi

for i ∈ {1, . . . , N} with respect to a common origin (e.g.

X1 = I, the identity matrix). We seek absolute permuta-

tions that would respect the consistency of the underlying

graph structure. For conciseness, we also restrict our set-

ting to total permutations, and leave the extension to partial

permutations, which live on the monoid, as a future study.

Because operating directly on Pn would require us to solve

a combinatorial optimization problem and because of the

lack of a manifold structure for Pn, we follow the popular

approach [45, 80, 48] and relax the domain of the absolute

permutations by assuming that each Xi ∈ DPn.

We formulate the permutation synchronization problem

in a probabilistic context where we treat the pairwise rela-

tive permutations as observed random variables and the ab-

solute ones as latent random variables. In particular, our

probabilistic construction enables us to cast the synchro-

nization problem as inferential in the model. With a slight

abuse of notation, in the rest of the paper, we will denote

P ≡ {Pij}(i,j)∈E and X ≡ {Xi}Ni=1, all the observations

and all the latent variables, respectively.

A typical way to build a probabilistic model is to first

choose the prior distributions on DPn for each Xi and

then choose a conditional distribution on Pn for each Xij

given the latent variables. Unfortunately, standard paramet-

ric distributions neither exist on DPn nor on Pn. The vari-

ational stick breaking [45] yields an implicitly defined PDF

on DPn and is not able to provide direct control on the re-

sulting distribution. Defining Kantorovich distance-based

distributions over the permutation matrices is possible [17],

yet these models incur high computational costs since they

would require solving optimal transport problems during in-

ference. For these reasons, instead of constructing a hierar-

chical probabilistic model, we will directly model the full

joint distribution of P and X.

We propose a probabilistic model where we assume the

full joint distribution admits the following factorized form:

p(P,X) =
1

Z

∏

(i,j)∈E
ψ(Pij ,Xi,Xj), (8)

where Z denotes the normalization constant with

Z :=
∑

P∈P
|E|
n

∫

DPN
n

∏

(i,j)∈E

ψ(Pij ,Xi,Xj) dX, (9)

and ψ is called the ‘clique potential’ that is defined as:

ψ(Pij ,Xi,Xj) , exp(−β‖Pij −XiX
⊤
j ‖2F). (10)

Here ‖ · ‖F denotes the Frobenius norm, β ∈ R+ is the

dispersion parameter that controls the spread of the distri-

bution. Note that the model is a Markov random field [40].

Let us take a closer look at the proposed model. If we

define Xij := XiX
⊤
j ∈ DPn, then by Thm. 1, we have the

following decomposition for each Xij :

Xij =
∑Bij

b=1
θij,bMij,b,

∑Bij

b=1
θij,b = 1, (11)

where Bij is a positive integer, each θij,b ≥ 0, and Mij,b ∈
Pn. The next result states that we have an equivalent hier-

archical interpretation for the proposed model:

Proposition 2. The probabilistic model defined in Eq. 8 im-

plies the following hierarchical decomposition:

p(X) =
1

C
exp

(

−β
∑

(i,j)∈E

‖Xij‖2
)

∏

(i,j)∈E

Zij (12)

p(Pij |Xi,Xj) =
1

Zij

exp
(

2β tr(P⊤
ijXij)

)

(13)

where C and Zij are normalization constants. Besides, for

all i, j, Zij ≥
∏Bij

b=1 f(β, θij,b), where f is a positive func-

tion that is increasing in both β and θij,b.
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The proof is given in the supplementary and is based on

the simple decomposition p(P,X) = p(X)p(P|X). This

hierarchical point of view lets us observe some interest-

ing properties: (1) the likelihood p(Pij |Xi,Xj) mainly de-

pends on the term tr(P⊤
ijXij) that measures the data fit-

ness. We aptly call this term the ‘soft Hamming distance’

between Pij and Xij since it would correspond to the ac-

tual Hamming distance between two permutations if Xi,Xj

were permutation matrices [41]. (2) On the other hand, the

prior distribution contains two competing terms: (i) the term

Zij favors large θij,b, which would push Xij towards the

corners of the Birkhoff polytope, (ii) the term ‖Xij‖2F acts

as a regularizer on the latent variables and attracts them to-

wards the center of the Birkhoff polytope Cn (cf. Dfn. 2),

which will be numerically beneficial for the inference algo-

rithms that will be developed in the following section.

5. Inference Algorithms

We can now formulate the permutation synchronization

problem as a probabilistic inference problem, where we will

be interested in the following quantities:

1. Maximum a-posteriori (MAP):

X
⋆ = argmax

X∈DPN
n

log p(X|P) (14)

where log p(X|P) =+ −β∑(i,j)∈E ‖Pij − XiX
⊤
j ‖2F,

and =+ denotes equality up to an additive constant.

2. The full posterior distribution: p(X|P) ∝ p(P,X).

The MAP estimate is often easier to obtain and useful in

practice. On the other hand, characterizing the full poste-

rior can provide important additional information, such as

uncertainty; however, not surprisingly it is a much harder

task. In addition to the usual difficulties associated with

these tasks, in our context we are facing extra challenges

due to the non-standard manifold of our latent variables.

5.1. Maximum APosteriori Estimation

The MAP estimation problem can be cast as a minimiza-

tion problem on DPn, given as follows:

X
⋆ = argmin

X∈DPN
n

{

U(X) :=
∑

(i,j)∈E
‖Pij −XiX

⊤
j ‖2F

}

where U is called the potential energy function. We observe

that the choice of the dispersion parameter has no effect on

the MAP estimate. Although this optimization problem re-

sembles conventional norm minimization, the fact that X

lives in the cartesian product of Birkhoff polytopes renders

the problem very complicated.

Thanks to the retraction operator over the Birkhoff poly-

tope (cf. Thm. 3), we are able to use several Riemannian op-

timization algorithms [69], without resorting to projection-

based updates. In this study, we use the recently proposed

Riemannian limited-memory BFGS (LR-BFGS) [37], a

powerful optimization technique that attains faster conver-

gence rates by incorporating local geometric information in

an efficient manner. This additional piece of information is

obtained through an approximation of the inverse Hessian,

which is computed on the most recent values of the past

iterates with linear time- and space-complexity in the di-

mension of the problem. We give more detail on LR-BFGS

in our supp. material. The detailed description of the algo-

rithm can be found in [37, 82].

Finally, we round the resulting approximate solutions

into a feasible one via Hungarian algorithm [52], obtaining

binary permutation matrices.

5.2. Posterior Sampling via Riemannian Langevin
Monte Carlo with Retractions

In this section we will develop a Markov Chain Monte

Carlo (MCMC) algorithm for generating samples from the

posterior distribution p(X|P), by borrowing ideas from [64,

46, 7]. Once such samples are generated, we will be able

to quantify the uncertainty in our estimation by using the

generated samples.

The dimension and complexity of the Birkhoff manifold

makes it very challenging to generate samples on DPn or

its product spaces and to the best of our knowledge there is

no Riemannian MCMC algorithm that is capable of achiev-

ing this. There are existing Riemannian MCMC algorithms

[11, 46], which are able to draw samples on embedded man-

ifolds; however, they require the exact exponential map to

be analytically available, which in our case, can only be ap-

proximated by the retraction map at best.

To this end, we develop an algorithmically simpler yet

effective algorithm. Let the posterior density of interest

be πH(X) := p(X|P) ∝ exp(−βU(X)) with respect

to the Hausdorff measure. We then define an embedding

ξ : R
N(n−1)2 7→ DPN

n such that ξ(X̃) = X for X̃ ∈
R

N(n−1)2 . By the area formula (cf. Thm. 1 in [25]), we

have the following expression for the embedded posterior

density πλ (with respect to the Lebesgue measure):

πH(x) = πλ(X̃)/

√

|G(X̃)|, (15)

where G denotes the Riemann metric tensor.

We then consider the following stochastic differential

equation (SDE), which is a slight modification of the SDE

that is used to develop the Riemannian Langevin Monte

Carlo algorithm [31, 78, 58]:

dX̃t = (−G−1∇
X̃
Uλ(X̃t) + Γt)dt+

√

2/βG−1dBt,

where Bt denotes the standard Brownian motion and Γt

is called the correction term that is defined as follows:

[Γt(X̃)]i =
∑N(n−1)2

j=1 ∂[G−1
t (X̃)]ij/∂X̃j .

By Thm. 1 of [49], it is easy to show that the solution

process (X̃t)t≥0 leaves the embedded posterior distribution
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Figure 3. Sample images and manually annotated correspondences

from the challenging Willow dataset [16]. Images are plotted in

pairs (there are multiple) and in gray for better viewing.

πλ invariant. Informally, this result means that if we could

exactly simulate the continuous-time process (X̃t)t≥0, the

distribution of the sample paths would converge to the em-

bedded posterior distribution πλ, and therefore the distribu-

tion of ξ(X̃t) would converge to πH(X). However, unfor-

tunately it is not possible to exactly simulate these paths and

therefore we need to consult approximate algorithms.

A possible way to numerically simulate the SDE would

be to use standard discretization tools, such as the Euler-

Maruyama integrator [14]. However, this would require

knowing the analytical expression of ξ and constructing

Gt and Γt at each iteration. On the other hand, recent

results have shown that we can simulate SDEs directly

on their original manifolds by using geodesic integrators

[11, 46, 34], which bypasses these issues altogether. Yet,

these approaches require the exact exponential map of the

manifold to be analytically available, restricting their appli-

cability in our context.

Inspired by the recent manifold optimization algorithms

[74], we propose to replace the exact, intractable exponen-

tial map arising in the geodesic integrator with the tractable

retraction operator given in Thm. 3. We develop our recur-

sive scheme, we coin as retraction Euler integrator:

V
(k+1)
i = Π

X
(k)
i

(h∇Xi
U(X

(k)
i ) +

√

2h/βZ
(k+1)
i ) (16)

X
(k+1)
i = R

X
(k)
i

(V
(k+1)
i ), ∀i ∈ {1, . . . , N} (17)

where h > 0 denotes the step-size, k denotes the iterations,

Z
(k)
i denotes standard Gaussian random variables in R

n×n,

X
(0)
i denotes the initial absolute permutations. The deriva-

tion of this scheme is similar to [46] and we provide more

detailed information in the supplementary material. To the

best of our knowledge, the convergence properties of the

geodesic integrator that is approximated with a retraction

operator have not yet been analyzed. We leave this analysis

as a futurework, which is beyond the scope of this study.

We note that the term ‖Xij‖2F plays an important role

in the overall algorithm since it prevents the latent variables

Xi to go the extreme points of the Birkhoff polytope, where

the retraction operator becomes inaccurate. We also note

that, when β → ∞, the distribution πH concentrates on

the global optimum X
⋆ and the proposed retraction Euler

integrator becomes the Riemannian gradient descent with a

retraction operator.

6. Experiments and Evaluations

6.1. Real Data

2D Multi-image Matching We run our method to per-

form multiway graph matching on two datasets, CMU [12]

and Willow Object Class [16]. CMU is composed of

House and Hotel objects viewed under constant illumina-

tion and smooth motion. Initial pairwise correspondences

as well as ground truth (GT) absolute mappings are pro-

vided within the dataset. Object images in Willow dataset

include pose, lighting, instance and environment variation

as shown in Fig. 3, rendering naive template matching in-

feasible. For our evaluations, we follow the same design

as Wang et al. [77]. We first extract local features from

a set of 227 × 227 patches centered around the annotated

landmarks, using the prosperous Alexnet [42] pretrained on

ImageNet [24]. Our descriptors correspond to the feature

map responses of Conv4 and Conv5 layers anchored on the

hand annotated keypoints. These features are then matched

by the Hungarian algorithm [52] to obtain initial pairwise

permutation matrices P0.

We initialize our algorithm by the closed form

MatchEIG [51] and evaluate it against the state of the art

methods of Spectral [56], MatchALS [85], MatchLift [36],

MatchEIG [51], and Wang et al. [77]. The size of the uni-

verse is set to the number of features per image. We assume

that this number is fixed and partial matches are not present.

Handling partialities while using the Birkhoff structure is

left as a future work. Note that [77] uses a similar cost func-

tion to ours in order to initialize an alternating procedure

that in addition exploits the geometry of image coordinates.

Authors also use this term as an extra bit of information

during their initialization. The standard evaluation metric,

recall, is defined over the pairwise permutations as:

R({P̂i}|Pgnd) =
1

n|E|
∑

(i,j)∈E

P
gnd
ij ⊙ (P̂iP̂

⊤
j ) (18)

where P
gnd
ij are the GT relative transformations and P̂i is an

estimated permutation. R = 0 in the case of no correctly

found correspondences and R = 1 for a perfect solution.

Tab. 1 shows the results of different algorithms as well as

ours. Note that our Birkhoff-LRBFGS method that oper-

ates solely on pairwise permutations outperforms all meth-

ods, even the ones which make use of geometry during ini-

tialization. Moreover, when our method is used to initialize

Wang et al. [77] and perform geometric optimization, we

attain the top results. These findings validate that walking

on the Birkhoff Polytope, even approximately, and using

Riemannian line-search algorithms constitute a promising

direction for optimizing the problem at hand.

Uncertainty Estimation in Real Data We now run our

confidence estimator on the same Willow Object Class [16].
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Table 1. Our results on the WILLOW Object Class graph matching dataset. Wang− refers to running Wang [77] without the geometric con-

sistency term. The vanilla version of our method, Ours, already lacks this term. Ours-Geom then refers to initializing Wang’s verification

method with our algorithm. For all the methods, we use the original implementation of the authors.

Dataset Initial Spectral [56] MatchLift [36] MatchALS [85] MatchEig [51] Wang− [77] Ours Wang [77] Ours-Geom

Car 0.48 0.55 0.65 0.69 0.66 0.72 0.71 1.00 1.00

Duck 0.43 0.59 0.56 0.59 0.56 0.63 0.67 0.932 0.96

Face 0.86 0.92 0.94 0.93 0.93 0.95 0.95 1.00 1.00

Motorbike 0.30 0.25 0.27 0.34 0.28 0.40 0.37 1.00 1.00

Winebottle 0.52 0.64 0.72 0.70 0.71 0.73 0.73 1.00 1.00

CMU-House 0.68 0.90 0.94 0.92 0.94 0.98 0.98 1.00 1.00

CMU-Hotel 0.64 0.81 0.87 0.86 0.92 0.94 0.96 1.00 1.00

Average 0.52 0.59 0.65 0.66 0.71 0.76 0.77 0.99 0.99

To do that, we first find the optimal point where synchro-

nization is at its best. Then, we set h ← 0.0001, β ←
[0.075, 0.1] and automatically start sampling the posterior

around this mode for 1000 iterations. Note that β is a criti-

cal parameter which can also be dynamically controlled [7].

Larger values of β cannot provide enough variation for a

good diversity of solutions. Smaller values cause greater

random perturbations leading to samples far from the opti-

mum. This can cause divergence or samples not explaining

the local mode. Nevertheless, all our tests worked well with

values in the given range.

The generated samples are useful in many applications,

e.g. fitting distributions or providing additional solution

hints. We address the case of multiple hypotheses genera-

tion for the permutation synchronization problem and show

that generating an additional per-edge candidate with high

certainty helps to improve the recall. Tab. 2 shows the top-

K scores we achieve by simply incorporating K likely sam-

ples. Note that, when 2 matches are drawn at random and

contribute as potentially correct matches, the recall is in-

creased only by 2%, whereas including our samples instead

boosts the multi-way matching by 6%.

Table 2. Using top-K errors to rank by uncertainty. Based on the

confidence information we could retain multiple hypotheses. This

is not possible by the other approaches such as Wang et al. [51,

77]. Rand-K refers to using K − 1 additional random hypotheses

to complement the found solution. Ours-K ranks assignments by

our probabilistic certainty and retains top-K candidates per point.

Dataset Wang Ours Rand-2 Ours-2 Rand-3 Ours-3

Car 0.72 0.71 0.73 0.76 0.76 0.81

Duck 0.63 0.67 0.67 0.69 0.67 0.72

Face 0.95 0.95 0.96 0.97 0.96 0.98

Motorbike 0.40 0.37 0.45 0.49 0.52 0.60

Winebottle 0.73 0.74 0.77 0.82 0.79 0.85

Avg. 0.69 0.69 0.71 0.75 0.74 0.79

We further present illustrative results for our confidence

prediction in Fig. 4. There, unsatisfactory solutions arising

in certain cases are improved by analyzing the uncertainty

2 [77] reports a value of 0.88, but for their method, we attained 0.93

and therefore report this value.

map. The column (e) of the figure depicts the top-2 as-

signments retained in the confidence map and (e) plots the

assignments that overlap with the true solution. Note that,

we might not have access to such an oracle in real applica-

tions and only show this to illustrate potential use cases of

the estimated confidence map.

6.2. Evaluations on Synthetic Data

We synthetically generate 28 different problems with

varying sizes: M ∈ [10, 100] nodes and n ∈ [16, 100]
points in each node. For the scenario of image matching,

this would correspond toM cameras andN features in each

image. We then introduce 15%− 35% random swaps to the

GT absolute permutations and compute the observed rela-

tive ones. Details of this dataset are given in suppl. material.

Among all 28 sets of synthetic data, we attain an overall re-

call of 91% whereas MatchEIG [51] remains about 83%.

Runtime Analysis Next, we assess the computational

cost of our algorithm against the state of the art methods,

on the dataset explained above. All of our experiments are

run on a MacBook computer with an Intel i7 2.8GhZ CPU.

Our implementation uses a modified Ceres solver [1]. All

the other algorithms use highly vectorized MATLAB 2017b

code making our comparisons reasonably fair. Fig. 5 tab-

ulates runtimes for different methods excluding initializa-

tion. MatchLift easily took more than 20min. for moderate

problems and hence we choose to exclude it from this eval-

uation. It is noticeable that thanks to the ability of using

more advanced solvers such as LBFGS, our method con-

verges much faster than Wang et al. and runs on par with

the fastest yet least accurate spectral synchronization [56].

The worst case theoretical computational complexity of our

algorithm is OB-LRBFGS := O(K|E|KS(n
2 + (2n)3) where

K is the number of LBFGS iterations and KS the number

of Sinkhorn iterations. While KS can be a bottleneck, in

practice our matrices are already restricted to the Birkhoff

manifold and Sinkhorn early-terminates, letting KS remain

small. The complexity is: (1) linearly-dependent upon the

number of edges, which in the worst case relates quadrati-

cally to the number of images |E| = N(N−1), (2) cubically

dependent on n. This is due to the fact that projection onto
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Figure 4. Results from our confidence estimation. Given potentially erroneous solutions (b) to the problems initialized as in (a), our latent

samples discover the uncertain assignments as shown in the middle three columns (c-e). When multiple top-2 solutions are accepted as

potential positives, our method can suggest high quality hypotheses (f). The edges in the last column (f) is colored by their confidence

value. Note that even though, for the sake of space we show pairs of images, the datasets contain multiple sets of images.

the tangent space solves a system of 2n× 2n equations.

7. Conclusion

In this work we have proposed two new frameworks

for relaxed permutation synchronization on the manifold of

doubly stochastic matrices. Our novel model and formula-

tion paved the way to using sophisticated optimizers such as

Riemannian limited-memory BFGS. We further integrated a

manifold-MCMC scheme enabling posterior sampling and

thereby confidence estimation. We have shown that our

confidence maps are informative about cycle inconsisten-

cies and can lead to new solution hypotheses. We used these

hypotheses in a top-K evaluation and illustrated its benefits.

In the future, we plan to (i) address partial permutations, the

inner region of the Birkhoff Polytope (ii) investigate more

sophisticated MCMC schemes such as [28, 34, 63, 46, 65]
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Figure 5. Running times of different methods with increasing

problem size: N ∈ [10, 100] and n ∈ [16, 100].

(iii) seek better use cases for our confidence estimates such

as outlier removal.
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[17] Stéphan Clémençon and Jérémie Jakubowicz. Kan-

torovich distances between rankings with applications

to rank aggregation. In Joint European Conference

on Machine Learning and Knowledge Discovery in

Databases. Springer, 2010.

[18] Luca Cosmo, Andrea Albarelli, Filippo Bergamasco,

Andrea Torsello, Emanuele Rodolà, and Daniel Cre-
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