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Abstract

Neuroscience theory posits that the brain’s visual sys-

tem coarsely identifies broad object categories via neural

activation patterns, with similar objects producing similar

neural responses. Artificial neural networks also have inter-

nal activation behavior in response to stimuli. We hypothe-

size that networks exhibiting brain-like activation behavior

will demonstrate brain-like characteristics, e.g., stronger

generalization capabilities. In this paper we introduce a

human-model similarity (HMS) metric, which quantifies the

similarity of human fMRI and network activation behavior.

To calculate HMS, representational dissimilarity matrices

(RDMs) are created as abstractions of activation behav-

ior, measured by the correlations of activations to stimulus

pairs. HMS is then the correlation between the fMRI RDM

and the neural network RDM across all stimulus pairs. We

test the metric on unsupervised predictive coding networks,

which specifically model visual perception, and assess the

metric for statistical significance over a large range of hy-

perparameters. Our experiments show that networks with

increased human-model similarity are correlated with bet-

ter performance on two computer vision tasks: next frame

prediction and object matching accuracy. Further, HMS

identifies networks with high performance on both tasks. An

unexpected secondary finding is that the metric can be em-

ployed during training as an early-stopping mechanism.

Figure 1. A primary goal of biologically-inspired deep learning

work is achieving generalization capabilities that more closely re-

semble those of biological brains. Along these lines, we propose

that model search frameworks for neural network training can be

guided by a human-model similarity metric. The metric correlates

internal activation behavior of the human brain and neural net-

works over shared stimuli. In this work, we examine the specific

case of fMRI recordings [23] and predictive coding networks [29].

Internal behavior is measured by the dissimilarity in activations

between two stimuli. Human-model similarity is the comparison

of internal behavior of a brain and a model on a stimulus set, where

higher similarity implies better model generalization.
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1. Introduction

Researchers originally designed artificial neural net-

works based on neurobiological structure and function in

the hope that such networks would approximate the perfor-

mance of the biology that inspired them [44]. With the ad-

vent of modern deep learning techniques, neural networks

are finally beginning to realize this original objective across

some pattern recognition problems [25]. However, we need

only consider the learning and processing power of the brain

to know that neural network performance is a far stretch

from generalized human capabilities [5, 16, 40, 41]. This

shortcoming has inspired researchers to design new net-

works which better approximate neurobiological structure,

utilizing the architectural elements of machine learning to

build networks that embody modern theories of brain or-

ganization [29, 30, 42, 43, 47, 53]. In this paper we look

beyond structural similarity and consider behavioral simi-

larity between biological brains and trained networks (i.e.,

models), as measured by similarity of activation behavior

across a set of stimuli. We hypothesize that networks with

increased behavioral similarity will exhibit better general-

ization capabilities across different visual recognition tasks.

One neurobiologically-inspired network is the unsuper-

vised predictive coding network [29, 39]. Predictive cod-

ing networks combine the empirical successes of neural

networks with insights from computational neuroscience to

train unsupervised models with increased biological fidelity

(i.e., the correspondence of an algorithm’s representations,

transformations, and learning rules with those of their coun-

terparts in the brain). The networks are designed [29] and

demonstrated [30] to embody the theory that in-the-wild bi-

ological vision systems are continuously predicting the next

input signal [39]. Additionally, these networks are trained

using unsupervised video data, something also done by

biological beings [25], allowing large-scale unsupervised

learning. Finally, the networks have been shown to perform

well on at least two different tasks: next frame prediction

and object matching [29].

Predictive coding networks are architecturally designed

to emulate neural processing. However, the ability of bi-

ological beings to generalize and adapt extends from both

structure and internal behavior. Internally, the visual sys-

tem processes similar objects with similar patterns of cell

activations [7, 14, 33]. This activation behavior is an ob-

servable manifestation of the brain’s ability to generalize

beyond its experience, such as automatically allowing the

classification of unseen instances of object classes (e.g., cor-

rectly identifying a car despite never having seen this spe-

cific car before). We hypothesize that predictive coding net-

works which mimic the brain’s visual behavior will exhibit

increased biological fidelity and thus possess strong gener-

alization ability compared to coding networks that do not

exhibit this behavior. To test this hypothesis we investigate

a new human-model similarity metric (HMS) that evalu-

ates the networks for internal behavioral similarity to fMRI

recordings of the human brain (Fig. 1).

Systems such as predictive coding networks and biologi-

cal brains both exhibit internal behavior through their neural

activations. Therefore, assessing networks for internal be-

havior indicative of biological fidelity requires measuring

the similarity of activations. To do this, we make use of

the recently established technique of representational simi-

larity analysis (RSA) [23, 32]. RSA utilizes a set of stimuli

to quantify behavioral similarity from activations. For any

brain or network, the activation power can be measured in

response to a stimulus. The internal behavior can then be

defined as the dissimilarity in activations over a set of stim-

uli. In the case of visual recognition, we expect like-stimuli

to have like-activations. We utilize a set of stimuli selected

to exhibit a range of both similar and dissimilar objects [24].

One problem with assessing the similarity of activation

behavior of biological beings and neural networks is the ab-

sence of a one-to-one mapping between the neurons of the

brain and the neurons of the networks. With RSA, com-

plex systems are abstracted into representational dissimilar-

ity matrices (RDMs), composed of the internal behavior of

the system, which is the activation dissimilarity over the set

of stimuli. The full process to abstract a system into an

RDM is illustrated in Fig. 2. Two input systems can be di-

rectly mapped when both are abstracted into RDMs with the

same stimuli. Our proposed HMS metric measures human-

model similarity as the correlation of a human fMRI RDM

and a neural network RDM.

We evaluate the HMS metric in a Monte Carlo scenario

across a broad range of hyperparameterized networks, data

domains, and alternative network metrics. This approach

allows us to explore the range of internal behavioral sim-

ilarity that we can expect to find in predictive coding net-

works. Additionally, this method allows us to consider how

a metric for human-model similarity could be used in the

model search process for neural network training. While

RSA has been employed to analyze similarities between

convolutional neural networks (CNNs) and biological be-

haviors [21, 32, 51, 52], a generalized human-model simi-

larity metric as an evaluation of a network’s neurbiological

fidelity and its use in neural network model search has re-

mained largely untested until now. Our goal is to present a

data-driven study of the HMS metric in order to promote it

as a tool for studying generalization in computer vision.

In summary, we make the following contributions: (1)

The introduction and evaluation of a new human-model

similarity metric, dubbed HMS, to measure network gen-

eralizability.1 (2) The implementation of a metric evalu-

ation framework to assess new machine learning perfor-

mance metrics. (3) The discovery of HMS as an indica-

1https://github.com/CVRL/human-model-similarity

5405



tor of a predictive coding network’s performance via ex-

periments on the KITTI [15], VLOG [13], and “Gazoobian

Object” [48] datasets. (4) The identification of HMS as an

early stopping mechanism for training.

2. Related Work

How to best evaluate machine learning algorithms is an

ongoing discussion. Traditional evaluations focus on ex-

ternal performance on a dataset, but there are no guarantees

against overfitting or unpredictable network performance on

real-world data [49]. One alternative evaluation regime is

visual psychophysics, which monitors neural network per-

formance while increasingly perturbing stimuli [26, 40, 41].

This evaluation centers on the observation that a network

which inconsistently recognizes perturbed stimuli cannot be

trustworthy. However, these evaluations are still focused on

creating variability within a dataset, offering no guarantee

that the network is not simply overfit to it. Moving be-

yond datasets, our proposed evaluation metric HMS quanti-

fies consistency in a network’s internal behavior by directly

comparing against the internal behavior of one of the most

generalizable vision systems in the world: the biological

brain [7, 14, 33].

HMS uses human participant fMRI data as ground-truth

internal behavior that leads to good generalization. The

comparison between networks and human fMRI data is in-

spired by Kriegeskorte et al. [23], who described how net-

work or neural activations could be abstracted into an RDM.

An RDM is an abstract representation that can be directly

compared against another RDM, as long as both are created

from a joint set of stimuli. Fig. 2 shows how internal behav-

ior is calculated and abstracted into RDMs, and how RDMs

can be compared. Sec. 3.3 describes the formal RDM cre-

ation process. Kriegeskorte has a long history of utilizing

RDMs to study neural behavior [21, 22, 23, 24, 34, 35].

With respect to the intersection between neuroscience

and machine learning, the neuroimaging technique of fMRI

has been used as ground-truth for designing features [8],

interpreting neural network features [19, 28], and study-

ing network performance [46]. Fong et al. [12] recently

found that raw fMRI data could be used to weight sup-

port vector machines to improve performance, indicating

that coarse-level brain data can potentially help machine

learning networks generalize. The success of that study,

alongside the public release of human fMRI data in RDM

form by Nili et al. [35] further motivated us to use fMRI

data as ground-truth in our network evaluation. The specific

contributions fMRI data can make in expanding our under-

standing of neural networks are still to be explored, but to

our knowledge this is the first instance of fMRI data being

deployed for neural network model search, where the task

is to screen different hyperparameter and architecture con-

figurations for models that perform well on a given task.

There is significant recent interest in optimization meth-

ods, search strategies, and infrastructure for neural network

model search [3, 10, 18, 27, 36]. In this context, our work

represents a new capability for such searches.

Extensive research has been performed comparing the

neural activity of macaques to CNNs [17, 20, 50, 51, 52].

These studies map CNN layers to anatomical visual ar-

eas measured with electrode arrays. Recently, research has

shown that these internal representations are not predictive

of primate behavior at the image level [38, 45], suggest-

ing CNNs are not mimicking internal behavior well enough.

Given these recent findings, we opted to study more biolog-

ically plausible predictive coding networks [29, 39]. These

networks are unsupervised and are relatively unexplored

for many problem domains, but yield state-of-the-art per-

formance for problems such as next frame prediction. We

selected the PredNet architecture because of research es-

tablishing its emergent properties that are consistent with

biological vision [30], meaning it is not grounded only in

theory. Nonetheless, there are many biologically-inspired

neural network architectures [37, 42, 43, 47, 53], and in-

terest in them continues to grow [2]. All such networks

warrant an investigation into internal behavior as well.

3. Methods

In this section we introduce the core methodologies

surrounding the HMS metric. First, we introduce the

biologically-inspired predictive coding network used for the

experiments. We then explain the evaluation framework

that was used to study HMS, and discuss the computer vi-

sion tasks (object matching and next frame prediction) that

network performance was evaluated on. Finally, we detail

the metric itself (Fig. 2), explaining: (1) the abstraction of

both the fMRI recordings and neural networks into individ-

ual RDMs by measuring activations in response to stimuli,

and (2) the correlation of the fMRI and the neural network

RDMs, which results in the HMS score.

3.1. PredNet: A Biologically­Inspired Network

PredNet [29] is a recently introduced, unsupervised, bi-

ologically inspired, predictive coding network. Its archi-

tecture consists of multiple layers (which can vary based

on configuration) each incorporating representation neurons

(convolutional LSTM units), which output layer-specific

predictions at each time step when processing a sequence

of data. This output is then compared against a target to

calculate an error term, which is propagated laterally and

vertically throughout the network. We follow the PredNet

training regime laid out by Lotter et al. [29]. PredNet is

trained without supervision: the network is shown a ran-

domly sampled set of sequential frame sequences and upon

viewing each frame, the network attempts to predict the next
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Figure 2. The proposed human-model similarity metric HMS is calculated by comparing the neural activation behavior from two systems:

predictive coding networks and fMRI recordings of the human brain. Neural activations are obtained by exposing the systems to stimuli.

We abstractly summarize a source based on its internal behavior, generating a similarity score via ψ from activation patterns for each

stimulus pair. We then store this internal behavior to the stimuli in an RDM (R1 and R2 above). Finally, the HMS metric ρ is equal to the

Spearmen’s rank correlation coefficient of the internal behavior of the two sources as measured by the stimulus pairs.

Figure 3. We assess our proposed HMS evaluation metric on ran-

domly hyperparameterized predictive coding networks to study a

Monte Carlo-style statistical sample of the space. We evaluate

each network with three metrics: HMS, an object matching ac-

curacy metric, and a next frame prediction error metric. We then

compare metric performance across the full set of trained net-

works. We find that networks with higher HMS have high per-

formance on other computer vision metrics, and performance is

linked both across and within networks.

frame. The network is optimized to reduce the next frame

prediction error on the training set.

3.2. Metric Evaluation Framework

Because we are focused on improving generalizability,

we assess the value of HMS as a predictor of other, more

standard, performance measures. This involves varying hy-

perparameters within a network type, obtaining a Monte

Carlo-style statistical sample of the search space, and corre-

lating HMS with standard computer vision evaluation met-

rics across networks in the sample (Fig. 3). We analyze

the networks by studying the mean, standard deviation, and

Spearman’s rho (correlation coefficient) of several perfor-

mance metrics across the set of sampled networks. We

ensure significance by reporting Spearman’s rho p values,

which correspond to the likelihood that correlations occur

by chance. We also adhere to Cohen’s standard recom-

mendation for interpreting effect sizes [6], and do not con-

sider small correlations (less than 0.2) when comparing two

different metrics — even if they reached statistical signif-

icance. Further, we perform Bonferroni correction, which

conservatively adjusts significance to counteract the multi-

ple testing problem where multiple inferences increase the

likelihood of erroneous inferences [9]. In all of our results,

Bonferroni adjusted p values are reported.

In this study, we correlate HMS with mean-squared er-

ror (MSE) on the next frame prediction task (the default

mode of PredNet), as well as object matching accuracy. In

the experiments, following the protocol established by Lot-

ter et al. [29], MSE is computed as the square of the mean

pixel-wise difference of the predicted next frame and the

actual next frame. Object matching accuracy is evaluated
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by first extracting the neural activations of the final layer in

response to a probe image. Neural activations from the fi-

nal layer are then extracted across a gallery of 50 images,

one of which is the same object with altered lighting, color,

viewing angle, or a combination thereof. Cosine similarity

is computed between the probe and the gallery activations,

and the gallery image with the highest activation similarity

to the probe is the predicted match.

3.3. The HMS Metric for Model Search

Several steps are involved in computing the proposed

HMS metric (with the major ones highlighted in Fig. 2).

The RDM creation process described below follows the pro-

cedure of the RSA toolbox [35].

Stimuli selection for RDM construction. The stimuli

were chosen by Kriegeskorte et al. [24] to compare human-

primate neural inferior temporal (IT) object representations.

The stimuli were selected to provide a hierarchical range of

dissimilar and similar objects, such as animate and inani-

mate objects, not human and human objects, and face and

body objects. The full set of stimuli is described in Sec. 1.1

of the Supp. Mat.

Human fMRI collection. The human fMRI data were

released as part of the Representational Dissimilarity Tool-

box [35]. All data are in RDM format, meaning we did not

directly process the fMRI data, but instead received the set

already in usable form. As such, anyone can utilize this data

without specific fMRI domain knowledge, which makes the

HMS metric broadly applicable to machine learning tasks.

Although data from four participants were collected over

two sessions, following the methods of Mur et al. [34], we

averaged the subject RDMs together into a mean human

brain RDM, which reduced noise. RDMs were constructed

from activations in the bilateral IT region of the brain.

The full details of the human fMRI data collection can

be found in [24]. Nonetheless, for completeness we briefly

describe the procedure Kriegeskorte et al. [24] used to col-

lect human fMRI data. Eight RDMs were constructed from

fMRI recordings of four subjects over two sessions in re-

sponse to 92 stimuli. Recordings were from measurements

of 1.95 × 1.95 × 2mm3 within an occipitotemporal mea-

surement slab (5cm thick). Subjects were presented with a

random sequence of the 92 stimuli. Each stimulus was dis-

played for 300 milliseconds, every 3700 milliseconds, with

four seconds between stimuli. Not all voxels were used to

construct the RDM. Voxels of interest were selected based

on voxel responses to stimuli from an independent dataset.

No spatial smoothing or voxel averaging was performed.

PredNet activations to stimuli. Using the exact same

set of 92 stimuli, we construct an RDM using network acti-

vations as features from PredNet’s internal representation

neurons. Specifically, activations are recorded from the

convolutional LSTM units. Predictive coding networks are

time-based networks, and thus we present the stimuli for a

fixed five frames and record activations at each time step.

We discard the first time step as it corresponds to a “blank”

prediction. Activation patterns from PredNet for this style

of stimuli presentation mimic biological neural responses

for perception [30].

RDM construction. Given a single feature f and a sin-

gle stimulus s, v = f(s), where v is the value of feature f

in response to s. Likewise, the vector

~v =











v1
v2
...

vn











T

=











f1(s)
f2(s)

...

fn(s)











T

(1)

can represent the feature values of a collection of n features,

f1, f2, ..., fn, in response to s. If one expands the repre-

sentation of s to a set of m stimuli S = s1, s2, ..., sm, the

natural extension of ~v is the set of feature value collections

V = ~v1, ~v2, ..., ~vm, in which si ∈ S is paired with ~vi ∈ V

for each i = 1, 2, ...,m. The last step prior to constructing

an RDM is to define the dissimilarity score between any two

~vi ∈ V and ~vj ∈ V . We use the symmetric function

ψ(~vi, ~vj) := 1−
(~vi − v̄i) · (~vj − v̄j)

‖~vi − v̄i‖2‖~vj − v̄j‖2
(2)

where v̄ is the mean of the features in ~v. An RDM R may

then be constructed from S, V , and ψ as:

R =















ψ(~v1, ~v2) ψ(~v1, ~v3) . . . ψ(~v1, ~vm)
ψ(~v2, ~v3) . . . ψ(~v2, ~vm)

. . .
...

ψ(~vm−1, ~vm)















(3)

Human-model similarity (HMS). Given any two

RDMs R1 and R2 from the same set of stimuli S, one can

compute their similarity to determine how similar the acti-

vation behavior is in response to S. The similarity function

HMS = ρ(R̂1, R̂2) (4)

computes a Spearman’s rank correlation coefficient repre-

sented by ρ, where R̂ is the flattened RDM.

Thus HMS is calculated as the correlation between the

averaged human fMRI RDM and a constructed PredNet net-

work RDM, obtained from the network activations to the

stimuli. The resulting score is defined over the real interval

[−1, 1], with 1 indicating perfect correlation, −1 indicating

perfect negative correlation, and 0 indicating the two RDMs

are completely uncorrelated.
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Evaluation Task Metric Mean (SD) Top Ten HMS Mean (SD)

Next Frame Prediction Error Pixel MSE 0.092 (0.148) 0.009 (0.003)

Object Matching Accuracy 0.367 (0.134) 0.459 (0.049)

Human-Model Similarity RDM Correlation 0.106 (0.055) 0.178 (0.011)

Table 1. A statistical overview of evaluation scores for a sample of 95 randomly hyperparameterized PredNet networks. These scores

indicate the range of scores we expect to obtain from an arbitrary PredNet network. The top ten HMS mean score refers to the average

score for each metric for the ten networks with the highest human-model similarity. The top ten average shows that networks with high

HMS also achieve high performance on the other tasks. The object matching task was intentionally designed to be difficult — the network

must distinguish fine-grained differences in unseen, fictional “Gazoobian” objects [48] where task chance is (0.02). Networks are trained

using KITTI [15] and evaluated on next frame prediction using a held-out set of KITTI data. Pixel MSE is mean squared error of the

predicted-to-actual frame at the pixel level. SD is standard deviation.

4. Experiments

Our experiments assess how the biological fidelity of

predictive coding networks affects two computer vision

tasks: next frame prediction and object matching. We iden-

tify biological fidelity as more similar internal activation be-

havior to human fMRI, as measured through RDMs.

Four datasets are utilized. We evaluate HMS, as de-

scribed in Sec. 3.3, on a dataset of 92 stimuli with a range

of similar and dissimilar objects, from real human faces

to animated objects [23]. Computer vision capabilities are

evaluated on two tasks: next frame prediction and object

matching accuracy, as described in Sec. 3.2. Next frame

prediction is assessed by measuring pixel-level MSE on the

KITTI dataset [15], a video dataset composed of image se-

quences from a car mounted camera. We also experimented

with another video dataset, VLOG [13]. For object match-

ing, we used a randomly generated “Gazoobian Objects”

dataset (following the procedure described by Tenenbaum

et al. [48]), composed of otherworldly objects guaranteed to

be unseen in training. Gazoobian stimuli mirror the stimuli

presentation of the HMS stimuli. Even though these objects

are well out of domain compared to the natural images used

for training, humans are able to generalize to them with ease

[48], making them an excellent basis from which to study

model generalization at inference time. Objects were varied

in rotation, lighting, color, or a combination thereof. Exam-

ple images from all datasets can be found in Sec. 1 of the

Supp. Mat.

4.1. Does HMS Discover Models that Generalize?

Initially, we evaluated a random Monte Carlo-style sam-

ple of hyperparameters in order to test how HMS, next

frame prediction, and object matching varied across Pred-

Net networks. In typical model search fashion, we var-

ied six hyperparameters including the number of training

epochs, the number of video sequences used for validation

after training for an epoch, the number of video sequences

used to train within an epoch, the batch size, the learning

rate, and the size of the convolutional filters across all lay-

ers. The exact space searched is listed in Sec. 2.1 of the

Supp. Mat. We trained 95 4-layer PredNets with randomly

selected hyperparameters using HyperOpt [4], a software

package for distributed hyperparameter optimization.

In Table 1 we report the metrics’ mean and standard de-

viation for the 95 trained PredNets. Next frame prediction

was within range of Lotter et al. [29]. The accuracy scores

highlight the difficulty of the object matching task, which

focuses on specific object matching from a 50 image gallery

of stimuli (chance = 0.02). The evaluation scores indicate

our parameters were well suited for sampling: performance

was above chance but below ceiling. Impressively, the mean

HMS was within a standard deviation of the average human-

human similarity score of 0.19 (SD = 0.09). We also con-

firmed that these results are stable in a cross-dataset context

using the VLOG dataset [13] (these experiments are dis-

cussed in Sec. 3 of the Supp. Mat.).

We next examined how high HMS similarity corre-

sponds with other metrics by looking at the 10 networks

with the highest HMS scores (reported in Table 1). These

networks achieve much higher performance over the set of

all networks on the two computer vision tasks. We also

examined the 10 networks with the lowest HMS, and note

that they have much worse than average performance: mean

next frame prediction error was 0.314 (SD = 0.138), mean

object matching accuracy was 0.13 (0.15), and mean HMS

was −0.008 (0.027). This shows HMS is an effective met-

ric for predicting performance. Networks with high HMS

perform well, and those with low HMS perform poorly.

To be useful, HMS needs to be an effective predictor

across all models, not just high and low performing models.

We verified that, across all models, higher HMS is associ-

ated with higher performance on the other metrics by com-

puting Spearman’s rho across the sampled networks (Ta-

ble 2). Further, the p values of these correlations are the

probability our findings occur by chance, with p < 0.001
indicating a less than 0.001 probability (0.1%) that our cor-

relations occur by chance (see Sec 3.2. for details of these

safeguards). The strength of the correlations between the

metrics are moderate to strong, with p < 0.001. This con-

5409



Variable Accuracy HMS Learning Rate

Next Frame Prediction Error -0.791** -0.646** 0.635**

Object Matching Accuracy . 0.575** -0.517**

Human-Model Similarity . . -0.452**

**p < 0.001
Table 2. Spearman’s rho of metrics for 95 trained PredNets with random hyperparameters. The correlations confirm that HMS is predictive

of network performance on other metrics. The negative correlation between Next Frame Prediction Error and the two other metrics occurs

because next frame prediction is measured by error, which should minimized, while HMS and Accuracy are metrics to be maximized.

Precautions taken in determining statistical significance are described in Sec. 3.2. Learning rate was correlated with each metric, but was

not determined to be a significant contributing factor to HMS as a predictor of network performance after partial correlation analysis.

firms that HMS is predictive of network performance on

computer vision tasks. Additionally, we calculated correla-

tion scores for all hyperparameters to verify that no individ-

ual parameter was responsible for these results. We include

the learning rate (LR) hyperparameter in Table 2 because it

is moderately correlated with the other metrics.

The correlation with LR indicated a possible risk that LR

is strongly influencing the results. We investigated its influ-

ence with a partial correlation analysis, which measures the

relationship between metrics while controlling for the influ-

ence of LR. The correlations between metrics from Table 2

were not statistically significant (p < 0.001); however, the

sample size was too small for the breadth of LRs tested. We

addressed this by repeating the partial correlation on a much

larger set of networks (N = 1811). For this sample, the par-

tial correlations between the metrics were statistically sig-

nificant (p < 0.001), with similar correlation strength for

the sample. This confirms HMS is significantly correlated

with the other metrics regardless of the influence of LR on

training. More discussion of this experiment can be found

in Sec. 2.2 of the Supp. Mat.

All of the findings discussed above provide evidence that

HMS is an effective search metric. HMS was indicative of

performance for both computer vision tasks across all mod-

els (via correlation) and extremes (top and bottom models).

Networks which exhibited more brain-like internal behavior

generalized better to other evaluation tasks.

4.2. Metric Stability During Model Search

How stable are our evaluation metrics during network

training? Do evaluations of network performance vary

across identically hyperparameterized models? If HMS

fluctuates wildly during training, it may be an unreliable in-

dicator of performance. Through further experimentation,

we found that this is not the case, and show that HMS is a

predictor earlier in training than the other metrics.

Within-network stability. We first investigated how the

metrics varied during training on a sample of 74 4-layer

PredNets trained for 150 epochs, evaluating performance

every 5 epochs. We focused our analysis on 10 networks

where MSE was below 0.01 by the 150th epoch, implying

convergence. We found each metric had its own predictable

behavior, illustrated by a representative network in Fig. 4,

consistent across hyperparameters. Once HMS was stable

(SD ≤ 0.01) for 25 epochs it remained so. Object match-

ing accuracy tended to start higher, before dropping, and

finally rising again as the training unfolded. Finally, next

frame prediction error either continuously decreased, lead-

ing to a good network, or increased, leading to a degenerate

network. The correlations from Table 2 imply that any of

the metrics could be used as a predictor, but the training

behavior offers insight into how these metrics would need

to be utilized. HMS stabilizes first, after an average of 32
epochs. Accuracy stabilizes next, after an average of 66.5
epochs (SD = 36), although some scores did not plateau

but continued to increase. In cases where next frame pre-

diction error (MSE) decreased with training, it typically de-

creased throughout all 150 epochs, making a poor indicator

Figure 4. Within-network stability analysis for a representative

PredNet model. We find that each metric has its own stereotyp-

ical behavior during training. Object matching accuracy is incon-

sistent early in training, but eventually stabilizes and continues to

increase. Next frame prediction error (MSE) either falls consis-

tently (the case shown above) or rises unpredictably, but is heav-

ily dependent on training time. HMS is inconsistent very early in

training, but stabilizes more quickly than accuracy, which is unsta-

ble for longer, or MSE, which requires a long training time before

stabilizing. These findings mean that HMS can be used to identify

poor-performing networks for early stopping in network search.

5410



of performance. Note that in the 95 model sample, MSE

was the only metric correlated with the number of epochs

(−0.332, p < 0.001). Further details, results, and experi-

ments on across-network stability can be found in Sec. 5 of

the Supp. Mat.

4.3. A Mechanism for Early Stopping

An outcome of the findings from Sec. 4.2 is that our pro-

posed HMS metric can be employed during network train-

ing as a way to discard (i.e., stop training) models that will

ultimately perform poorly. To demonstrate this, we con-

ducted a post hoc analysis of the 95 PredNets from Sec. 4.1.

On the left-hand side of Fig. 5 we present time saved by

early stopping with HMS and accuracy using the conver-

gence criteria of Sec. 4.2. Overall, early stopping with HMS

could have reduced training time by 67% at no cost to fi-

nal performance. We also tested a threshold strategy which

considered a network to be stopped during training if its

HMS score was below a threshold of 0.161 (the mean HMS

from Table 1 plus one standard deviation). Only 13 of the

95 models (13.7%) were above this threshold. The right-

hand side of Fig. 5 depicts the accuracy scores of the mod-

els with respect to the side of the HMS threshold they are

on. Our analysis shows that even with a high threshold to

stop training, and the loss of some models with high perfor-

mance, most retained models are high performing and were

more likely to have high performance on both tasks. Addi-

tionally, in this case the highest performance model on both

computer vision tasks is retained, but a number of other re-

tained higher performing models have trivial differences in

performance, and would be just as useful had the top model

been discarded. Complete details for these experiments and

additional results can be found in Sec. 6 of the Supp. Mat.

5. Discussion

There are several benefits to utilizing HMS over tradi-

tional human-model comparisons. (1) HMS is useful for

model searches because activation patterns for learned rep-

resentations emerge early in training, whereas other evalua-

tions require fully training a network. (2) There is evidence

that HMS is indicative of a model’s ability to generalize to

unseen data and tasks, since PredNet models with higher

HMS are more likely to perform well on both object match-

ing accuracy and next frame prediction. (3) Compared with

other evaluations of perceptive consistency, such as visual

Psychophysics [40, 41], HMS is much less computationally

expensive. Consider the computational cost of HMS eval-

uation compared with the accuracy evaluation, which uti-

lizes psychophysical stimuli (varying lighting and texture).

HMS only requires a network to process 92 stimuli. The

PredNet accuracy metric requires the network to process 51

stimuli (1 probe, 50 gallery) per trial, for 500 trials (25,500

stimuli). (4) We used fMRI data as a benchmark because
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Figure 5. The left-hand plot shows how HMS-driven early stop-

ping for the sample of 95 PredNets cut down training time by 67%,

using the criteria for convergence of SD ≤ 0.01 for 25 epochs.

Using the same convergence criteria for accuracy was not as ef-

fective. The right-hand scatter plot shows the accuracy of models

above and below an early stopping threshold (0.161). 82 models

left of the line would be discarded at no cost to final performance.

These experiments utilize the findings for metric stability estab-

lished in Sec. 4.2 to quantify the potential outcome of utilizing

early stopping on the model sample.

it overcomes the difficulty in labeling the correct similarity

between different objects. For example, as humans we in-

stinctively know a pair of faces should have highly similar

activation behavior, but what about a hand and face? Neu-

ral data provides an implicit answer to this question. One

concern that can be raised is the perceived difficulty of ob-

taining fMRI data. Fortunately, there is a growing open sci-

ence movement within neuroscience. The fMRI data used

in this study is publicly available and can be utilized by any-

one [35], and it is far from the only data available. Vast pub-

lic fMRI repositories exist for vision, text, and audio tasks,

and researchers do not need to be experts in order to uti-

lize them. A few examples are the Donders repository [11],

OpenNeuro [1], and Oasis [31] brains.

We believe that networks with more biological fidelity

in function will be essential to overcome the shortcomings

of today’s networks in replicating biological vision. The

future of artificial intelligence research will need to bridge

the gap between network structure and internal behavior,

which requires reassessing how we evaluate networks. In

the past, unexpected network behavior has blinded-sided re-

searchers, e.g., susceptibility to adversarial images. And

it is important to remember that current networks are not

consistent with human behavior [40, 41]. Evaluations mea-

suring internal behavior should prove useful for avoiding

unforeseen issues, and may help us achieve the next gener-

alization breakthrough.
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