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Abstract

In this paper, we propose a new measure to gauge the

complexity of image classification problems. Given an an-

notated image dataset, our method computes a complex-

ity measure called the cumulative spectral gradient (CSG)

which strongly correlates with the test accuracy of convolu-

tional neural networks (CNN). The CSG measure is derived

from the probabilistic divergence between classes in a spec-

tral clustering framework. We show that this metric corre-

lates with the overall separability of the dataset and thus

its inherent complexity. As will be shown, our metric can

be used for dataset reduction, to assess which classes are

more difficult to disentangle, and approximate the accuracy

one could expect to get with a CNN. Results obtained on

11 datasets and three CNN models reveal that our method

is more accurate and faster than previous complexity mea-

sures.

1. Introduction

The number of image-based datasets designed to train

deep convolutional neural networks (CNN) have been on

the rise in the past few years [8, 11, 23, 25, 29, 35, 44].

One reason for this is the indisputable efficiency of CNNs

at classifying image data [9, 17, 23, 39].

A common challenge that arises when building a new

image dataset for training a CNN is to identify how chal-

lenging the classification problem is, which classes are the

most difficult to disentangle, and correspondingly what is

the minimum dataset size required to train a CNN. As of

today, there is no standard framework to make such de-

terminations. The common way to assess the complexity

of an image dataset is by training, finetuning and compar-

ing results from several CNNs, the test accuracy being the

usual measure for complexity. However, this procedure is

time consuming and, most importantly, requires a fully-

annotated dataset which is not available when in the process

of building it.

∗This work is supported by the FQRNT B1 208594 and Mitacs accel-

eration IT08995.

Unfortunately, one cannot predict the accuracy of a CNN

by only looking at its architecture. As mentioned by Zhang

et al. [45] in their attempt to understand why deep neural

nets generalize well, deep neural networks can easily fit

with zero training error on any input data, including pure

random noise. This underlines the sole ability of CNNs to

project any input data into a linearly separable space (and

thus have a zero training error) while sometimes having

poor generalization abilities. Their conclusion is that the

structure of a neural net, its hyperparameters, its depth, and

its optimizer cannot be used alone to predict its generaliza-

tion capabilities.

Assessing the complexity of a classification problem

may instead start from the analysis of the data at hand

with the goal of deriving useful complexity measures (c-

measures) [2, 3, 14, 18, 41]. The goal of c-measures is

to assess how entangled classes are assuming that datasets

with overlapping classes are more difficult to analyze than

those with well separated classes. C-measures have been

shown effective for a number of applications such as classi-

fier selection [7], automatic noise-filtering adjustment [38],

dataset reduction [26], and hyperparameter tuning [31].

Unfortunately, existing c-measures have not been de-

signed for large image datasets used to train deep neural

networks. While some c-measures assume that classes are

linearly separable in their original feature space [18], others

work only for two-class problems [2, 3, 19]. Also, some c-

measures are prohibitively slow and memory expensive as

they require the analysis of matrices whose size is in the

order to the number of training samples and/or the feature

dimension size [3, 14].

Another important limitation with existing c-measures is

the fact that they process raw input data. While this was

shown valid for some classification problems [7], it is ill

suited for deep neural nets since their learning procedure

allows them to project input data onto a different and more

easily separable space.

In this paper, we present a novel c-measure adapted to

modern image classification problems. Instead of process-

ing raw input data like previous approaches, our method

first projects the input images onto a lower-dimensional la-
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tent space. This allows to analyze data whose features are

better adapted to what CNNs learn. Our method then es-

timates pairwise class overlap with a Monte-Carlo method

which leads to an inter-class similarity matrix. Following

the spectral clustering theory, we compute a K ×K Lapla-

cian matrix where K is the number of classes. Finally, the

spectrum of this matrix is used to derived our cumulative

spectral gradient (CSG) c-measure.

The main advantages of our proposed c-measure are as

follows :

1. It naturally scales with the number of classes and the

number of images in the dataset;

2. Our metric is fast to compute and does not require the

computation of prohibitively large matrices;

3. It has no prior assumption on the distribution of the

data;

4. It gives a strong insight on which classes are easily

separable and those that are entangled;

5. The metric is highly correlated with CNN generaliza-

tion capabilities;

6. It can be easily used for dataset reduction.

2. Previous works

The goal of a c-measure is to characterize the difficulty

of a classification problem. While several c-measures have

been proposed in the past, those by Ho and Basu are by far

the most widely used [18]. They proposed 12 different de-

scriptors called F1, F2, F3, L1, L2, L3, N1, N2, N3, N4,

T1, and T2. F1 is a Fisher’s Discriminant Ratio, F2 mea-

sures the inter-class overlap, and F3 is the largest fraction

of points one can correctly classify with a stump decision

function. L1, L2 and L3 measures the linear separability

of the data, while N1, N2, N3 and N4 are nearest neighbor

measures which estimate the inter-class overlap. As for T1,

it measures the total number of hyperspheres one can fit into

the feature space of a class and T2 is the ratio between the

total number of training samples N divided by the dimen-

sionality of the data d.

While the c-measures by Ho and Basu have been shown

effective for small non-image datasets [7], those metrics are

less suited to analyze large and complex image datasets. For

example, F1, F2, F3, L1, L2 and L3 assumes the data is

linearly separable which is an over-simplistic assumption

when considering modern image datasets. F1 requires the

computation of d×d matrices which is problematic memory

wise for large d (i.e. for medium to large images) and F3

measures the linear separability of each class by accounting

for each feature independently which is prohibitively slow

when both N and d are large. T1 is also prohibitively slow

as N gets large since it requires to grow an hypersphere

around each data point and T2 is not a good complexity

predictor as will be shown in the results section.

Although Ho and Basu’s metrics were designed for two-

class problems, some researchers generalize it to more than

two classes by averaging measures obtained between all

possible pair of classes [37, 41]. Also, although recent

generalizations of the Ho-Basu c-measures have been pro-

posed [2, 12, 41], none addresses explicitly the problem of

classifying large image datasets.

Other c-measures have been proposed. For example,

Baumgartner and Somorjai [3] proposed a metric adapted

to small biomedical datasets with high dimensionality data.

Unfortunately, their c-measures are for two-class problems,

assume that the data is linearly separable and require the de-

composition of N×d matrices which is only tractable when

N and d are small. Duin and Pekalska [14] quantify the

complexity of a dataset with metrics derived from a dissim-

ilarity matrix of size N×M where N is the training set size

and M is the number of “representation” vectors randomly

sampled from the training set. They report results on sev-

eral datasets including two image datasets which contains

2000 or less black and white digits. The authors used the

Euclidean distance to measure the similarity between two

images, a metric that does not generalize well to real-world

images [43].

Like we do, some methods build a graph from the

dataset to characterize the intra and inter-class relation-

ships [15, 34]. This type of method requires building a

N ×N distance matrix which is problematic memory wise

for large datasets. For example, the Hub score by [28] re-

quires to compute ATA where A is a N × N adjacency

matrix.

To our knowledge, Li et al. [27] are the only ones who

proposed a c-measure applied specifically to modern image

datasets and deep neural networks. They called their mea-

sure the Intrinsic Dimension which is the minimum number

of neurons a model needs to reach its best performances.

They show that adding more neurons past the Intrinsic Di-

mension does not improve test accuracy. Unfortunately, as

opposed to what we seek to do, their measure requires mul-

tiple training of image classification CNNs through a grid-

search approach which is slow and tedious. More details on

c-measures can be found in the recent survey paper by [28].

3. Proposed Method

3.1. Class overlap

At the core of our c-measure is the notion of class over-

lap. Let x be an input image and φ(x) ∈ IRd an embedding

for that image. As will be discussed later, φ can be any

function that projects x to a new dimensional space where

images with similar content are close together and the other

ones further away. The overlap between two classes Ci and

Cj refers to the overall area in the feature space for which

P (φ(xk)|Ci) > P (φ(xk)|Cj) when φ(xk) is a member of
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class Cj . Class overlap can thus be formulated as [36]:

∫

IRd

min (P (φ(x)|Ci), P (φ(x)|Cj)) dφ(x). (1)

Unfortunately, the direct calculation of this integral is pro-

hibitively complicated for non-parametric distributions and

when d (the dimensionality of the embedded space) is large.

Since the overlap between two classes is related to the sim-

ilarity of their distributions, one may instead use a proba-

bility distribution distance function such as the Kullback-

Leibler divergence or the Kolmogorov-Smirnov test as a

surrogate for Eq.(1). One such function is the probability

product kernel of Jebara et al. [22] :

∫

IRd

P (φ(x)|Ci)
ρP (φ(x)|Cj)

ρdφ(x) (2)

which is a generalization of the Bhattacharyya kernel (and

the Hellinger distance) when ρ = 1/2. While comput-

ing Eq.(2) is as complex as computing Eq.(1) for an ar-

bitrary value of ρ, simplification occurs when ρ = 1. In

that case, the kernel becomes the inner-product between the

two distributions
∫
IRd P (φ(x)|Ci)P (φ(x)|Cj)dφ(x) which

is the expectation of one distribution under the other :

EP (φ(x)|Ci)[P (φ(x)|Cj)] or EP (φ(x)|Cj)[P (φ(x)|Ci)].
Formulating the inter-class divergence as an expectation

function allows one to use Monte-Carlo to approximate it:

EP (φ(x)|Ci)[P (φ(x)|Cj)] ≈
1

M

M∑

m=1

P (φ(xm)|Cj) (3)

where {φ(x1), ..., φ(xM )} are M samples i.i.d. from

P (φ(x)|Ci). One can thus approximate the divergences be-

tween two class distributions by averaging the probability of

M samples of class Ci to be in class Cj or vice versa. Com-

puting inter-class divergences leads to a K × K similarity

matrix S where K is the total number of classes and Sij is

the Monte-Carlo approximation of the divergence between

Ci and Cj .

Since the underlying model of P (φ(xm)|Cj) is a priori

unknown, we approximate it with a K-nearest estimator:

p(φ(x) | Cj) =
KCj

MV
(4)

where V is the volume of the hypercube surrounding the k
closest samples to φ(x) in class Cj , M is the total number

of samples selected in class Cj and KCj
is the number of

neighbors around φ(x) of class Cj .

3.2. Spectral Clustering

The K × K similarity matrix S embodies the overall

complexity of a dataset by means of class overlap. Our goal

is to extract a measure from S that would summarize the

complexity of that dataset. For that, we rely on the spectral

clustering theory [42] that we briefly review in this section.

Let G be an undirected similarity graph G = (V,E)
where V is a set of nodes connected by edges E. An

edge Eij is an arc connecting two nodes i and j and whose

weight wij ≥ 0 encodes how close these two nodes are. A

weight of 0 implies no connection between i and j whereas

a large weight implies strong similarity (in our case, a

weight of 1 implies that i and j are identical). The weight

of all edges are put in a n × n adjacency matrix W where

n is the total number of nodes. Note that W is symmetric

and positive semi-definite due to the undirected nature of

the graph which implies that wij = wji.

The goal of spectral clustering is to partition G into sub-

graphs such that the edges between the subgraphs have min-

imum weight. A set of subgraphs {G1, ..., Gl} is valid when

Gi ∩ Gj = ∅, ∀i 6= j and G1 ∪ ... ∪ Gl = G. An optimal

partition of G is one for which the cut has minimum cost :

costCut(G1, ..., Gl) =
∑

wij for i and j in different sub-

graphs.

Spectral clustering provides an elegant framework to re-

cover the subgraphs with minimum cut. It starts with a

Laplacian matrix whose simplest form is L = D − W
where D is a degree matrix Di =

∑
j wi,j . L is sym-

metric and positive semi-definite, it contains n eigenvalues

{λ0, ..., λn−1} that are real and non negative with λ0 = 0
and λi+1 ≥ λi. This set of eigenvalues is called the spec-

trum of L. Interestingly, the n eigenvectors associated to

the eigenvalues can be seen as indicator vectors that one

can use to cut the graph. Also, the magnitude of their asso-

ciated eigenvalues is related to the cost of their cut [33]. As

such, the eigenvectors associated to the lowest eigenvalues

are those associated to the partitions of minimum cost.

3.3. Inter­class adjacency matrix

We formulate our c-measure within the spectral cluster-

ing framework for which each node is a class index. In our

case, W and L are K × K matrices where K is the total

number of classes. As such, the weight wi,j is the distance

between the likelihood distributions of classes Ci and Cj .

Thus, a simple dataset for which each pair of classes has

little overlap would produce a sparse Laplacian matrix L
whose spectrum contains small eigenvalues. On the other

hand, a more complex dataset with stronger class overlap

would lead to a spectrum with larger eigenvalues.

Since the similarity matrix S was obtained with a Monte-

Carlo approximation of the Jebara kernel, it is not symmet-

ric and thus cannot be used as an adjacency matrix W . In-

stead, we consider each column Si as a signature vector of

each class i so two classes with similar likelihood distri-

butions would also have a similar signature vector Si and

vice versa. We then compute W following the Bray-Curtis
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Dataset CSG E.R.

mnist 10 5.51 0.91

mnist 9 5.04 0.78

mnist 8 4.53 0.69

mnist 7 3.79 0.61

mnist 6 3.31 0.51

mnist 5 2.70 0.39

mnist 4 2.16 0.30

mnist 3 1.52 0.18

mnist 2 0.84 0.13

mnist 0.12 0.01

Figure 1: [Left] Spectrum of ten noisy versions of MNIST

and [right] our CSG c-measure with the error rate (E.R.) of

an AlexNet CNN (figure best viewed in color).

distance function [16]:

wij = 1−

∑K

k |Sik − Sjk|∑K

k |Sik + Sjk|
. (5)

This equation implies that wij = 0 when the distributions

of classes i and j do not overlap and wij = 1 when the

distributions are identical.

3.4. Runtime improvement

Computing the adjacency matrix W with the Bray-Curtis

function as well as the Monte-Carlo method (Eq.(3)) is 40

times faster than with a naive implementation (Eq.(2)) for a

K=10 class problem. This explains why our method is fast

and gets good results even with a small number of samples.

We came to that number as follows.

First, let us mention that the most computationally inten-

sive operation is the point-wise estimation of a probabilis-

tic distribution function (pdf) P (φ(x)|C). Since computing

Eq.(2) requires M estimations of P (φ(x)|Cj), the K ×K
similarity matrix S requires a total of K2 ×M pdf estima-

tions, where K is the number of classes and M the number

of samples. Also, since Eq.(5) requires no additional pdf

estimation, our method requires a total of K2 ×M pdf es-

timations to compute the adjacency matrix W .

However, since the Bray-Curtis distance function com-

bines two RK vectors Si and Sj , it incorporates the statis-

tics of 2 ×K ×M samples at each entry wij of W . If the

same number of samples were to be used by a naive imple-

mentation, i.e. that wij was to be computed with 2×K×M
samples and Eq.(2), the computation of W would require a

total of 4 ×K3 ×M pdf estimations, i.e. 4 ×K more pdf

estimations than for our method. From there we conclude

that our method is 40 times faster than a naive implemen-

tation when K = 10. Please note that these findings are in

line with empirical results.

3.5. The CSG complexity measure

As mentioned before, a dataset with a low eigenvalue

spectrum indicates a low inter-class overlap and thus eas-

ily separable classes. To illustrate this, we put in Fig. 1

the spectrum of the MNIST dataset (the bottommost cyan

curve) which we obtained by processing raw images. Since

MNIST contains 10 classes, its spectrum contains 10 eigen-

values. Being a simple dataset, MNIST’s spectrum contains

mostly near-zero values. We then randomly swap elements

between classes to force their distribution to strongly over-

lap, making this noisy version of MNIST more complex.

We first swap elements between two classes (MNIST 2),

then between three classes (MNIST 3) all the way to 10

classes (MNIST 10). As one can see, these noisy versions

of MNIST lead to a gentle progression of the spectrum pro-

files. The more entangled classes are, the larger the eigen-

values are. Also, the sooner a strong spectrum gradient oc-

curs (λi+1− λi) the more difficult the dataset is (this gradi-

ent discontinuity is also called the eigengap in the spectral

clustering literature [42]).

The overall complexity of the dataset is thus related to

the area under the spectrum curve as well as the position

of the eigengap. To account for both observations, we first

normalize the eigengap by its horizontal position:

∆λ̃i =
λi+1 − λi

K − i
. (6)

The normalization by K − i is at the core of our metric.

Depending on where the largest eigengap occurs, its max-

imum value can only be of K − i. The difficulty of cut-

ting the graph is thus related to the position of the largest

eigengap. Our c-measure (the cumulative spectral gradient

(CSG)) is the cumulative maximum (cummax) of the nor-

malized eigengaps :

CSG =
∑

i

cummax(∆λ̃)i. (7)

With a cummax, between two spectrums with the same area

under the curve, our CSG measure will be larger for the one

with the left-most eigengap. The CSG values for the noisy

MNIST datasets are shown on the right of Fig. 1 along side

with the test error rate obtained with an AlexNet CNN [24].

As can be seen, our CSG c-measure is heavily correlated to

the complexity of the datasets.

Our method is summarized in Algorithm 1.

4. Results

4.1. Embeddings

As mentioned before, the input images x are projected to

an embedding space with a function φ(x). In this paper, we

tested four projection functions :

1. Raw; the identity function φ(x) = x ;

2. t-SNE; the t-SNE function [30] which projects the raw

input images down to a 2D space;
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Algorithm 1: The CSG c-measure algorithm.

Data: Dataset={(φ(x1), t1), ..., (φ(xN ), tN )}

Args: M, k

Result: CSG score

Compute inter-class similarity matrix S with Eq.(3)

and (4) ∀ pair of classes Ci, Cj

Compute W (Eq.(5))

L← D −W

{λ1, ..., λK} ← EigenValues(L)

Compute CSG (Eq.(7))

return CSG

3. CNNAE; the embedding of a 9-layer CNN-

Autoencoder trained for 100 epochs;

4. CNNAE t-SNE; the t-SNE function applied to the em-

bedding of the CNN-autoencoder.

4.2. Datasets

In order to gauge performance of our method, we used

several image classification datasets of various difficulty

levels. Of those datasets, six contain 10 classes, one con-

tains 11 classes and three contain two classes. These

datasets are summarized in Table 1 and sorted accord-

ing to the test error rate (E.R.) obtained with an AlexNet

CNN [24]. Note that we replaced the AlexNet local re-

sponse norm with a batch-norm [20], trained it for 500

epochs on each dataset with a batch size of 32 and the SGD

optimizer with the same parameters than in the original pa-

per but without data augmentation. We used Keras [10],

Tensorflow [1] and an Nvidia Titan X GPU.

The datasets are the well-known MNIST [25] and CI-

FAR10 [23]. There is also notMNIST [8], a synthetic

dataset of 18,724 letters made of unconventional fonts, and

the Street View House Numbers (SVHN) dataset [35], one

of the most challenging digit classification datasets with

73,257 images of low resolution street numbers. We also

use MioTCD [29], a large dataset of 648,959 vehicles pic-

tured by traffic cameras with varying orientation angles,

resolution, time of the day and weather conditions. STL-

10 [11] is a 10-class dataset similar to CIFAR-10 but with

larger images (96× 96 instead of 32× 32) and fewer train-

ing samples (5,000 instead of 50,000). SeeFood [4] is a

two-class dataset (Hot-dog vs No Hot-dog) with 498 sam-

ples derived from the Food-101 dataset [6]. We also use the

well-known Inria pedestrian dataset [13] containing 38,634

RGB images of pedestrians or not, and Pulmo-X [21], a

two-class pulmonary chest X-Ray dataset for tuberculosis

detection containing 662 images. Finally, CompCars [44] is

a dataset containing 1,716 car categories of different makes

and models. For our experiments, we selected the 10 makes

with the highest count and resized the images to 128× 128,

Datasets E.R. K N Content

MNIST 0.01 10 50k Hand written digits

MIO-TCD 0.03 11 649k Traffic images

notMNIST 0.05 10 18.7k Printed digits

SVHN 0.08 10 73.3k Printed digits

Inria 0.10 2 3.6k Pedestrians

CIFAR10 0.12 10 50k Various real images

Pulmo-X 0.23 2 662 Pulmonary X-Rays

SeeFood 0.38 2 500 Images of food

STL-10 0.68 10 5k Various real images

CompCars 0.70 10 6k Pictures of cars

Table 1: Datasets used to validate our method with the test

error rate (E.R.) of an AlexNet CNN [24], the number of

classes K, the training set size N and a short summary.

giving us 500 samples per class.

We followed the evaluation methodology specific to each

dataset, i.e. we trained and tested the methods on the train-

ing and testing set provided with the datasets. For the two

datasets without pre-determined train/test split (notMNIST

and Pulmo-X) we made a 80-20 Train/Test split and kept

the same class proportion.

4.2.1 Hyper-parameters

Our algorithm has two main hyper-parameters: M the num-

ber of samples per class used by the Monte Carlo method in

Eq.(3) and k the number of neighbors to compute the like-

lihood distribution of each class in Eq.(4). In Table 2, we

show the Pearson correlation score between our c-measure

with the CNNAE t-SNE embedding and the error rate of

AlexNet on the six 10-class datasets (upper table) as well

as the average processing time of our Algo 1 (lower table).

As one can see, the choice for k and M has little impact

on the quality of the results (except for when M is very

small). Also, while the runtime scales almost linearly with

M , our method is still fast with timings below 3 seconds,

even with M = 400 samples per class. This shows that our

method does not require a careful adjustment of its hyper-

parameters. We found this as well for the other embeddings

we tested. As such, we will use M = 100 and k = 3 for the

remainder of this section.

4.3. Experimental results

4.3.1 Comparison with other c-measures

We compared our method to the most widely implemented

c-measures, i.e. those by Ho and Basu [18]. We used the

C++ DCol library provided by the authors [37] and pro-

cessed the six 10-class datasets. We thus followed the orig-

inal methodology provided by the authors which implies no

embedding. In addition, we tested two other metrics derived

from the spectral theory: the maximum eigenvalue (maxΛ)

and the area under the curve (AUC). These methods are
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k

1 3 5 7 9 11

M

2 0.81 0.79 0.80 0.75 0.76 0.73

P
earso

n
C

o
rr.

50 0.97 0.97 0.97 0.96 0.96 0.97

100 0.97 0.97 0.98 0.98 0.97 0.97

200 0.98 0.98 0.98 0.98 0.98 0.98

300 0.97 0.97 0.97 0.98 0.97 0.98

400 0.97 0.97 0.97 0.97 0.97 0.97

M

2 0.02 0.02 0.02 0.02 0.02 0.02

T
im

in
g

(s)

50 0.30 0.30 0.29 0.30 0.29 0.27

100 0.60 0.61 0.60 0.60 0.60 0.60

200 1.22 1.21 1.23 1.19 1.20 1.22

300 1.82 1.82 1.82 1.78 1.83 1.79

400 2.42 2.38 2.42 2.41 2.39 2.39

Table 2: Correlation values [upper table] and average pro-

cessing times of Algo 1 in seconds [lower table] for various

combinations of hyperparameters M and k.

c-measure Corr. p-value Time (s)

N4 0.069 0.896 3,744

F3 0.267 0.610 3,924

F1 0.501 0.311 72

F2 0.422 0.405 72

T1 0.357 0.487 36,108

T2 0.636 0.175 72

N2 0.652 0.161 36,180

F4 0.725 0.103 3,644

N1 0.741 0.092 17,748

N3 0.773 0.072 36,216

maxi λi CNNAE t-SNE 0.88 0.02 0.3 (18,900)∑
i
λi CNNAE t-SNE 0.94 ≤0.01 0.3 (18,900)

CSG Raw 0.696 .125 50 (NA)

CSG CNNAE 0.823 .044 3.6 (13,300)

CSG t-SNE 0.903 .014 0.7 (6,084)

CSG CNNAE t-SNE 0.968 ≤0.01 0.3 (18,900)

Table 3: Correlation between the accuracy of AlexNet on 6

datasets and 10 c-measures by Ho-Basu [18] and ours meth-

ods with four embeddings, the associated p-value and pro-

cessing time alongside the time to train the autoencoder in

the parentheses (measured on CIFAR10).

known in the literature as being related to the similarity be-

tween nodes [40]. These turn out to perform worse than our

CSG metric. Results are reported in Table 3 together with

our method with four embeddings.

The first column contains the Pearson correlation score

between the error rate by an AlexNet CNN and each c-

measure. As one can see, our method with the CNNAE ,

t-SNE and CNNAE t-SNE embeddings have a better correla-

tion than any of the existing c-measures with a p-value be-

low the 0.05 bar. The best embedding is CNNAE t-SNE with

a significance p-value below 0.01. To illustrate how this em-

bedding correlates with the dataset complexity, we put in

Figure 2: Laplacian spectrum for the 10-class datasets.

Fig. 2 its Laplacian spectrum for the six 10-class datasets.

As can be seen, the spectrum plots grow smoothly from

the simplest dataset (MNIST), to slightly more complex

datasets (notMNIST, CIFAR10 and SVHN) all the way to

the most complex datasets (STL-10 and CompCars). Note

that we will use the CNNAE t-SNE embedding for the re-

maining of this section.

As for processing time, our method is faster than the best

c-measures F4, N1 and N3. Note the value on the left is the

time to execute Algo. 1 whereas the value in parenthe-

sis is the processing time to train a CNNAE and/or run t-

SNE. Although that processing time is large (more than one

hour) it is much faster than the previous best method N3.1

The performance of the t-SNE embedding is due to the fact

that while t-SNE does not change the nearest neighbours,

it does not preserve long-range distances which results in

a less convoluted low-dimensional representation. In con-

sequence, the approximation of the volume is better in this

representation.

In Table 4, we provide our CSG c-measure with the test

error rate of three CNN models as well as their Pearson cor-

relation and p-value. As can be seen, our c-measure cor-

relates well not only with AlexNet, but also with more re-

cent ResNet-50 [17] and XceptionNet [9]. Also, our cor-

relation and p-value with CNN error rates is significantly

better than the best existing c-measures [18] even when us-

ing our CNN t-SNE embedding. In fact, using embeddings

seem detrimental to the overall performance of the existing

c-measures. Results on all the existing c-measures with all

the embeddings are available in the supplementary material.

We also tested our method on two-class image classifi-

cation problems. We used the Inria, SeeFood, and PulmoX

datasets as well as the deer-dog subset of CIFAR10. Re-

sults reported in Table 5 show that our method correlates

well with the CNN models, especially AlexNet. Our corre-

lation scores are also better than those of the best c-measure

of Ho-Basu (although by a slight margin) although it was

specifically designed for two-class problems.

1The timings were computed on CIFAR10 using a Intel R©Xeon R©CPU

E5-1620 and a NVIDIA TITAN X.
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Error rate

Datasets CSG AlexNet
ResNet-

50
Xception

CompCars 2.93 0.70 0.88 0.86

STL-10 3.07 0.69 0.63 0.69

CIFAR10 1.00 0.18 0.19 0.06

SVHN 1.15 0.08 0.07 0.03

notMNIST 0.72 0.05 0.04 0.03

MNIST 0.11 0.01 0.05 0.01

Method Pearson correlation

N3/CNN Corr 0.773 0.727 0.681

N3/CNN p-val 0.054 0.102 0.136

N3 CNN t-SNE/CNN Corr 0.837 0.765 0.837

N3 CNN t-SNE/CNN p-val 0.063 0.124 0.144

CSG CNN t-SNE/CNN Corr 0.968 0.935 0.951

CSG CNN t-SNE/CNN p-val 0.01 0.006 0.003

Table 4: [Top] CSG c-measure alongside with test error

rates for 3 CNN models on six datasets.[Bottom] Pearson

correlation and p-value between the CNN error rates and the

N2 and N3 Ho-Basu our CSG c-measure [18] and CNN.

Datasets CSG AlexNet
ResNet-

50
Xception

SeeFood 0.95 0.38 0.34 0.21

PulmoX 0.55 0.23 0.16 0.11

deer-dog 0.39 0.20 0.02 0.02

Inria 0.32 0.10 0.07 0.03

N3 Ho-Basu/CNN Corr 0.976 0.852 0.862

N3 Ho-Basu/CNN p-val 0.01 0.148 0.138

CSG/CNN Corr 0.995 0.860 0.887

CSG/CNN p-val 0.006 0.130 0.113

Table 5: [Top] CSG c-measure alongside with test error

rates for 3 CNN models on four 10-class datasets.[Bottom]

Pearson correlation and p-value between ours methods and

CNN and between the N3 c-measure [18] and CNN.

4.3.2 Dataset reduction

Dataset reduction (also known as instance selection [26])

consists in reducing as much as possible the number of el-

ements in a dataset without losing trained CNN accuracy.

One way of doing so is by iteratively removing elements

from the dataset up to a point where the CSG measure in-

creases sharply.

We first tested our method on the MIO-TCD dataset [29],

a large dataset used for a 2017 CVPR challenge and for

which CNN methods got accuracies of up to 98%. Such

high accuracies suggest that the dataset is overcomplete and

could be reduced without affecting much the CNN accu-

racy. Results for various reduction ratios are shown in Fig-

ure 3. As one can see, the CSG (red dots) stays roughly un-

changed for reduction ratios below 80% but then increases

sharply after that. This is inline with the AlexNet test error

Figure 3: Our c-measure and AlexNet accuracy obtained

while reducing the size of the MioTCD dataset.

rate (blue line) although it took less than 5 minutes to pro-

duce the CSG measures and 5 days the AlexNet results. We

used the same CNNAE embedding for all ratios. We got a

Pearson correlation of 0.956 between our CSG dots and the

error rate values shown in Figure 3.

Dataset reduction can also be used to measure the simi-

larity between two datasets with very different sizes like CI-

FAR10 (5,000 training samples per class) and STL-10 (500

training samples per class). While these datasets have vi-

sually similar content, the CNN error rates on it are very

different (see Table 1). To measure the true distance be-

tween those datasets, we progressively reduced the number

of samples for each CIFAR10 class to reach that of STL-

10. The results in Table 6 show the close bound between

our metric and the number of samples in the dataset. With

only 500 samples, CIFAR10 gets a CSG score and a CNN

accuracy similar but not identical to that of STL-10. This

shows that the datasets are similar but not identical, prob-

ably due to the fact that the CIFAR10 Frog class has been

replaced by a Monkey class in STL-10 (supplementary ma-

terial). Here again, it took roughly one minute to produce

the CSG scores (after having trained the embedding) and 4

days for the CNN error rates.

4.4. Confusion matrix

While our c-measure can gauge the overall complexity

of a dataset with a single measure that correlates with CNN

accuracies, we can also use the similarity matrix W (Eq.(5))

to analyze the inter-class distances. As such, one can use a

dissimilarity matrix S = 1 − W to visualize the dataset

in 2D via an algorithm such as multidimensional scaling

(MDS) [5]. This results into plots such as those in Fig. 4.

While the classes of MNIST are all well separated, the CI-

FAR10 plots show that the cat and dog classes as well as

deer and bird are close to each other, probably due to sim-

ilar contexts. As for MioTCD, the bicycle, motorcycle and

pedestrian classes are in the same vicinity, mainly because
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Figure 4: 2D plots of our W matrix for MNIST, CIFAR10 and MioTCD.

Figure 5: [Top] our W matrix and [Bottom] AlexNet’s con-

fusion matrix for CIFAR10.
of their small image resolution, they often contain more

compression artifacts and hence be less feature-rich than

other classes, making them confusing with featureless back-

ground.

As shown in Fig. 5, the W matrix strongly correlates to

a real confusion matrix (here AlexNet). Here again, cat and

dog as well as deer and bird are easily confused.

5. Conclusion

In this work, we proposed a novel complexity measure

designed for image classification problems called the cumu-

lative spectral gradient (CSG) which is more accurate and

faster than previous methods. We showed that our metric

has many uses such as instance selection and class disen-

tanglement. We also showed that the CSG closely matches

the accuracy achievable by standard CNN architectures, an

important feature when assessing an image dataset.

Dataset CSG Error rate

CIFAR10 1.10 0.18

CIFAR10 reduced=4500 1.10 0.19

CIFAR10 reduced=3500 1.26 0.20

CIFAR10 reduced=2500 1.44 0.24

CIFAR10 reduced=1500 2.16 0.28

CIFAR10 reduced=500 2.59 0.42

STL-10 3.16 0.68

Table 6: Effect of reducing the number of samples per class

for CIFAR10 on our CSG metric and the AlexNet test error

rate.

A future direction of our research would be to determine

a procedure to compare the relative complexity of classifi-

cation problems with different number of classes. The anal-

ysis of random subsets of classes could be used as a com-

mon representation. Another important direction would be

to generalize our method to segmentation and localization

problems. As of now, it is not clear how these problems can

be described by spectral clustering.

Another future work would be to incorporate our simi-

larity matrix W in the optimization process of a neural net-

work to minimize the interclass divergence. It is our intu-

ition that the a priori knowledge of the interclass overlap

could be used to force the optimizer to further separate en-

tangled classes, a bit like the triplet loss does. Finally, our

metric is not restricted to image classification datasets and

could be used in other areas of machine learning such as

speech recognition and natural language processing (NLP).

These fields already use state-of-the-art embeddings such as

Word2Vec [32] and would thus naturally fall into our CSG

framework.
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