
Pedestrian Detection with Autoregressive Network Phases

Garrick Brazil, Xiaoming Liu

Michigan State University, East Lansing, MI

{brazilga, liuxm}@msu.edu

Abstract

We present an autoregressive pedestrian detection

framework with cascaded phases designed to progressively

improve precision. The proposed framework utilizes a novel

lightweight stackable decoder-encoder module which uses

convolutional re-sampling layers to improve features while

maintaining efficient memory and runtime cost. Unlike pre-

vious cascaded detection systems, our proposed framework

is designed within a region proposal network and thus re-

tains greater context of nearby detections compared to inde-

pendently processed RoI systems. We explicitly encourage

increasing levels of precision by assigning strict labeling

policies to each consecutive phase such that early phases

develop features primarily focused on achieving high recall

and later on accurate precision. In consequence, the final

feature maps form more peaky radial gradients emulating

from the centroids of unique pedestrians. Using our pro-

posed autoregressive framework leads to new state-of-the-

art performance on the reasonable and occlusion settings

of the Caltech pedestrian dataset, and achieves competitive

state-of-the-art performance on the KITTI dataset.

1. Introduction

Detecting pedestrians in urban scenes remains to be

a challenge in computer vision despite recent rapid ad-

vances [1, 15, 21, 26, 32, 36, 40–42]. The use of ensem-

ble [7,34,37] and recurrent [26,33] networks has been suc-

cessful in top-performing approaches of pedestrian / object

detection. Recurrent networks refine upon their own fea-

tures while ensemble networks gather features through sep-

arate deep classifiers. Both techniques offer a way to obtain

stronger and more robust features, thus better detection.

However, the characteristics of ensemble and recurrent

networks are distinct. Ensemble networks assume that sep-

arate networks will learn diversified features which when

combined will become more robust. In contrast, recurrent

networks inherit previous features as input while further

sharing weights between successive networks. Hence, re-

current networks are more capable of refining than diversi-
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Figure 1. Illustration of our proposed autoregressive framework

with sample phase (P1→3) classification prediction maps and box

visualizations under Caltech [5] dataset. Our method iteratively

re-scores predictions under incrementally more precise label poli-

cies, using a series of de-encoder modules comprised of decoder

and encoder pathways. Notice a heavy reduction in false positives

(red) as phases progress, while true positives (green) are retained.

fying. Intuitively, we expect that both feature diversification

and refinement are important components to pair together.

Therefore, we explore how to approximate an ensemble

of networks using a stackable lightweight decoder-encoder

module and incorporating an autoregressive1 flow to con-

nect them, as illustrated in Fig. 1. We formulate our frame-

work as a series of phases where each is a function of the

previous phase feature maps and classification predictions.

Our decoder-encoder module is made of bottom-up and top-

down pathways similar to [16, 19, 20, 23]. However, rather

than using bilinear or nearest neighbor re-sampling fol-

lowed by conventional convolution, we propose memory-

efficient convolutional re-sampling layers to generate fea-

tures and re-sample simultaneously in a single step.

1We adopt naming distinction of autoregressive (vs. recurrent) as a

network conditioned on previous predictions without the constraint of re-

peated shared weights, inspired by terminology in WaveNet [35] which

uses casual convolution instead of conventional recurrence.
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In essence, our approach aims to take the best world of

both the ensemble and recurrent approaches. For instance,

since past predictions and features are re-used, our network

is able to refine features when necessary. Secondly, since

our phases incorporate inner-lateral convolutions and do not

share weights, they are also capable to learn new and di-

versified features. Furthermore, we are able to design the

network with an efficient overhead due to the added flexi-

bility of using non-shared network weights for each phase

and by using memory-efficient convolutional re-sampling

layers. As a consequence, we are able to choose optimal

channel settings with respect to efficiency and accuracy.

To take full advantage of the autoregressive nature of

our network, we further assign each phase a distinct label-

ing policy which iteratively becomes more strict as phases

progress. In this way, we expect that the predictions of

each consecutive phase will become less noisy and produce

tighter and more clusterable prediction maps. Under the ob-

servation that our proposed autoregressive region proposal

network (RPN) obtains a high recall in the final phase, we

also incorporate a simple hard suppression policy into train-

ing and testing of our second-stage R-CNN classifier. Such

a policy dramatically narrows the subset of proposals pro-

cessed in the second-stage pipeline (∼65%), and greatly al-

leviates the runtime efficiency accordingly.

We evaluate our framework on the Caltech [5] pedestrian

detection dataset under challenging occlusion settings, us-

ing both the original and newly proposed [39] annotations,

and further on the KITTI [9] benchmark. We achieve state-

of-the-art performance under each test setting and report a

marginal overhead cost in runtime efficiency.

To summarize, our contributions are the following:

• We propose a multi-phase autoregressive pedestrian

detection system inside a RPN, where each phase is

trained using increasingly precise labeling policies.

• We propose a lightweight decoder-encoder module to

facilitate feature map refinement and message passing

using convolutional re-sampling layers for memory-

efficient feature pathways.

• We achieve state-of-the-art performance on Caltech [5]

under various challenging settings, and competitive

performance on KITTI [9] pedestrian benchmark.

2. Related Work

Ensemble Networks: Recent top-performing methods [7,

34, 37] on detection have employed ensemble-based tech-

niques where predictions from multiple deep convolutional

neural networks (CNNs) are fused. For instance, [7] pro-

pose a soft-weighting scheme using an ensemble of inde-

pendent detectors, which demonstrate high accuracy with

fused scores. However, one drawback is having multiple

CNNs in memory and processing each in parallel. Thus,

(a) Autoregressive Flow (b)  Ensemble (c)  Recurrent 

Shared weights 

Figure 2. Predictions of our autoregressive network (a) are directly

conditioned on past feature maps as recurrent network (c) and do

not share weights between phases as ensemble network (b). Unlike

either, our network is further conditioned on past predictions.

both the scalability as networks become larger and usability

in memory-constrained systems are lessened. Further, [1]

form a small ensemble by fusing RPN scores with the scores

of a R-CNN detector and demonstrates improved perfor-

mance. Compared to these methods, our single RPN func-

tions as an ensemble of inter-connected small networks,

which can improve the precision without critically obstruct-

ing runtime or memory efficiency.

Cascaded Networks: A similar line to ensemble net-

works take form of cascaded detection systems [3, 24, 25],

which build on a series of R-CNN detectors and function

on cropped region-of-interests (RoIs) generated by a static

proposal network. In contrast, our work focuses as a fully

convolutional cascade inside a proposal network. There-

fore, our network is more equipped to utilize contextual

cues of surrounding detections to inform suppression of du-

plicate detections, whereas cropped RoIs are processed in-

dependently of other proposals. Liu et al. [21] propose su-

pervision using incremental labeling policies similar to our

approach. However, rather than making immediate predic-

tions based only on previous predictions, we develop new

features through our decoder-encoder pathway.

Recurrent Networks: Recurrent networks are a power-

ful technique in many challenging procedural [11, 22] and

temporal [4, 29, 31] computer vision problems. Recently, it

has been further demonstrated in urban object detection [26]

and person head detection [33]. For instance, [33] uses

recurrent LSTM to iteratively detect a single person at a

time until reaching an end condition, thus side-stepping

the need to perform non-maximum suppression (NMS) in

post. In contrast, [26] proposes a rolling recurrent convolu-

tion (RRC) model which refines feature maps and produces

new detections at each step. From this respect, our pro-

posed method is similar to RRC, but with two critical dif-

ferences. Firstly, the networks of our phases are not shared.

This enables us to learn specialized (ensemble-like) features

in each phase and gives more freedom in network design

of a phase, which may aid runtime efficiency when using

conservative designs. Secondly, we base each phase con-

ditioned on previous feature maps and predictions, which

form a more potent autoregressive foundation. We show a

high-level comparison of our autoregressive network, en-

semble networks, and recurrent networks in Fig. 2.
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Figure 3. Overview of our proposed AR-RPN framework (left) and detailed illustration of our de-encoder module (right). The de-encoder

module consist of top-down and bottom-up pathways with inner-lateral convolution between pathways to produce diversified features, as

well as convolutional re-sampling layers (s denotes convolutional stride) ei and di for memory-efficient feature generation. We further

condition predictions on the previous phase predictions through concatenation within fk(·).

Encoder-Decoder Networks: Many recent works [16,

19, 20, 28] have explored multi-strided feature maps re-use

within computer vision. Each variant of architectures utilize

a series of convolution, feature aggregation (concat, resid-

ual), and up-sampling / pooling layers in order to form an

encoder-decoder structure. Similar to the network structure

in [23] for human pose estimation, we incorporate stackable

top-down and bottom-up pathways. However, in contrast

to prior work, we design our de-encoder module without

explicitly using bilinear or nearest neighbor re-sampling.

Instead, we uniquely blend the feature generation and re-

sampling into a single convolution layer using a fractional

stride (↑) or strided convolution (↓), making the travel nodes

in our streams as compact as possible. We show in ablation

that a single convolutional re-sampling layer consumes low

memory and performs better compared to the conventional

two-step techniques previously used.

3. Autoregressive Detector

Our proposed framework is made up of two stages: an

autoregressive RPN hence referred to as AR-RPN, and a

second-stage R-CNN detector each founded on [27,38]. We

collectively refer to both stages as AR-Ped. As shown in

Fig. 3, AR-RPN consists of multiple phases, where each

predicts classification scores and passes these predictions

and their features into the next phase. Each phase is con-

nected to the last through a bottom-up and top-down path-

ways, which form a lightweight decoder-encoder module.

This module is stackable onto the backbone RPN and onto

itself repeating. We supervise each phase to jointly learn

increasingly more precise predictions by imposing a stricter

labeling policy to consecutive phases, thereby producing

more peaky and clusterable classifications in the final phase.

We apply the box transformations, NMS, and a hard sup-

pression policy to the final predictions for which the remain-

ing subset are used to train a specialized R-CNN detector.

3.1. De­Encoder Module

To perform autoregressive detection in a single model,

we design a stackable decoder-encoder module, termed de-

encoder, where its top-down pathway leverages past feature

maps and its bottom-up pathway encodes stronger seman-

tics. Following [19], we give each pathway the ability to

learn from feature maps at multiple depths of the backbone

network. Importantly, our design encourages the highest

level features to remain at the lowest resolution where ob-

ject detection functions most efficiently. Intuitively, the de-

encoder enables the network to look back at previous fea-

tures and learn more advanced features during re-encoding.

Let us recall that typical network architectures, e.g.,

VGG-16 [30] and ResNet-50 [12], function from low to

high stride levels using a series of convolution and pool-

ing layers. We denote the set of strides of a backbone net-

work as S, where 2i−1 is the down-sampling factor of the

ith stride level preceding a pooling operation. In pedestrian

detection, it is common to have n = 5 unique stride levels

such that S = {1, 2, 4, 8, 16}. The hyperparameters of the

de-encoder module include a designated target stride t and

channel width ci specific to each stride, which respectively

control how far up in resolution the phase should de-encode

and how many channels at each stride should be learned.

The primary goal of the de-encoder module is to produce

finer features at each level from the target stride t to the fi-

nal stride n of the network. Denoting C
k = {Ck

t , . . . ,C
k
n}
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as the refined features of the kth phase at each stride, gk(·)
as the set of convolutional and ReLU layers, Φk the respec-

tive weights, and tk the target stride of feature maps to de-

encode and refine, the autoregressive nature of the feature

generation can be expressed as:

C
k = gk(C

k−1 | Φk, tk). (1)

Hence, each phase of the network takes as input the previ-

ous phase feature maps and produces more advanced fea-

tures. Initial features C1 are given from top-most layers at

corresponding strides from the backbone (e.g., in VGG-16

C
1
4 = conv4 3, C1

5 = conv5 3, and so forth).

Top-down pathway: We design our top-down decoder for

phase k by attaching a convolutional layer with BN [13] to

{Ck−1
t...n} feature maps, which produce inner-lateral convolu-

tions Li with corresponding channel widths ci. Rather than

using a two-step process comprised of a bilinear / nearest

neighbor up-sampling followed by convolution as done in

prior work, we denote di(·) as a convolutional up-sampling

layer which simultaneously performs 2× up-sampling and

feature reduction into channel width ci using fractionally

strided convolution. The combined operation is more effi-

cient in both memory and runtime. Starting with the highest

feature stride n, we use di(·) to iteratively decode features,

which are then fused with the lateral features at the decoded

stride Li through element-wise addition, denoted:

Di = di(Di+1) + Li. (2)

We begin with the base case of Dn = Ln, and repeat this

procedure until the target stride feature map Dt is reached.

In theory, the top-down pathway enables high-level seman-

tics to be passed down through the decoded term di(Di+1)
and low-level features to be re-examined using Li.

Bottom-up pathway: We design the bottom-up encoder

in the opposite manner as the decoder. We first attach a

convolutional layer with BN to each {Dk−1

t+1...n} which each

produce new laternal features L′

i with ci channels. Similar

to the decoder pathway, we denote ei(·) as a single con-

volutional down-sampling layer which simultaneously per-

forms 2× down-sampling and feature expansion into chan-

nel width ci using strided convolution, rather than conven-

tional two-step process used in previous work. We use ei(·)
to iteratively encode the features at each stride, which are

then fused with the lateral features of the encoded stride L
′

i

via element-wise addition, denoted as:

Ei = ei(Ei−1) + L
′

i. (3)

As the name suggests, the bottom-up encoder starts with the

lowest stride t and repeats until the nth stride is reached,

such that lateral features at t is Et = Dt. The bottom-up

pathway enables the network to encode low-level features

from the lowest stride through the ei(Ei−1) term and for

higher-level features to be re-examined using L
′

i.

3.2. Autoregressive RPN

We utilize the standard RPN head and multi-task loss

proposed in [10] following the practices in [38]. We pre-

define a set of anchor shapes which act as hyperparameters

describing the target pedestrian scales. The RPN head is

comprised of a proposal feature extraction (PFE) layer con-

nected to two sibling layers which respectively predict an-

chor classification (cls) and bounding box regression (bbox)

output maps, hence forming a multi-task learning problem.

Multi-phase Network: Our RPN is comprised of a total

of Nk = 3 phases. The first phase is simply the backbone

network starting with the modified VGG-16 [30] that has

strides of S = {1, 2, 4, 8, 16}. The second phase is a de-

encoder module which has a target stride t = 3 and channel

widths of c3 = 128, c4 = 256, c5 = 512. The final phase is

another stack of the de-encoder module following the same

channel settings but uses a memory conservative lower tar-

get stride of t = 4. The spatial resolution at ith stride can

be denoted as wi × hi =
W

2i−1 × H
2i−1 , where W ×H is the

input image resolution. Thus, the final proposal network

architecture forms a stair-like shape as in Fig. 3.

Autoregressive Flow: To enable the autoregressive flow

between phases, we place a PFE layer and classification

layer at the end of each phase encoder. For all phases except

the first, we concatenate the previous phase predictions into

the input features for the corresponding phase PFE layer. In

doing so, each phase is able to start with strong compact

features by directly utilizing its previous phase predictions.

Further, the PFE layer of the final phase Nk produces the

bounding box regression output map, since these features

are the most precise and peaky within the network.

Formally, we denote functions fk(·) and pk(·) as the kth

phase PFE layers and classification layers respectively. We

build f(·) as a convolutional layer with 3 × 3 kernel and

512 output channels followed by a ReLU layer, while p(·)
a convolutional layer with 1 × 1 kernel and outputs chan-

nels 2× the number of anchors (A). Thus, pk(·) forms an

autoregressive function of previous phase predictions with

an output dimension of w5 × h5 × 2A, via:

Pk = pk(fk(Pk−1 ‖ C
k
n)), (4)

where Pk−1 is the classification feature map of the previous

phase, aka, past predictions, ‖ is the concatenation operator,

and C
k
n is the last encoded feature map of the kth phase.

As defined, the PFE fk(·) and classification layer pk(·) are

conditioned autoregressively on past predictions which log-

ically act as compact but powerful semantic features. In

this way, each phase is more free to learn new features Ck
n

to directly complement the past predictions. In essence, the

autoregressive flow can be seen as running memory of the

most compact and strong features within the network.
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Classification Task: Each classification layer which pro-

ceeds a PFE layer is formulated as proposed in [27] fol-

lowing experimental settings of [1]. Formally, given a PFE

layer with dimensions w × h, the designated classification

layer predicts a score for every spatial location of the im-

age (x, y) ∈ R
w×h against every predefined anchor shape

a ∈ A, and every target class. Every spatial location of the

prediction map is therefore treated as a distinct box with its

own corresponding classification score. To produce labels

for each box, a labeling policy is adopted using a hyperpa-

rameter h that controls the box criteria of Intersection over

Union (IoU) with ground truths in order to be considered

foreground. After every box is assigned a label according

to the labeling policy, each classification layer is supervised

using multinomial cross-entropy logistic loss as in [10].

Localization Task: The localization task is formed using

the same set of anchor boxes described in the classification

task. The localization task aims to perform bounding box

regression that predicts a bounding box transformation for

each foreground box towards the nearest pedestrian. A pro-

posal box is considered nearby a pedestrian ground truth if

there is at least h intersection over union between the two

boxes. The box transformation is defined by 4 variables

consisting of translation (tx, ty) and scale factors (tw, th)
such that when applied will transform the source box into

the target ground truth. We train the bounding box regres-

sion values using Smooth L1 loss [10].

Incremental Supervision: In order to better leverage the

autoregressive and de-encoder properties of AR-RPN, we

choose to assign different classification labeling policies

onto each consecutive phase. We emphasize that the de-

encoder modules enable the network to adapt and become a

stronger classifier, which can be exploited to produce more

accurate and tighter classification clusters when supervised

with incrementally stricter labeling policies.

Let us briefly discuss the trade-offs regarding different

labeling policies. Consider using a labeling policy of h = 1,

which is approximately equivalent to requiring the network

output a single box for each pedestrian and thus the im-

balance of classes may be difficult. In contrast, as a la-

beling policy becomes more lenient at h = 0.5, the clas-

sification becomes more balanced but produces many false

positives as duplicate detections. In theory, bounding box

regression will reduce the impact of double detections by

transforming boxes into clusters which can be suppressed

by NMS. Ideally, a network has either high-performing

bounding box regression and/or tight clusterable classifi-

cation maps, since both enable NMS to cluster duplicate

detections. Therefore, rather than using a single discrete la-

beling policy of h = 0.5, we assign lenient-strict policies

h1 = 0.4, h2 = 0.5, h3 = 0.6, to each phase classifica-

tion layer respectively. In contrast to [21], we enforce in-

cremental supervision between de-encoder modules rather

than being applied immediately in quick succession. In con-

sequence, our classification score maps are supervised to

gradually become more peaky and clusterable.

Loss Formulation: In addition to the classification and

bounding box regression losses, we further add auxiliary

losses in the form of weak semantic segmentation as in [1].

Specifically, during training we add a binary semantic seg-

mentation layer to each stride of the first top-down pathway

to act as an auxiliary loss and accelerate training. We for-

mally define the joint loss terms incorporating phase classi-

fication softmax loss Lcls, final phase localization Smooth

L1 loss Lbbox, and each softmax auxiliary loss Lseg as:

L =

Nk∑

k=1

λkLcls + λbLbbox + λs

5∑

i=3

Lseg, (5)

where k corresponds to phases 1 → Nk of the full net-

work, and i represents stride for each auxiliary segmenta-

tion layer of the backbone network. We use Caffe [14] with

SGD following the settings in [38] in our training. We set

λ1 = λ2 = 0.1, λ3 = 1, λb = 5, and λs = 1.

3.3. R­CNN Detector

Most pedestrian detection frameworks are derivatives of

Faster R-CNN [27], and hence incorporate a second-stage

scale-invariant region classifier termed as R-CNN. Follow-

ing [1], we utilize a modified VGG-16 as a R-CNN that

functions on cropped RGB regions proposed by AR-RPN,

utilizes a strict labeling policy, and fuses its scores with the

RPN. However, unlike past methods we impose a simple

hard suppression policy that suppresses all box proposals

with a score less than a hyperparameter z. This has two

advantages. Firstly, it greatly improves runtime since only

a subset of proposals need to be processed. Secondly, by

focusing on only the hard samples leftover from the RPN,

the R-CNN learns specialized classification similar to the

motivation of the AR-RPN.

Loss Formulation: As in the AR-RPN, we also use soft-

max loss to train the R-CNN. We use a strict labeling policy

requiring h ≥ 0.7 IoU for foreground, a weak segmentation

auxiliary loss Lseg , and height sensitive weighting scheme

w as detailed in [1]. We set z = 0.005 to impose a score

suppression of the RPN proposals and eliminate confident

background proposals from being re-processed. In practice,

the suppression dramatically reduces the search space for

both efficiency and accuracy while critically keeping recall

unaffected. Thus, we denote the R-CNN loss as:

L =
∑

j

wjLcls(cj , ĉj) + Lseg, if cj ≥ z, (6)

where j corresponds to each proposal of AR-RPN, c is the

classification result of the R-CNN, and ĉ is the class label.

We use Caffe to train the R-CNN following settings of [1].
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Caltech Reasonable Caltech Occlusion KITTI

MRO
−2 MRO

−4 MRN
−2 MRN

−4 PartialO HeavyO RT (ms) Easy Mod. Hard

MS-CNN [2] 9.95 22.45 8.08 17.42 19.24 59.94 64 83 .92 73 .70 68.31

RRC [26] − − − − − − 75 − 75.33 −
RPN+BF [38] 9.58 18.60 7.28 16.76 24.23 74.36 88 75.58 61.29 56.08
F-DNN [7] 8.65 19.92 6.89 14 .75 15.41 55 .13 − − − −
TLL(MRF)+LSTM [32] 7.40 − − − − − − − − −
ALFNet [21] − − 6.10 − − − − − − −
SDS-RCNN [1] 7 .36 17 .82 6.44 15.76 14.86 58.55 95 − 63.05 −

RepulsionLoss [36] − − 5 .00 − − − − − − −
FRCNN+ATT-vbb [41] 10.33 − − − − 45.18 − − − −
PDOE+RPN [42] 7.60 − − − 13 .30 44.40 − − − −
GDFL [18] 7.85 19.86 − − 16.74 43 .18 − 84.61 68.62 66.86
DSSD [8]+Grid [15] 10.85 18.20 − − 24.28 42.42 − − − −

AR-RPN (ours) 8.01 21.62 5.78 15.86 16.30 58.06 86 − − −
AR-Ped (ours) 6.45 15.54 4.36 11.39 11.93 48.80 91 83.66 73.44 68 .12

Table 1. Comprehensive comparison of our frameworks and the state-of-the-art on the Caltech and KITTI benchmarks, in both accuracy

and runtime (RT). We show the Caltech miss rates at multiple challenging settings, with both the original (O) and new (N ) annotations,

and at occlusion settings with the original annotations and FPPI range MRO
−2. Further, we evaluate the KITTI pedestrian class under easy,

moderate, and hard settings, with mean Average Precision (mAP) [9]. Boldface/italic indicate the best/second best performance.

4. Experiments

We evaluate our proposed AR-Ped framework on two

challenging datasets: Caltech [5, 6] and KITTI [9]. We per-

form experiments ablating our approach from the perspec-

tive of design choices and hyperparameters. We further ex-

amine the qualitative changes and analyze the quantitative

peakiness in detections across phases.

4.1. Caltech

The Caltech [5,6] dataset is a widely used benchmark on

pedestrian detection that contains 10 hours of video taken

from an urban driving environment with ∼350,000 bound-

ing box annotations and 2,300 unique pedestrians. We use

the Caltech10× for training and the Caltech reasonable set-

ting [6] for testing, unless otherwise specified. The evalua-

tion uses a miss rate (MR) metric averaged over a false pos-

itive per image (FPPI) range of [10−2, 100] and also a more

challenging metric over the range [10−4, 100], respectfully

referred to as MR−2 and MR−4. Recently, new annotations

are released [39] to correct the official annotations in terms

of consistency and box alignment. For completeness, we

evaluate on both the original and the new annotations, de-

noted respectively as MRO and MRN .

We compare our work to the state-of-the-art pedestrian

detection methods of Caltech with respect to the core ex-

perimental configurations of using each combination of

original/FPPI setting, and partial/heavily occlusion within

the original annotation space as defined in [5]. We limit

our comparison to the top-2 methods of any sub-category

trained using Caltech10× dataset since these comprise the

most highly competitive methods. We also emphasize that

we are among the few methods to comprehensively evaluate

and report each setting, and release our source code avail-

able at http://github.com/garrickbrazil/AR-Ped.

Our method advances the state-of-the-art on all but one

evaluation setting, as detailed in Table 1. Under the most

common benchmark reasonable setting, we achieve a miss

rate of 6.45% (↓ 0.91) and 4.36% (↓ 0.64) on the official

annotations MRO
−2 and new annotation MRN

−2 respectively.

Further, our approach has increased robustness to partial oc-

clusion (↓ 1.37% miss rate). Compared to methods which

do not explicitly address occlusion [1, 2, 7, 38], our method

also improves w.r.t heavy occlusion (↓ 6.33% miss rate).

Yet, our method underperforms on heavy occlusion com-

pared to work specially designed to target occlusion prob-

lem [15, 18, 36, 42], which is orthogonal to our work.

We further produce a runtime analysis for state-of-the-art

works with public code using the same controlled machine

with NVIDIA 1080 Ti GPU, as summarized in Table 1. Our

method retains a competitive runtime efficiency due to the

light overhead design of our de-encoder module while still

improving accuracy in all but one setting.

4.2. KITTI

KITTI is a popular urban object detection dataset which

offers annotations for cars, pedestrians and cyclists. We use

the official training set of 7,481 images and evaluate on the

standard 7,518 test images. We adopt the settings and core

training code of [2] in order to initialize good starting hy-

perparameters. However, due to GPU memory constraints

we set the input image scale to 576 height resolution and

achieve competitive performance on the pedestrian class, as

reported in Table 1. As described in [1], high performing
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Nk c size MRO
−2 MAC (G) Runtime (ms)

1 M 10.16 217.9 68
2 M 8.32 429.3 80
3 S 8.62 255.3 74
3 M 8.01 321.3 86
3 L 8.33 429.3 115
4 M 8.68 355.9 97

Table 2. The performance with different parameters and num-

bers of phases under the Caltech reasonable MRO
−2 setting. We

further detail the efficiency of each setting in terms of multiply-

accumulate (MAC) and runtime on an NVIDIA 1080 Ti.

pedestrian detectors [1,17,38] on Caltech and KITTI do not

usually have high correlation. We emphasize that our AR-

Ped is among the first to report high performance for both

datasets, which suggests the generalization of our model to

pedestrian detection rather than a specific dataset.

4.3. Ablations

All ablation experiments use our AR-RPN and the Cal-

tech test set under the reasonable MRO
−2 FPPI setting, as

this is the most widely tested setting on Caltech.

What are optimal de-encoder settings? In order to an-

alyze the de-encoder module, we ablate its parameters in

each phase concerning channel widths at each feature stride

and target strides to de-encode. Our primary method of AR-

RPN uses what we refer to as medium channel width set-

tings of cM = {128, 256, 512}. We further denote small

and large channel settings such that cS = {64, 128, 256}
and cL = {256, 512, 512}, then train our AR-RPN with

other settings kept consistent. Surprisingly, the small and

large channel widths function similarly but neither as well

as the medium, which roughly follows the rules-of-thumb

channel settings outlined in VGG-16 [30]. For instance, the

cL and cS achieve 8.33% (↑ 0.32%) and 8.62% (↑ 0.61%)

miss rate, as detailed in Table 2. This suggests a difficulty

when over or under expanding channels compared to the c

width of source feature maps in C
1.

We further analyze the runtime complexity of the de-

encoder modules under each proposed setting in Table 2.

Overall, we observe that channel width settings have a large

effect on both multiply-accumulate (MAC) and runtime ef-

ficiencies of the AR-RPN. Specifically, channel width set-

tings of cS , cM , and cL respectively slow down by 8%,

26%, and 69% compared to Nk = 1 baseline.

What is the effect of convolutional re-sampling? Un-

like previous decoder-encoder works [16, 19, 20, 23, 28],

our module combines its re-sampling and feature genera-

tion into single convolutional re-sampling layers using ei-

ther stride of 2 or fractional 1

2
strides. To better understand

the importance of this combined operation, we split every

convolutional re-sampling layer e(·) and d(·) into 2 separate

layers: a bilinear re-sampling layer and a convolution fea-

Labeling Policy MRO
−2

no autoregressive 9.06
strict → lenient 9.03

moderate → moderate 8.94
strict → strict 8.43

lenient → strict 8.01

Table 3. The effects of labeling policies on the Caltech dataset

under the reasonable MRO
−2 setting.

ture generation layer. We observe that this separation causes

performance to degrade from 8.01% → 9.45% miss rate.

This degradation suggests that providing the network with

more freedom in re-sampling, as opposed to fixing the ker-

nels to bilinear (or nearest neighbor), is beneficial for detec-

tion. Moreover, separating the operations into 2-steps is nat-

urally less efficient concerning memory usage and runtime.

Specifically, using the proposed convolutional re-sampling

layers within AR-RPN consumes 41% less GPU memory

compared to using a 2-step bilinear / convolution process

and maintains a 16% faster runtime speed at inference.

How many autoregressive phases to stack? The use of

autoregressive phases is clearly a critical component of our

framework. Therefore, to understand its impact we ablate

our framework by varying the number of phases while keep-

ing all other settings constant. We report the performance

of each setting in Table 2. Unsurprisingly, as fewer phases

are used the performance is steeply reduced. For instance,

recall that our 3-stage method achieves 8.01% miss rate. By

removing a single phase, the miss rate increases by ↑ 0.32%
while only gaining 6 ms in runtime efficiency. When an-

other phase is removed, an extreme degradation of ↑ 2.15%
is observed. Hence, the effect of additional phases seems

to diminish with Nk such that the first additional phase has

the highest impact, as suggested by Fig. 4. We further add

a 4th phase following the same trend in incremental label-

ing (h4 = 0.7) and observe that the performance begins to

worsen. We suspect using more dense anchor sampling may

help train the very high IoU threshold.

How to choose incremental labeling policies? Label-

ing policies are an important component to our autoregres-

sive framework. We demonstrate the level of sensitivity

and importance when using a variety of incremental label-

ing policies. Since high value IoU labeling policies only

admit very well localized boxes as foreground, we refer to

the IoU labeling policy of h ≥ 0.4 as lenient, h ≥ 0.5
as moderate, h ≥ 0.6 as strict. We train the AR-RPN

using labeling techniques of strict-to-lenient, moderate-to-

moderate, strict-to-strict, and our primary setting of lenient-

to-strict, as shown in Table 3. The strict-to-lenient method

performs the worse among all settings, degrading by 1.02%
MR. The moderate-to-moderate performs similarly and de-

grades by 0.80% MR. As shown in Fig. 4, the primary la-

beling policy of lenient-to-strict enables the network to start
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RGB Detection 

Figure 4. We visualize the prediction maps P̃k of each phase by taking the maximum of foreground scores across all A anchors at each

spatial location, i.e., denoting Pk = {Pbg
k ,P

fg
k }, we define P̃k = maxA P

fg
k . We use scaled blue →yellow colors to visualize P̃k, where

yellowness indicates high detection confidence. The detections of each phase become increasingly tighter and more adept to non-maximum

suppression due to the incremental supervision for each phase (Sec. 3.2). We further analyze the prediction disagreements between phases

∆1 → 3, shown in the right column, where green represents the agreement of the foreground and magenta the regions suppressed.

0 20 

20 

0 

Figure 5. We analyze the mean prediction score (P̃k) of 20 uni-

formly sampled points along the center lines of X-direction (left)

and Y-direction (right) averaged over all ground-truth pedestrians

in Caltech test dataset, using bilinear interpolation when neces-

sary. We note that successive phase scores form more peaky in-

clines radiating from the center of the pedestrian.

with large clusters of pedestrian box detections and itera-

tively suppress, resulting in more tight and peaky predic-

tion maps. In contrast, strict-to-strict does not ease this

transition as well resulting in a degradation of 0.42% MR.

We further validate the effect by analyzing the score dis-

tributions across all pedestrians in the X/Y directions for

the Caltech test dataset, as shown in Fig. 5. We observe a

consistent trend in both directions where each successive

phase results in a sharper peak with respect to its mean

score. Each other labeling policy encourages the opposite

or encourages the same predictions but more accurately. On

a related point, we furhter examine the disagreements be-

tween phases (∆P1→3 colored magenta, Fig. 4) which re-

affirms phases logically agree on centroids of pedestrians.

This analysis further shows that most suppression appears

to be due to poorly localized boxes primarily in Y-direction

(e.g., offset from the legs or head of a pedestrian).

For completeness, we further evaluate the extreme case

where there is no incremental supervision or autoregressive

flow within the network as included in Table 3. In this case,

the core 3-phase network architecture is kept intact, except

the prediction layers and concatenation have been removed

from phases 1 → 2 and 2 → 3, therefore there is no in-

cremental labeling policy to be decided. In doing so, the

detection performance degrades by a considerable 2.14%
miss rate, which further suggests that making intermediate

predictions with the AR-RPN is a critical component to the

classification power of our proposed framework.

5. Conclusion

In this work, we present an autoregressive pedestrian

detection framework which utilizes a novel stackable de-

encoder module with convolutional re-sampling layers. The

proposed AR-Ped framework is able to autoregressively

produce and refine both features and classification predic-

tions. In consequence, the collective phases approximate an

ensemble of increasingly more precise classification deci-

sions and results in an overall improved classifier for pedes-

trian detection. We specifically supervise each phase using

increasingly stricter labeling policies such that each phase

of the network has similar recall as the last but with tighter

and more clusterable prediction maps. We provide compre-

hensive ablation experiments to better understand and sup-

port each proposed component of our framework. We attain

new state-of-the-art results on the Caltech dataset through-

out many challenging experimental settings and achieve a

highly competitive accuracy on the KITTI benchmark.
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