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Abstract

We present a technique for synthesizing a motion blurred

image from a pair of unblurred images captured in succes-

sion. To build this system we motivate and design a differen-

tiable “line prediction” layer to be used as part of a neural

network architecture, with which we can learn a system to

regress from image pairs to motion blurred images that span

the capture time of the input image pair. Training this model

requires an abundance of data, and so we design and exe-

cute a strategy for using frame interpolation techniques to

generate a large-scale synthetic dataset of motion blurred

images and their respective inputs. We additionally capture

a high quality test set of real motion blurred images, syn-

thesized from slow motion videos, with which we evaluate

our model against several baseline techniques that can be

used to synthesize motion blur. Our model produces higher

accuracy output than our baselines, and is several orders of

magnitude faster than baselines with competitive accuracy.

1. Introduction

Though images are often thought of as capturing a sin-

gle moment in time, all images in fact capture a duration

of time: an image begins when a camera starts collecting

light, and ends when that camera stops collecting light. If

the camera or the scene move while light is being collected,

the resulting image will exhibit motion blur. That blur may

indicate the speed of a subject or may serve to separate a

subject from the background, depending on the relative mo-

tion of the camera and the subject (see Figure 1(b)).

Motion blur is a valuable cue for image understanding.

Given a single image containing motion blur, one can es-

timate the relative direction and magnitude of scene mo-

tion that resulted in the observed blur [7, 8]. This motion

estimate may be semantically meaningful [33], or may be

used by a deblurring algorithm to synthesize a sharp im-

age [5, 9, 17, 23]. Recent work has relied on deep learn-

ing for removing motion blur and inferring the underlying

motion of the scene [6, 11, 31]. Deep learning techniques

(a) A pair of input images.

(b) Our model’s output.

Figure 1. In (a) we present two images of a subject moving across

the image plane. Our system uses these images to synthesize the

motion blurred image in (b), which conveys a sense of motion and

separates the subject from the background.
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tend to need an abundance of training data to work well,

and so to train these techniques one must generate large

amounts of synthetic training data by synthetically blurring

sharp images. These techniques also tend to use synthetic

data (usually sharp images convolved by real or synthetic

“camera shake” kernels) for quantitative evaluation, using

real motion-blurred images only to produce qualitative vi-

sualizations. Naturally, the ability of these learned models

to generalize to real images depends on the realism of their

synthetic training data. In this paper, we treat the inverse

of this well-studied blur removal task as a first class prob-

lem. We present a fast and effective way to synthesize the

training data necessary to train a motion deblurring algo-

rithm, and we quantitatively demonstrate that our technique

generalizes from our synthetic training data to real motion-

blurred imagery.

Talented photographers sometimes use motion blur for

artistic effect (Figure 2(a)). But composing an artful

motion-blurred photograph is a difficult process, typically

requiring a tripod, manual camera settings, perfect timing,

expert skill, and much trial and error. As a result, for ca-

sual photographers motion blur is likely to manifest as an

unwanted artifact (Figure 2(b)). Because of the difficulty in

using motion blur effectively, most consumer cameras are

designed to take images with as little motion blur as possi-

ble — though if noise is a concern some motion blur is un-

avoidable, especially in low-light environments or in scenes

with significant motion [12]. Artistic control over motion

blur is therefore out of reach for most casual photographers.

By allowing motion blurred images to be synthesized from

the conventional unblurred images that are captured by stan-

dard consumer cameras, our technique allows non-experts

to create motion blurred images in a post-capture setting.

This is analogous to how recent progress in depth estima-

tion has enabled post-capture on-device depth-of-field ma-

nipulation, also known as “Portrait Mode” [2, 4, 32].

Motion blur is also an important tool in cinematography,

where filmmakers will carefully adjust the shutter angle of

their camera to create a particular “film look”. As in pho-

tography, this requires expert domain knowledge and skill-

ful execution. Our system (or indeed any system that oper-

ates on pairs of frames) can be used to manipulate the mo-

tion blur of video sequences after the fact, by independently

processing all pairs of adjacent frames in the input video.

Motion blur synthesis has been extensively studied in the

rendering community [22], though these methods typically

require perfect knowledge of scene velocities and depths as

inputs. We instead target the most general form of this prob-

lem, and assume the only inputs available to our system are

unblurred input images, as is the case in most general vision

and imaging contexts.

To enable the varied image understanding and image ma-

nipulation tasks that require a method for creating motion

(a) Artful motion blur. (b) Unwanted motion blur.

Figure 2. Capable photographers can use motion blur to produce

striking photographs, as in (a). But for most casual photographers,

motion blur is more likely to manifest as an unwanted artifact in

an image that was intended to be completely sharp, as in (b).

blur, we present an algorithm that takes two sharp images

taken one after the other, as shown in Figure 1(a), and syn-

thesizes a corresponding motion blurred image, such as in

Figure 1(b). The synthesized image resembles an image

captured over the time spanned by the input images — the

image “starts” at the first input image, and “ends” at the sec-

ond input image. To achieve this, we adapt recent advances

in machine learning to the task of predicting line kernels for

motion blurring image pairs.

We build upon the recent success of convolutional neu-

ral networks [16] and end-to-end training on tasks similar to

ours, such as optical flow [13, 30, 34] and frame interpola-

tion [14, 24, 25, 26]. We use state-of-the-art frame interpo-

lation to synthesize training data for our motion blur model,

and demonstrate that our model, trained directly on the task

of synthesizing motion blur, produces improved results on

real images over baselines derived from optical flow and

frame interpolation techniques. Though frame interpolation

achieve only slightly decreased accuracy, our technique is

many orders of magnitude faster, and is thereby better suited

to the online synthesis of training data in a deep learning

context, and is easier to deploy in a consumer-facing ren-

dering or smartphone-photography setting.

The remainder of this paper is structured as follows: In

Section 2 we discuss the nature of motion blur as a func-

tion of linear motion and motivate our novel line prediction

layer. In Section 3 we define a deep neural network archi-

tecture based on our line prediction layer. In Section 4 we

construct a synthetic dataset that is used for training, and a

real-world dataset that is used for evaluation. In Section 5

we evaluate the performance of our model compared to its

ablations and variants, and to techniques in the literature

that can be adapted to the task of synthesizing motion blur.
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2. Problem Formulation

We aim to take two adjacent images from a camera, say

from a video or from a “burst” of photos [12], and from

them synthesize a motion blurred image that spans the du-

ration between the input images. That is, letting I1 be the

image exposed for the duration [s1, t1] and I2 be the image

exposed for the duration [s2, t2] (where s1 < t1 < s2 < t2),

we synthesize the long exposure photograph I1→2, which

spans the duration [s1, t2].
Similar to the assumptions of optical flow, which de-

scribes motion between two frames in terms of per-pixel

velocity vectors, we assume locally linear motion between

the two input images. We further assume that each pixel in

the motion blurred image can be linearly interpolated from

pixels lying on lines drawn from the corresponding pixel in

each of the input images. While these assumptions are not

always valid—for example, in the case of objects that are

rotating or oscillating—we will demonstrate that this sim-

ple linear model is sufficiently expressive to produce high

quality results.

Our neural network architecture uses a novel “line pre-

diction” layer, which we define here. For each pixel in our

images Ii (i ∈ {1, 2}) we predict a line, where one endpoint

of that line is at the pixel’s location (x, y) and the other end-

point is at (x+∆x
i (x, y), y +∆y

i (x, y))—the pixel’s loca-

tion when advected by some predicted offset ∆i. The line is

composed of N evenly-spaced discrete samples, for which

we also predict Wi(x, y, n), a weighting for each sample.

Our final predicted image I1→2 is defined as the weighted

average of the two input images according to the discrete

samples along all lines:

I1→2(x, y) =
∑

i∈{1,2}

N−1
∑

n=0

Wi(x, y, n)× (1)

Ii

(

x+

(

n

N − 1

)

∆x
i (x, y), y +

(

n

N − 1

)

∆y
i (x, y)

)

,

where Ii(x, y) is the result of bilinear interpolation of Ii at

any continuous location (x, y).
We refer to this approach as “line prediction”, analo-

gously to the “kernel prediction” literature [3, 21, 25]. Our

model can be thought of as a form of kernel prediction, as

the weighted average in Equation 1 can be rasterized into

a per-pixel convolution with a discrete kernel composed of

the sum of the weighted bilinear interpolation kernels used

in line prediction—though reformulating the blur in this

way makes it significantly more expensive to compute.

For our line prediction technique to work properly, we

must reason about the relationship between our line off-

sets ∆i and our sampling density. Since the standard deep

learning techniques we use for estimating the parameters of

our line prediction layer have difficulty producing variable-

length outputs, the number of estimated line samples N is

(a) Temporal undersampling (b) Temporal supersampling

Figure 3. Temporal sampling is critical to the construction of our

model and our training data. If a motion blurred image is syn-

thesized using significantly fewer samples than the maximum dis-

placement of any pixel across those samples, then that synthesized

image may be temporally undersampled. This results in discon-

tinuous artifacts along the direction of the motion, as in (a). If the

sampling density is sufficiently large with respect to image resolu-

tion and object motion then the synthesized images will not exhibit

any such artifacts, as in (b).

fixed. However, if the motion estimated at a given pixel is

significantly greater than the number of samples available

to reconstruct our predicted line, then our resulting motion

blurred image will be temporally undersampled, and will

therefore contain artifacts from these “gaps” when synthe-

sizing motion blur. See Figure 3 for a visualization of this

sampling issue. For this reason, when determining a value

for N , we must impose a bound on the magnitude of our line

endpoint displacements (∆x
i (x, y),∆

y
i (x, y)). We only ad-

dress the task of synthesizing motion blurred images whose

maximal displacement is 32 pixels in length, and we set

N = 17. We found that we are able to use half as many

samples as our maximum displacement because the kernel

used by bilinear interpolation effectively prefilters the con-

volution induced by our line prediction. This limit on pixel

displacement and sampling density is analogous to the sim-

ilar limits of kernel prediction-based video frame interpola-

tion techniques with regard to their kernel sizes.

Our decision to have our network predict a set of sam-

pling weights Wi(x, y, n) may seem unusual, as techniques

from the graphics literature tend to assign uniform weights

to pixels when rendering motion blur [20]. These learned

weights allow our algorithm to handle complex motions and

occlusions, and to hedge against certain failure modes. For

example, by emitting a weight of 0, our model can ignore

certain pixels during integration, which may be necessary if

the pixel of interest moves behind an occluder on its path

towards its location in the other frame. Because our syn-

thesis happens simultaneously in both the “forward” and

“backward” direction, our model can use these weights to

smoothly transition across images or to selectively draw

from one image but not the other, further improving its
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Figure 4. A visualization of our architecture, which takes as input a concatenation of our two input images and uses a U-Net convolutional

neural network to predict the parameters for our line prediction layer.

ability to reason about occlusion. Though our model is

constrained to linear motion, these weights can be used to

model an object as moving at a non-constant speed along

its line. For example, if an object accelerates towards its

destination, our model can synthesize a more accurate mo-

tion blur (without introducing any temporal undersampling

issues) by giving early samples higher weights than later

samples.

3. Model Architecture

Our model is built around the U-Net architecture of [28],

which feeds into our line prediction layer whose output is

used to synthesize a motion blurred image. The input to our

model is simply the concatenation of our two input images.

See Figure 4 for a visualization of our architecture.

The U-Net architecture, which has been used success-

fully for the related task of frame interpolation [14, 26], is

a fully-convolutional encoder/decoder model with skip con-

nections from each encoder to its corresponding decoder of

the same spatial resolution. Our encoder consists of five hi-

erarchies (sets of layers operating at the same scale) each

containing three ‘conv’ layers, and where all but the last hi-

erarchy are followed by a max pooling layer that downsam-

ples the spatial resolution by a factor of 2×. Our decoder

consists of four hierarchies, each with three conv layers that

are followed by a bilinear upsampling layer that increases

spatial resolution by a factor of 2×. Each conv layer uses

3×3 kernels and is followed by leaky ReLU activation [19].

We train our model end-to-end by minimizing the L1

loss between our model’s predicted motion blurred image

and our ground-truth motion blurred images. Our data aug-

mentation and training procedure will be described in more

detail in Section 5. We experimented with pretraining our

line prediction model using optical flow training data, as

prescribed in [34], but this did not appear to improve per-

formance or significantly speed up convergence. Our model

is implemented using TensorFlow [1].

4. Dataset

Training or evaluating our model requires that we pro-

duce ground truth data of the following form: two input

images, and an output image wherein the camera has in-

tegrated light from the start of the first image to the end of

the second image. Because large neural networks require an

abundance of data, for training we present our own synthetic

data generation technique based around video frame inter-

polation, which we use to synthesize motion blurred images

from conventional, abundantly available video sequences

(Sec 4.1). We take sets of adjacent video frames, synthesiz-

ing many intermediate images between those frames, and

average all resulting frames to make a single synthetic mo-

tion blurred image (where the original two frames can then

be used as input to our algorithm). These synthesized mo-

tion blurred images look reasonable and are easy to generate

in large quantities, but they may contain artifacts due to mis-

takes in the underlying video frame interpolation technique

and so have questionable value as a “test set”. Therefore, for

evaluation, where data fidelity is valued more highly than

quantity, we use a small number of real slow-motion video

sequences. The first and last frames of each sequence are

used as input to our algorithm, and the sum of all frames in

the sequence is used as the “ground-truth” motion blurred

image (Sec 4.2).

4.1. Synthetic Training Data

We manually created our own dataset directly from pub-

licly available videos, as this gives us precise control over

things like downsampling and the amount of motion present

in the scene, while allowing us to select for interesting,

high-frequency scene content. To construct this dataset, we

first extract sets of adjacent triplets from carefully chosen

video sequences, and then use those triplets to train a video

frame interpolation algorithm. This video frame interpo-

lation algorithm is then applied recursively to all triplets,

which allows us to synthesize a 33 frame interpolated se-
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quence from each triplet that can then be averaged to pro-

duce a synthetically motion blurred image. These images

are then treated as “ground truth” when training our model.

We downloaded ∼30,000 Creative Commons licensed

1080p videos from YouTube in categories that tend to have

significant amounts of motion, such as “Wildlife,” “Extreme

Sports,” and “Performing Arts.” We then downsampled

each video by a factor of 4× using bicubic interpolation to

remove compression artifacts, and then center-cropped each

sequence to a resolution of 270×270. From these video se-

quences, we extracted triplets of adjacent frames that satisfy

the following properties:

1. High frequency image content: Focusing training on

images with interesting gradient information tends to im-

prove training for image synthesis tasks such as our own, as

shown in [10]. We therefore rejected any triplet whose aver-

age gradient magnitude (computed using Sobel filters) over

all pixels was less than 13 (assuming images are in [0, 255]).
2. Sufficient motion: Scenes without motion are unlikely

to provide much signal during training. Therefore, for each

triplet we estimated per-pixel motion across adjacent frames

(using the fast optical flow technique of [18]) and only ac-

cepted triplets where at least 10% of each pixel’s flow had a

magnitude (∞-norm) of at least 8 pixels.

3. Limited motion: Our learned model and many of the

baseline models we compare against have outputs with lim-

ited spatial support, and we would like our training data to

lie entirely within the receptive field of our models. We

therefore discarded any triplet that contained a flow esti-

mate with a magnitude (∞-norm) of more than 16.

4. No abrupt changes: Significant and rapid changes

across adjacent frames in our video data are often due to

cuts or other kinds of video editing, or global changes in

brightness or illumination. To address this, we warp each

frame in each triplet according to its estimated motion and

discard triplets with an average L1 distance of more than 13
(assuming images are in [0, 255]).
5. Approximately linear motion: Our model architecture

is only capable of estimating and applying a linear motion

blur. Images that are not expressible using linear blurs will

therefore likely not contribute much signal during training.

We therefore compare the “forward” flow between the sec-

ond and third frame to the negative of the “backward” flow

from the first and second frame, and discard any triplets

with a mean disagreement of >0.8 pixel widths.

Note that (5) represents a kind of “co-design” of our al-

gorithm and our training data, in that we craft our dataset

to complement the assumptions of our model. To evaluate a

broader generalization of our model, we do not impose this

constraint on our “real” testing dataset.

To ensure diversity, we extract no more than 50 triplets

from each video, and no more than a single triplet from a

given scene within each video. This process resulted in

Figure 5. Here we show randomly chosen input/output pairs from

our synthetic training dataset. To generate this data we identify

triplets (shown in the first three columns) of adjacent frames that

satisfy our criteria for motion and image content, use those triplets

to train a video frame interpolation model, and apply that model re-

cursively on each triplet to generate intermediate frames which are

then averaged to synthesize a single motion blurred image (shown

in the last column). When training our motion blur model, we use

the first and last images of each triplet as input and the averaged

image as ground-truth.

>300,000 unique triplets, of which 5% are set aside for

validation with the remaining 95% used for training. This

training/validation split is carefully constructed such that all

triplets generated from any given video are assigned to ei-

ther the training or validation split — no video’s triplets are

present in both the training or validation splits.

With this dataset we then train a video frame interpola-

tion network based on [26], which will shortly be used to

produce the final motion blur training data we are pursu-

ing. Our frame interpolation network is the same model as

described in Section 3, but using a separable kernel predic-

tion layer of 33×33 learned kernels instead of our line pre-

diction layer. Our training procedure is described in more

detail in Section 5. The need to train this frame interpo-

lation model is why we chose to extract triplets from our

video sequences as opposed to just two frames, as the mid-

dle frame of each triplet can be used as ground-truth during

this training stage (but will be ignored when training our

motion blur model). After training, this frame interpolation

model takes two frames as input, and from them synthesizes

an output frame that should lie exactly in between the two

input frames. We apply this network to our triplet of video
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frames, first using the first and second frames of the triplet

as input to the network to synthesize an in-between frame,

then using the second and third frames to synthesize another

in-between frame. We then apply this same process recur-

sively using the real and newly-interpolated frames as input.

This is done 4 times, resulting in a 33 frame sequence of

interpolated frames. These frames are all then averaged to

produce a synthetically motion blurred image. Note that our

recursive interpolation process yields 15 frames between

each image in our triplet. Because our previously-described

data collection procedure omitted adjacent frames with a

motion of more than 16 pixels, this means that we should

expect our interpolated images to have a motion of less than

one pixel width per frame. This means that our resulting

motion blurred images should not suffer from temporal un-

dersampling. See Figure 5 for some examples of our syn-

thetic training data.

4.2. Real Test Data

For evaluation purposes we would like a small, high-

quality dataset that is not vulnerable to the artifacts that

may be introduced by frame interpolation algorithms, and is

as close as possible to a real in-camera motion blurred im-

age. Although it is easy to acquire motion blurred images

by themselves, acquiring the two input images alongside

that motion blurred image is not possible with conventional

camera sensors. We therefore capture a series of short slow

motion videos, where the first and last frames of each video

are used as input to our system, and the per-pixel mean of

all frames is used as the ground-truth motion blurred image.

Our dataset was gathered by a photographer using the Pana-

sonic LUMIX GH5s, which records videos at 240fps. The

photographer was instructed to photograph subjects that are

well-suited to an artistic use of motion blur: people walk-

ing or running, vehicles moving, falling water, etc. Im-

ages were bicubicly downsampled by 2× to help remove

demosaicing and compression artifacts, and center-cropped

to 512×512 pixels. From each video we selected a span

of frames such that the total motion across the span is no

more than 32 pixels. Any sequences that exhibited any tem-

poral undersampling were removed. For each sequence we

generated a single motion blurred image by simply averag-

ing the frames, and we set aside the first and last frame of

each sequence for use as input to our model. Each sequence

has a variable length of frames, as we saw no need to omit

frames from each sequence if they happened to be tempo-

rally super-sampled. Our final dataset consists of 21 diverse

sequences. See Figure 6 and the supplement for examples.

5. Experiments

Our motion blur models, as well as our frame interpola-

tion model used to generate our synthetic data, were trained

distributedly over 8 NVIDIA Tesla P100 GPUs for 3.5M

iterations on batches of size 16 using the Adam optimiza-

tion algorithm [15] with a learning rate of α = 0.00002 and

momentum decay rates β1 = 0.9 and β2 = 0.998. Dur-

ing training we performed data augmentation by randomly

extracting a 256×256 crop from each image, and then ran-

domly applying a horizontal flip, vertical flip, and a 90◦

rotation. Training to convergence took ∼2.5 days.

We evaluate our model against five baseline algorithms:

A “naive” baseline that is simply the mean of the two in-

put images (see Figure 7(a)), the non-learned and non-deep

optical flow algorithm of [27], the state-of-the-art learned

flow method of [30], the video frame interpolation work of

[26] (which improves upon [25]), and the state-of-the-art

video interpolation work of [14]. We additionally evaluate

against three ablated versions of our model:

1. Direct Prediction: instead of using line prediction our

network directly estimates the motion blurred image, by re-

placing our line prediction model with a single 1×1 conv

layer that produces a 3 channel output.

2. Uniform Weight: we use uniform weights for each

sample along lines rather than learning weights (i.e., all

Wi(x, y, n) = 1/2N).

3. Kernel Prediction: instead of using line prediction we

use the separable kernel prediction of [26], by replacing our

line prediction layer with a single 1×1 conv layer at the

end of our network that produces a 65×65 separable kernel

(represented as a 65×1 and 1×65 kernel) at each pixel.

Our “kernel prediction” model has an inherent limitation,

as separable kernels are limited in their ability to represent

angled blur kernels. For example, the matrix corresponding

to a blur kernel of a diagonal line is full-rank and cannot be

represented well as a rank-1 matrix, so equivalently, the ker-

nel cannot be represented well by a separable kernel. This

limitation can be addressed by using non-separable kernels

as in [25], however, the large kernels needed for our applica-

tion require extreme amounts of memory that far exceeded

the limits of our GPUs when we attempted to use this ap-

proach for training.

To generate motion blurred comparisons from our op-

tical flow baselines, we employed the same line blurring

scheme as our ”uniform weight” model, and bilinearly sam-

ple N evenly-spaced values from the input images along

lines corresponding to the optical flow fields. These sam-

pled images are then averaged to produce a motion blurred

image. We found that both flow algorithms benefited signif-

icantly (a PSNR improvement of ∼5) from using the nega-

tive backward flow instead of the forward flow to produce

motion blur, so we adopted that strategy when evaluating

our baseline flow techniques. More sophisticated strategies

for gathering and scattering in forward and backward direc-

tions of object velocities have been used to synthesize mo-

tion blur in the graphics literature [20, 22], but these tech-

niques assume that perfect scene geometry is known and so
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(a) Input image 1 (b) Input image 2 (c) Non-input intermediate frames (d) Ground-truth motion blur

(e) PWC-Net [30] (f) EpicFlow [27] (g) SepConv [26] (h) Super SloMo [14]

(i) Ours (direct pred.) (j) Ours (uniform weight) (k) Ours (kernel pred.) (l) Our Model

Figure 6. Results for one scene from our test dataset. The ground truth image (d) is the sum of the input images (a) & (b) and of the

frames between those two images (c). We programmatically select the three non-overlapping 32×32 sub-images with maximal variance

across all frames in (c) and present crops of those regions, rendered with nearest-neighbor interpolation and sorted by their y-coordinates.

We compare our model (l) against four baselines (e)-(h), and three ablations (i)-(k). See the supplement for additional results.

cannot be used for our task.

Comparisons against frame interpolation baselines were

conducted by recursively running frame interpolation on the

input image pair for 5 iterations, which results in a 33-frame

sequence — a sufficiently dense sampling given the limit

of 32-pixel displacements in our real test set. The result-

ing synthetic slow motion sequences were then averaged to

produce a motion blurred image.

Algorithm PSNR SSIM Runtime (ms)

Naive Baseline 28.06± 4.05 0.888± 0.087 -

PWC-Net [30] 29.93± 3.47 0.938± 0.057 39.5

EpicFlow [27] 30.07± 3.49 0.940± 0.057 96.3× 10
6

SepConv [26] 32.91± 4.60 0.954± 0.054 10.9× 10
4

Super SloMo [14] 33.64± 4.66 0.958± 0.048 13.7× 10
6

Ours (direct pred.) 33.97± 4.53 0.961± 0.044 34.7

Ours (uniform weight) 33.88± 4.68 0.959± 0.050 42.8

Ours (kernel pred.) 33.73± 4.31 0.961± 0.045 65.5

Our Model 34.14± 4.65 0.963± 0.045 43.7

Table 1. Performance on our real test dataset, in which we com-

pare our model to three of its ablated variants and five baseline

algorithms.

We primarily evaluate our model on the real test dataset

described in Section 4.2, shown in Table 1. We report the

mean PSNR and SSIM for the dataset, and note that our

model produces the highest value of both out of all base-

lines and ablations. Though at first glance the difference be-

tween models may appear small, the unusually high PSNR

of the “naive” baseline serves to anchor these scores and

suggests that small variations in scores are meaningful. The

two optical flow baselines are the lowest-performing tech-

niques, with the two video frame interpolation techniques

performing nearly as well as ours. However, the gap in run-

time between our model and the baseline techniques is quite

substantial, as our model is ∼300,000× faster. This is par-

tially due to our compact architecture and the fact that line

prediction is amenable to a fast implementation, but is also

because video frame interpolation techniques must predict a

33 frame sequence that is then averaged to produce a single

image, and so necessarily suffer a 33× speed decrease.

The reported runtimes of our model, its ablations, and

the technique of SepConv [26] are the mean of 1000 runs
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on a GeForce GTX 1080 Ti, at our test set image reso-

lution of 512×512. The runtimes of PWC-Net [30] and

Super SloMo [14] were reported by the authors of those

papers, who graciously ran their code on our data using a

NVIDIA Pascal TitanX (a faster GPU than the one used

for our model). The runtime for EpicFlow [27] was ex-

trapolated from the numbers cited in the paper, which were

produced on a 3.6Ghz CPU. Reported times for the opti-

cal flow methods are underestimates of their true runtimes,

as we only measure the time taken to generate their flow

fields, and do not include the time taken to render images

from those flow fields.

The reduced performance of our “uniform weight” abla-

tion appears to be due to its difficulty in handling occlusions

and motion boundaries, which appear to particularly benefit

from the learned sample weights. This can be seen in Fig-

ure 6(l), where our model appears to use its learned weights

to blur around the occlusions of the basketball net webbing.

The output of our model superficially resembles an op-

tical flow algorithm, in that the line endpoint ∆x
i (x, y) pre-

dicted at each pixel can be treated as a flow vector. Though

this is an oversimplification (our model actually predicts

a weighting for a set of points along this line and those

weights may be zero, effectively shortening or shifting this

line) it is illustrative to visualize our output as a flow field

and compare it to optical flow algorithms, as in Figure 7.

Because our model is trained solely for the task of syn-

thesizing motion blur, its “flow” often looks irregular and

inaccurate compared to optical flow algorithms, which are

trained or designed to minimized end point error of with re-

spect to scene motion. This difference manifests itself in a

number of ways: our model assigns a near-zero “flow” to

pixels in large flat regions of the image, because blurring a

flat region looks identical to not blurring a flat region and so

our training loss is agnostic in these flat regions. Also, our

model attempts to model the motion of things like shadows,

which optical flow algorithms are trained to ignore as they

do not represent motion of the underlying physical object.

This disconnect between apparent motion in an image and

true motion in world geometry may explain why our opti-

cal flow baselines perform poorly on our task. This differ-

ence between our model’s learned “flow” and explicit opti-

cal flow techniques is analogous to prior work on learning

monocular depth cues using defocus blur as a supervisory

cue [29].

As our test-set performance demonstrates, our model

performs well on diverse cases, including a variety of scene

content, types of motion, duration of blurs, and amounts of

blur in input frames. However, our model is limited in its

inability to handle motions larger than those in the training

dataset (32 pixels) and (similarly to other techniques) its in-

ability to render nonlinear motion blur.

In the supplemental video we present results in which

(a) Input images, averaged (b) Our Model’s ∆1(x, y)

(c) EpicFlow [27] (d) PWC-Net [30]

Figure 7. A subset of our model’s output can be visualized by

using the endpoint of each pixel’s predicted line as a flow vector.

Here we render our model’s “flow field” alongside two optical flow

algorithms. Our “flow fields” tend to look irregular, highlighting

the difference between training for accurate motion blur synthesis

and training for accurate motion estimation.

our system has been used to add motion blur to video se-

quences, by running on all pairs of adjacent video frames.

6. Conclusion

We have presented a technique for synthesizing motion

blurred images from pairs of unblurred images. As part of

our neural network architecture we have proposed a novel

line prediction layer, which is motivated by the optical prop-

erties of motion blur, and which is capable of producing

accurate motion blur even when faced with occlusion and

complex motion. We have described a strategy for using

frame interpolation techniques to generate a large-scale syn-

thetic dataset for use in training our motion blur synthesis

model. We additionally captured a ground truth test set of

real motion blurred images with their corresponding input

images, and with that we have demonstrated that our pro-

posed model outperforms prior work in terms of accuracy

and speed. Our approach is fast, accurate, and uses readily

available imagery from videos or “bursts” as input, and so

provides a path for enabling motion blur manipulation in

consumer photography applications, and for synthesizing

the realistic training data needed by deblurring or motion

estimation algorithms.
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