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Abstract

We present an end-to-end learned algorithm for seeded

segmentation. Our method is based on the Random Walker

algorithm, where we predict the edge weights of the under-

lying graph using a convolutional neural network. This can

be interpreted as learning context-dependent diffusivities

for a linear diffusion process. Besides calculating the exact

gradient for optimizing these diffusivities, we also propose

simplifications that sparsely sample the gradient and still

yield competitive results. The proposed method achieves

the currently best results on a seeded version of the CREMI

neuron segmentation challenge.

1. Introduction

Image segmentation is the task of partitioning an image

into regions that are meaningful for a given task. Seeded

segmentation is a popular semi-supervised variant, where

an oracle annotates one or more pixels per region with an

instance label, such that all seeds in a region share the same

label.

Most seeded segmentation pipelines involve two parts: a

first step that predicts, for each pair of adjacent pixels, if or

not they are likely part of the same region; and a second step

that ingests these predictions as well as the seed locations

and then infers the precise extent of each region. The second

step is often cast as inference in an undirected probabilistic

graphical model, either discrete [6] or continuous [13].

If no prior information on the nature of the images to be

segmented is available, the first step – boundary estimation

– is of necessity generic. It is then possible to use or train

some state of the art edge detection method (e.g. [19]) and

choose the parameters of the second step – inference – by

hand.

But since dense ground truth is required for the training

of a powerful edge detection method in any case, one may

also go further and train the two steps jointly. Such a struc-

tured learning is more general than the naive approach of

training a CNN to predict good boundary indicators, obliv-

ious to what these will be used for; and to subsequently

and independently optimize the parameters of the inference

step.

For the second, inference, step, we choose a Condi-

tional Gaussian Markov Random Field with only seed fi-

delity as the unary term – also known as Random Walker

algorithm [13] – and here show how to train that inference

scheme jointly with a deep convolutional neural network

(CNN).

Our choice of a Gaussian Markov Random Field is mo-

tivated by the following features:

• Less sensitive to noisy edge weights than the Water-

shed [11] which is fast and hence popular in seeded

segmentation, but also susceptible to outliers based on

its use of the (max, min)-semiring [4].

• More amenable to differentiation than the purely com-

binatorial graph cuts problem [6].

• More computationally efficient than more expressive

generalizations involving higher-order potentials [22].

More specifically, we make the following contributions:

1. We demonstrate end-to-end structured learning of a

pipeline consisting of a deep neural network that pre-

dicts edge weights, which are subsequently used in a

seeded segmentation by linear diffusion, i.e., with the

Random Walker algorithm.

2. We calculate the exact gradient of our objective func-

tion and propose a sparse sampling strategy of the gra-

dient to reduce computation time.

3. We evaluate the algorithm on a seeded version of the

MICCAI Challenge on Circuit Reconstruction from

Electron Microscopy Images (CREMI) [10]. Here, the

proposed method outperforms unstructured training of
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a CNN combined with the Random Walker algorithm,

and defines a new state of the art.

4. We provide the source code as PyTorch pack-

age on https://github.com/hci-unihd/

pytorch-LearnedRandomWalker, allowing

general use of the proposed Learned Random Walker.

2. Related Work

Diffusion processes are attractive because they engender

nontrivial global behavior as a consequence of trivial local

interactions. As such, they have a rich history in machine

learning and computer vision.

Seeded segmentation could be seen as an instance of

semi-supervised segmentation, which has been explored

in conjunction with Gaussian Markov Random Fields

(GMRF) on arbitrary graphs in [31], though without the su-

pervised learning of edge weights as discussed here.

In computer vision, linear diffusion has been proposed

for seeded segmentation in the seminal work of Grady [13].

In semantic segmentation and image-valued regression

tasks, Tappen et al. [23] have shown how to learn context-

dependent potentials for GMRFs. These authors did not

explore seeded segmentation, and the number of parame-

ters learned was in the hundreds, not hundreds of thousands

as in our case. Jancsary et al. [14] have pioneered the use

of flexible nonparametric classifiers to determine the poten-

tials in a Conditional GMRF. However, they opted for en-

sembles of decision trees and had to estimate the impact of

each possible split on the loss function, making a number of

approximations necessary.

In recent work, Vernaza and Chandraker [27] have pro-

posed a first-order approximation of the derivative for back-

propagation. We show in section 4.5 that this approximation

is not well-behaved for the kind of sparse seeds considered

here.

Our algorithm can also be seen from the viewpoint of

coupling a deep network with an undirected probabilistic

graphical model. In contrast to [7, 30] we use a GMRF that

makes inference easier. End-to-end learning of a GMRF

was also proposed in [5], though these authors do not solve

the inference problem exactly as we do; instead, they unroll

a few steps of gradient descent into extra layers of their neu-

ral network. Our inference problem can be seen as convex

quadratic program. Recent work proposes quadratic pro-

gramming as a generic neural network layer [2]. However,

the paper and implementation do not account for the kind

of sparsity that characterizes our formulation, and scales

only to a few hundred random variables, where we use

tens of thousands. Indeed, the solution of huge sparse sys-

tems of the kind discussed here is possible in almost linear

time [25].

Other important seeded segmentation strategies are

based on discrete Markov Random Fields [6] that do how-

ever not admit the differentiability we crucially need; or on

shortest paths similarities that can be computed even more

efficiently than the diffusions we use [3]. However, the use

of (single) shortest paths to measure the dissimilarity from

each pixel to every seed is not as robust as the averaging

over many paths that diffusion processes implicitly accom-

plish [28].

Such fragility is especially pronounced for watershed-

type methods that base dissimilarities on a minimax crite-

rion [9]. Even so, such methods have been used successfully

in biomedical [18] and other applications. Recent work

has sought to mitigate this limitation by learning the edge

weights for watershed seeded segmentation in a structured

fashion, just as we do, and moreover making the algorithm

adaptive [29], the cost for the latter being a somewhat in-

volved recurrent neural net formulation. The experiments

in section 4.3 show that we can supersede the learned wa-

tershed in spite of our simpler architecture.

Remarkably, all of the above inference schemes for

seeded segmentation – graph cuts, random walker / linear

diffusion and geodesic distances – emerge as special cases

of a unifying optimization problem [8].

3. Methods

3.1. Mathematical Background

To make this paper self-contained, we derive the linear

system (1) which is solved in the Random Walker algo-

rithm. While Grady [13] deduced the system by minimizing

a discretized Dirichlet energy, we derive it directly from the

discretized Laplace equation.

The Random Walker algorithm models seeded segmen-

tation with |L| distinct categories of seeds as follows: each

category or label a ∈ L is associated with an infinitely large

reservoir. This reservoir is coupled to the pixels that have

been marked with label a. From this reservoir, the label a
can diffuse across the image. The pixels associated with all

other labels a′ ∈ L \ {a} act as sinks for label a. That is,

the concentration of a label a is one at the pixels that have

been marked with this label; it is zero at the locations of

all other seeds; and its “concentration” in-between is given

by the stationary state of the linear diffusion equation. Im-

portantly, local diffusivities are informed by local image ap-

pearance: Random Walker assumes high diffusivity within

ground truth segments and low diffusivity across segments.

In the continuous setting, diffusion is usually formulated

as

u = f on ∂Ω,

∆u = 0 in Ω,
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Figure 1. Illustration of the Learned Random Walker pipeline at training and test time. Top: forward pass, the input image is mapped

by a CNN to an undirected edge-weighted graph. A probability map is computed for each object using the Random Walker algorithm.

At test time, a segmentation and an uncertainty map are computed from the probabilities. Bottom: backward pass of the training. The

dense derivative of the Random Walker algorithm is too expensive to compute, instead, a sampling scheme is used and only a very sparse

Jacobian is passed to the CNN.

where we prescribe the value of a function u on the bound-

ary of the domain Ω and require that the Laplace operator

vanishes in the interior of the domain.

To carry these ideas over to the domain of discrete im-

ages, we consider an image as a connected undirected edge-

weighted graph G = (V,E) with adjacency relation i ∼
j ⇐⇒ (i, j) ∈ E and edge weights we ∈ R+ for every

edge e ∈ E. The set of vertices V is partitioned into un-

marked vertices U and marked vertices M , the seed pixels.

By L we denote the graph Laplacian which is defined as

Li,j =











−wi,j if i ∼ j
∑

k∼i wi,k if i = j

0 else,

i.e. L = D−A with the degree matrix D and the adjacency

matrix A of G. We consider the vertices ordered in such

a way that the marked pixels appear above and left of the

unmarked pixels in L:

L =

(

LM B
BT LU

)

.

We define a row stochastic matrix Z ∈ [0, 1]
|V |×|L|

by

Zi,a = probability of vertex i having label a ∈ L.

This matrix Z is called assignment matrix in recent litera-

ture [1]. We assume that the rows in Z are sorted in the

same way as in L, i.e. the marked rows are above the un-

marked rows. Thus, we can partition the matrix into a

marked (known) part ZM and an unmarked (wanted) part

ZU . With these notions, the continuous diffusion equation

can be extended to the discrete setting in the following way:

(

LM B
BT LU

)(

ZM

ZU

)

=

(

∗
0

)

,

i.e. the Laplace matrix multiplied by the assignment ma-

trix is 0 on the unmarked vertices and not prescribed on the

marked ones — indicated by the ∗ on the right-hand side.

This is similar to ∆u not being required to have a certain

value on ∂Ω. ZM is set to user-specified values. Multiply-

ing out yields the following extremely sparse linear system,

which is at the heart of the Random Walker algorithm:

LUZU = −BTZM . (1)

Since LU is invertible, the solution ZU of the linear system

exists and is unique.

In summary, solving the above linear system gives the

probability, for each pixel, to be associated with a given

seed. These probabilities are typically fractional, which
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turns out to be a great advantage: It allows the definition

of meaningful spatially resolved uncertainty measures such

as the entropy at each pixel,

Hv = −
∑

a∈L

Zv,a log (Zv,a) (2)

See Figure 2 for an illustration.

The same kind of measure would not be meaningful for

graph cut type approaches, whose unimodularity guarantees

integral all-or-nothing solutions. For graph cut results, the

entropy would be constant across the entire image.

In the Random Walker, the final labeling is obtained from

the resulting assignment matrix by a winner-take-all selec-

tion of the the label with maximal probability for each ver-

tex v 7−→ argmaxa∈L Zv,a.

3.2. Structured Learning of a CNN to Predict Edge
Weights for the Random Walker

To find appropriate edge weights, early work [13] used

simple parametric estimators of local image contrast, such

as exponentiated intensity differences. Later work has used

flexible nonlinear estimators, such as random forests, to es-

timate edge weights [14]. We want to use gradient descent

to train weight estimators in a structured fashion in the sense

of [26], only for seeded segmentation and for a more flexi-

ble and powerful class of estimators.

When solving equation (1) exactly, structured learning

amounts to the following optimization problem: the mini-

mization of loss l with respect to the neural network param-

eters Θ

argmin
Θ

l
(

Z∗
U ,−LU (I; Θ)−1 ·B(I; Θ)T · ZM

)

(3)

based on ground truth Z∗
U . Here, we have made explicit the

dependence of LU and BT on the edge weights w, which in

turn depend on image I and network parameters Θ.

To solve the optimization problem we use gradient de-

scent, for which we compute the gradient

∂l (Z∗
U , ZU )

∂Θ
=

∂l (Z∗
U , ZU )

∂ZU

∂ZU

∂w

∂w

∂Θ
. (4)

The first and third term on the right hand side are stan-

dard: the partial derivative of the loss function with re-

spect to a candidate solution, and of the neural network

with respect to its parameters, respectively. The remain-

ing tensor is cumbersome due to its extremely large di-

mensions: the partial derivative of the probability of (typ-

ically:) dozens of seeds |L| in millions of pixels |U | with

respect to millions of edges |E| make for a formidable ob-

ject ∂ZU/∂w ∈ R
|U |×|L|×|E|. One way to evaluate this

expression is to take the derivative with respect to w of the

linear system (1):

∂LUZU

∂w
= −

∂BTZM

∂w

Since the probabilities at the marked pixels do not depend

on the edge weights we have ∂ZM/∂w = 0 and obtain with

the product rule the following tensor-valued linear system,

whose solution is ∂ZU/∂w:

LU

∂ZU

∂w
= −

∂LU

∂w
ZU −

∂BT

∂w
ZM (5)

This equation is a combined representation of |L||E| usual

linear systems with matrix LU and changing right hand

sides. These right hand sides are easy to calculate as

∂LU/∂w and ∂BT /∂w are very sparse and constant with

respect to w, i.e. they do not change during the gradient de-

scent.

3.3. Simplifications for Calculating the Gradient

On the other hand, computing the huge rank 3 tensor

∂ZU/∂w requires, in each gradient descent step, solving

the tensor-valued linear system (5), which is computation-

ally expensive. As the tensor is only used in the tensor mul-

tiplication

∂l(Z∗
U , ZU )

∂w
=

∂l(Z∗
U , ZU )

∂ZU

∂ZU

∂w
∈ R

|L|

we can make a few simplifying approximations:

Sparse Gradient Instead of calculating the entire gradi-

ent tensor ∂l(Z∗
U , ZU )/∂w we randomly select n ≪ |E|

edges for which we solve the corresponding linear systems

and set the entries corresponding to other edges to zero.

This approach can be seen as a stochastic gradient descent

algorithm.

We have tried more sophisticated strategies, including

ones based on the label entropy or ones that concentrate

on misclassified pixels. However, none of them performed

significantly better than the simple and parameter-free uni-

form sampling of edges, so this was used in all experiments

shown.

Gradient Pruning In equation (4), the entries in the huge

3-tensor are multiplied, and hence modulated, with entries

from ∂l(Z∗
U , ZU )/∂ZU . Inspired by [16], for a given edge

(ij) we only compute the contributions from label

argmax
a

∣

∣

∣

∣

∣

(

∂l(Z∗
U , ZU )

∂ZU

)

i,a

∣

∣

∣

∣

∣

.

Taken together, these two approximations reduce the size of

the tensor from |U | × |L| × |E| to |U | × 1 × n, i.e instead

of solving |L||E| linear systems of size |U | we only solve

n linear systems of size |U |. As an example, we choose a

4-connected graph with 128 × 128 vertices and 10 labels.

Fig 3 shows average backpropagation run-times. We found

n = 1024 to be the best compromise between (≈ 15-fold)

speed-up and accuracy.
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Seeds and Predicted Segmentation Error Map Uncertainty

Figure 2. The assignment matrix produced by the Random Walker algorithm can be converted to a segmentation (left picture, including the

seeds we used in the Random Walker algorithm). The center image illustrates the wrongly labeled pixels (marked red). The uncertainty of

the labeling is illustrated via the entropy (white indicates high, black indicates small uncertainty).

We found that wrongly segmented regions usually have high uncertainty. However the converse is not true in general: High uncertainty

does not necessarily indicate a wrong segmentation.

T
im

e
(s

)

# of Sampled Gradients

Figure 3. Run time comparison for different number of gradients

sampled. For comparison, a complete backpropagation step (n =

16384) takes 37s. All results reported are for a (i7-6700, 3.4 GHz)

CPU machine.

4. Experiments and Results

4.1. Pipeline Overview

The proposed method is agnostic to CNN architecture;

we employ a Convolutional-Deconvolutional network in-

spired by [17]. The segmentation is conducted in 2D, but

the network accepts a 3D volume as input (3 slices along z)

and predicts edge weights for the central slice only. In our

implementation we used the 4-connected graph, so on aver-

age we only need two edge weights per pixel, one horizontal

and one vertical. The network details are shown in the sup-

plementary material. The network outputs edge weight im-

ages at half the original resolution. This speeds up both in-

ference and backpropagation and reduces the memory foot-

print without impacting the final result. The assignments are

then scaled to the original size using bilinear interpolation

before computing the loss.

As loss function we choose the Cross Entropy loss (CE)

on the assignment matrix, defined as

CE(Z∗, Z) = −
1

|V |

∑

i∈V

∑

a∈L

Z∗
i,a log (Zi,a) (6)

where Z is our calculated assignment matrix and Z∗ the

ground truth. We also tried employing the Mean Squared

Loss and the Dice Loss. While results are comparable, CE

performed slightly better. In addition, we used an unstruc-

tured CE loss on the weights and for regularization an ℓ2

weight decay on the network parameters Θ. In summary,

the loss reads

l (Z∗, Z(Θ)) = CE(Z∗, Z(Θ)) + αCE (w∗, w(Θ)) (7)

+
γ

2
‖Θ‖

2

2
.

where w∗ are the ground truth edges obtained from Z∗, α =
10−2 and γ = 10−5.

The network is trained on patches of size 256× 256. We

use mini-batches of size 10 and train for a total of 10 epochs.

Before the structured training, the CNN is pre-trained using

only the side loss on the same data, with mini-batches of

size 10 and for 2 epochs. As optimizer we use Adam [15].

4.2. Seeded CREMI 2D Segmentation

In our experiments we work on the data from the MIC-

CAI Challenge on Circuit Reconstruction from Electron

Microscopy Images (CREMI) [10]. The challenge has been

designed to measure automated segmentation accuracy in

connectomics. There, the aim is to trace a myriad neural

processes in serial section electron microscopy images to

ultimately produce a wiring diagram of the brain. While
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the accuracy of automated methods is improving continu-

ously [12], they do not yet reach a precision that would al-

low immediate downstream processing. Also, automated

methods need much training data, and so seeded segmenta-

tion of connectomics data is of interest both for ground truth

generation and for proofreading of automated predictions.

The CREMI dataset is composed of three volumes from

adult Drosophila melanogaster (common fruit fly) brain tis-

sue, each of size 1250× 1250× 125 pixels. The three vol-

umes are very different in appearence: While the neurites in

CREMI A are mostly homogeneous in size and shape, the

two other volumes (CREMI B and C) are more challenging,

with cells that have jagged boundaries and large variations

in size and shape. We use the first 50 slices in z for testing

and the last 75 for training.

For our seeded segmentation, we assume that an oracle

provides precisely one seed per segment. Here we imple-

ment an oracle by automatically computing the seeds from

the ground truth. For each segment we place one seed at

a random location, but with a reasonable distance to any

boundary. Because using seeds from an oracle is a strong

assumption we cannot directly compare our approach to the

unseeded algorithms competing in the CREMI challenge.

Therefore, we evaluate the performance of our end-to-end

algorithm by comparing it to the following pipelines, which

are also seeded approaches:

Standard Random Walker: We slightly modified our

network to directly predict boundary probability maps. For

this, we trained the CNN on the same dataset for a total of

10 epochs, while using the Dice loss and mini-batches of

size 10. Subsequently, we compute the segmentation using

the standard Random Walker algorithm given in [13]. The

algorithm has a single hyperparameter β, which we tune

optimally. As for the Learned Random Walker we down-

sampled the graph by a factor of 2 to reduce computational

footprint.

Watershed: For the Watershed algorithm, we used the

same methodology as for the standard Random Walker al-

gorithm to predict boundary probability maps. The only

difference is in the output size. Indeed, the Watershed algo-

rithm is very efficient to compute and thus we do not down-

sample.

Learned Watershed: Lastly, we compared our results

with the numbers published in [29].

All segmentations are evaluated using the official

CREMI metrics: Variation of Information (VOI) and

Adapted Rand Error (ARAND). VOI [20] is the conditional

entropy of the predicted and the ground truth segmentation:

VOI = VOIsplit +VOImerge = H(Z|Z∗)+H(Z∗|Z) where

H is the conditional entropy. ARAND is the complement of

Seeds and Predicted Segmentation

Vertical Diffusivities

Horizontal Diffusivities

Figure 4. Learned Random Walker qualitative behavior in narrow

corridors. Top: seeds and the resulting Learned Random Walker

segmentation. Middle and bottom: The learned horizontal and

vertical diffusivities are much stronger inside a corridor than near

its perimeter. The horizontal diffusivity (bottom image) is a little

larger because the corridor itself is horizontal.

the Adjusted Rand Index [21]: ARAND = 1− AdjRAND.
According to the challenge, we used a tolerance of two pix-

els around the boundary.

4.3. Seeded CREMI 2D Segmentation Results

We show all results in Table 1. Quantitatively, the

Learned Random Walker with its structured training out-

performed the Random Walker algorithm with unstructured

training in every experiment. Furthermore, the Learned

Random Walker gave the best results in two of the three

volumes, CREMI A and B, whereas Watershed obtained the
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VOI WS LWS RW LRW

Cremi A 0.075± 0.024 — 0.177± 0.015 0.062 ± 0.021

Cremi B 0.211± 0.080 — 0.362± 0.086 0.193 ± 0.089

Cremi C 0.209 ± 0.074 — 0.421± 0.091 0.232± 0.081
Total 0.165± 0.091 0.376± 0.034 0.320± 0.127 0.162 ± 0.102

ARAND WS LWS RW LRW

Cremi A 0.016± 0.010 — 0.042± 0.008 0.011 ± 0.009

Cremi B 0.049± 0.044 — 0.153± 0.078 0.045 ± 0.044

Cremi C 0.053 ± 0.045 — 0.163± 0.066 0.061± 0.038
Total 0.039 ± 0.037 0.082± 0.001 0.239± 0.146 0.039 ± 0.040

Table 1. Quantitative comparison of Seeded Watershed on a good boundary probability map, Learned Watershed [29], Random Walker on

a good boundary probability map and Learned Random Walker on the seeded CREMI challenge. Lower is better.

Seeds and Predicted Segmentation Error Map Vertical Diffusivities

Figure 5. Typical Learned Random Walker fail on CREMI C. The red circle in the right image indicates a false positive boundary detection.

In this part of the data, the Learned Random Walker tends to hallucinate boundaries.

best results on CREMI C.

Indeed, volumes B and C are less well suited for the Ran-

dom Walker algorithm, which has intrinsic shrinkage bias,

whereas watershed does not [24]. We observe that the struc-

tured learning seems to overcome this handicap: While the

standard Random Walker algorithm tends to suffer in nar-

row corridors or near narrow funnels, the structured training

helped the network predict stronger diffusivities inside this

kind of regions, see Figure 4. We can assume the network

learns a strong shape prior on how these kind of regions

look like.

On the other hand, we observed a tendency to false posi-

tive boundary hallucination with the pure structured train-

ing of the network. An example is shown in Figure 5.

Moreover, in our experiments, we observed that a CNN

trained directly on a boundary detection task generally per-

forms better on more semantic tasks, like distinguishing in-

ner structures or mitochondria from true cell boundaries.

4.4. Qualitative Experiments on Arabidopsis
Thaliana Ovules

In Figure 6 we show a qualitative comparison between

LRW and Watershed in a different imaging domain. The 3D

dataset (courtesy of Schneitz Lab, TU Munich, Germany)

consists of several Arabidopsis thaliana ovules, acquired

using confocal laser scanning microscopy. The ovules are

the major female reproductive organ of the plant. The Ara-

bidopsis ovule serves as a prominent model for quantitative

morphogenetic studies which require highly accurate seg-

mentation of cells. The experimental setup used is identical

to sec. 4. As shown in Figure 6, the results agree qualita-

tively with our experiments on CREMI.

4.5. Sampling Strategy vs. Approximate Back­
Propagation

Different approaches have been proposed for backprop-

agating gradient in Laplacian systems. Very recently, a first

order approximation of the true derivative has been used
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Seeds and Raw Input

Error Map

Figure 6. Qualitative comparison between Learned Random

Walker and Watershed applied on confocal microscopy data. Blue

and yellow areas represent the regions where the Learned Random

Walker outperformed Watershed and vice versa, respectively.

in [27] for semantic segmentation. Their approach has the

conspicuous advantage that it requires solving only one sys-

tem of linear equations. We set up a simple experiment to

show the differences between the Learned Random Walker

backpropagation and the one presented in [27].

We tried to perfectly regress a single image labelling in

two different scenarios: Extended seeding, where we use

large brush strokes on the image as seeds; and sparse seeds,

where each region was seeded in a single pixel only. Instead

of using a neural network to predict edge weights, we over-

parametrize the system by using one parameter per edge;

and we use gradient descent to update all these parameters

until convergence.

For this example we used a sample image from the

CREMI dataset [10] and the same methodology as in sec-

tion 4. The quantitative results are presented in Table 2.

We find that the Learned Random Walker can fit the

ground truth both under extended and sparse seeds; whereas

the first-order approximation to backpropagation gives sat-

isfactory results only with extended but not with sparse

seeds. Qualitatively, we observed that the first-order ap-

ARAND Extended Sparse

Seeding Seeding

First order approx. [27] 0.04 0.32

LRW, 250 samples (ours) 0.01 0.03

LRW, no sampling 0.01 0.01

Table 2. Quantitative comparison between Learned Random

Walker presented here and first order approximation from [27].

The ARAND metric is defined in Section 4.2, and lower is better.

Seeds and Segmentation Vertical Diffusivities Horizontal Diffusivities

LRW

no sampling

LRW

250 samples

First order approx.

[27]

LRW

no sampling

LRW

250 samples

First order approx.

[27]

Figure 7. Qualitative comparison between Learned Random

Walker presented here and first order approximation from [27]. We

can observe that neither the sparse seeding nor our sampling strat-

egy (sec. 3.3) affect the reconstruction capability of the Learned

Random Walker.

proximation breaks down far from any given seeds Figure 7.

Moreover, we find that the sampling strategy introduced in

sec. 3.3 has little effect on the reconstruction accuracy.
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6. Conclusion

We have proposed an end-to-end learned pipeline for

seeded segmentation. We successfully trained a CNN

jointly with the Random Walker algorithm obtaining very

competitive results and outperforming the standard Ran-

dom Walker algorithm. Furthermore, we propose and im-

plemented an efficient sparse-backpropagation training and

experimentally proved that our method is able to train a net-

work with very sparse seeds. In our experiments we always

used a dense ground truth, but the proposed approach also

allows for training a network from sparse ground truth. We

plan to further explore this regime in future work.
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