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Abstract

As makeup has been widely-adopted for beautification,

finding suitable makeup by virtual makeup applications be-

comes popular. Therefore, a recent line of studies proposes

to transfer the makeup from a given reference makeup image

to the source non-makeup one. However, it is still challeng-

ing due to the massive number of makeup combinations. To

facilitate on-demand makeup transfer, in this work, we pro-

pose BeautyGlow that decompose the latent vectors of face

images derived from the Glow model into makeup and non-

makeup latent vectors. Since there is no paired dataset, we

formulate a new loss function to guide the decomposition.

Afterward, the non-makeup latent vector of a source image

and makeup latent vector of a reference image and are ef-

fectively combined and revert back to the image domain to

derive the results. Experimental results show that the trans-

fer quality of BeautyGlow is comparable to the state-of-the-

art methods, while the unique ability to manipulate latent

vectors allows BeautyGlow to realize on-demand makeup

transfer.

1. Introduction

As the slogan says, “Life isn’t perfect, but your makeup

can be.” Nowadays, makeup provides a convenient way to

improve the facial appearance, e.g., powder foundations for

hiding the skin imperfections, blushes for creating chubby

cheeks. Although makeup is ubiquitous in daily life, it is

not easy to find the best-suited makeup because 1) makeup

trials are time-consuming and inconvenient, and 2) there

are thousands and thousands of cosmetic products, varying

from brands, functions, colors, and way-to-use, which leads

to a more intractable number of the makeup style combina-

tions. To address the first issue, virtual makeup applications

that provide beautification function come up to facilitate the

makeup trials, such as YoucamMakeup1 and Meitu2. How-

1https://www.perfectcorp.com/app/ymk
2http://makeup.meitu.com/en/

Figure 1: The makeup features such as eyeshadows and lip

gloss are extracted from reference makeup images and are

transferred to source non-makeup images. The lightness of

the makeup can be tuned by adjusting the magnification in

the latent space.

ever, how to find suitable makeup for each user is still an

open problem.

One of the possible solutions is to let users select the

makeup styles from the reference photos of celebrities or

friends and transfer the makeup to users’ faces. For exam-

ple, Guo et al. [10] propose to decompose the images into

three layers, i.e., face structure layer, skin detail layer, and

color layer, and transfer the information from each layer of

reference images to the corresponding layer of the target

images. However, the predefined layers and transfer func-

tion are not data-driven and thus are inclined to generate

artifacts in many cases. To directly learn from the data, a

dataset of photo triplets (user face, reference makeup, and

transferred results) is desirable for learning. Nevertheless,

most of the existing datasets only provide the images with

makeup and non-makeup pairs. To avoid the need for such

triplet datasets, [23] proposes to use CNN for identifying

different makeup functions and extracting the correspond-

ing features. Afterward, different loss functions are defined

for different parts of makeup to make the after-makeup im-

ages natural, e.g., foundations are transferred by regulariz-

ing the inner product of the feature maps for smoothing the

10042



skin’s texture. Although previous work generates good re-

sults on makeup transfer, the domain knowledge is required

to design different functions to generate different makeup.

Recent years, Generative Adversarial Networks (GANs)

are widely used for generating high-resolution realistic im-

ages. For style transfer on whole images (e.g., painting

style), [30] proposes CycleGAN to incorporate the cycle

consistency loss to train the mapping function between two

domains by adopting two generators and discriminators.

However, CycleGAN can only generate a general makeup

style rather than a specific makeup style. Based on Cyl-

ceGAN, Chang et al. [1] introduce an asymmetric function

and train a makeup removal and transfer network together to

preserve the face identity. Moreover, [19] utilizes the GAN

framework and further proposes pixel-level histogram loss

to maximize the similarity of makeup style, while percep-

tual loss and cycle consistency loss are designed to preserve

identity. Nonetheless, there is no encoder in GAN-based

methods and thus cannot adjust the makeup extent by inter-

polating the latent space. Adjusting the makeup from light

to heavy is important for finding the best-suited makeup

since users can obtain many candidates from one reference

images.

A recent line of studies synthesizes images by flow-

based generative models, of which the encoder function is

reversible and supports different applications by manipulat-

ing the latent space and reserving it back to real image space

[4, 15]. Due to the ability of manipulating latent space, in

this paper, we propose an unsupervised on-demand makeup

transfer approach, namely, BeautyGlow, based on the Glow

architecture [15]. Specifically, Glow provides a general

framework to learn a generative network with invertible

functions that encode input images into a meaningful la-

tent space and enable modification of existent data points.

Although Glow allows manipulating the latent vectors, it

is challenging to transfer the local makeup details of the

reference image to the target image since the makeup and

face are mixed as the latent vector. One of the possible

approaches is to find the average latent vector of makeup

images and average latent vector of non-makeup images,

and then use the difference as the direction of manipulat-

ing. However, this approach contains two major issues: 1) it

can only find the general makeup but not the user-specified

makeup, and 2) it requires a lot of images from the same

person or same makeup to find the correct average latent

vector.

To address this issue, BeautyGlow first defines a trans-

formation matrix that decomposes the latent vectors into la-

tent vector of makeup features and latent vector of facial

identity features. However, due to the lack of paired data,

we further formulate a new loss function containing per-

ceptual loss, makeup loss, intra-domain loss, inter-domain

loss, and cycle consistency loss, to guide the decomposi-

tion. Compared with other methods based on GANs, Beau-

tyGlow does not need to train two large networks, i.e., gen-

erator and discriminator, which makes it more stable. Most

importantly, the invertible meaningful latent space with the

transformation matrix facilitated the on-demand makeup

transfer, that is, users can freely adjusting the makeup from

light to heavy and BeautyGlow spontaneously synthesizes

the results (less than 1 second).3 The contributions of this

paper are summarized as follows.

• Inspired by Glow, we propose BeautyGlow that can

transfer the makeup from reference image to target

image. The meaningful latent space facilitates on-

demand makeup adjustment. To the best of our knowl-

edge, this is the first Glow-based makeup transfer

framework.

• New transformation matrix and loss function are for-

mulated to guide the model training. It is worth noting

that the proposed framework can be easily extended to

other applications that require decomposing the latent

image vector into two latent vectors, e.g., rain removal,

fog removal.

• Experimental results on quantitative and qualitative

comparison manifest that the proposed BeautyGlow is

comparable to the state-of-the-art methods, while the

manipulation on latent vectors can generate realistic

images from light makeup to heavy makeup.

2. Related works

2.1. Makeup Studies

Traditionally, image processing techniques are applied

for makeup transfer. For example, image analogy [11] in-

troduces a framework that requires a pair of well-aligned

before-makeup and after-makeup photos of the same person

for makeup transfer. Guo et al. decompose facial details by

decomposing reference images into three layers and trans-

fer information from each layer to the corresponding layer

of the other image [10]. Moreover, [28] proposes to detect

the face landmarks and transfer the makeup by adjusting

the landmark with skin color GMM-based segmentation.

In addition to process the makeup, [17] manipulates the

intrinsic image layers with a physically-based reflectance

model to simulate the makeup with different lighting condi-

tions in a photo. Compared with these work, the proposed

BeautyGlow can perform makeup transfer and makeup re-

moval simultaneously with on-demand makeup adjustment

by manipulating the latent space without the need of post-

processing.

3A demo is available at https://beautyglow.github.io/.
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2.2. Style Transfer

To mix the content and style together, most works [7, 29]

use different layers in CNN to represent styles and content

and swap the style for style transfer. The style transfer can

be categorized into three classes. 1) Per-Style-Per-Model

(PSPM) [14, 25, 26, 8, 21, 20]. PSPM requires training dif-

ferent models for different styles. As the number of styles

becomes large (e.g., makeup), it is difficult and inconve-

nient to use PSPM for style transfer. 2) Multiple-Style-Per-

Model (MSPM) [5, 2, 6]. MSPM only requires a trained

model to transfer multiple styles by slightly adjusting the in-

stance normalization layers. 3) Arbitrary-Style-Per-Model

(ASPM) [13, 9, 12]. ASPM focuses on the zero-shot style

transfer, which can transfer the new styles (unseen in the

training data) by finding the transformation function via a

style prediction network. It is worth noting that the pro-

posed BeautyGlow belongs to ASPM. However, compared

with style transfer, the requirement of the details for makeup

transfer is much higher than that for style transfer.

2.3. GAN for Style/Makeup Transfer

Due to the good performance of generating realistic

images by adversarial network, GAN is widely-used for

image-to-image translation. For example, Taigman et al.

propose a method to transfer a realistic photo to comic char-

acters by GAN and VAE. Moreover, [18, 24, 16, 22] aim

to transfer style, attributes or specific details by exploiting

GANs. CycleGAN further introduces two coupled genera-

tor and a cycle consistency loss to transfer images between

two different domains [30], which avoids the requirement

of input-output pairs. Although CycleGAN can be directly

exploited to makeup transfer, i.e., one generator transfers a

general makeup to non-makeup faces, and the other gener-

ator removes makeup from makeup faces, it cannot transfer

a user-specified style. To fulfill the need to transfer a spe-

cific makeup to a non-makeup face, [1] alters the coupled

generator in CycleGAN by using two images (source and

target) for the makeup generator. The generator generates a

makeup mask referenced from the target image and covers

it on the source image to complete the makeup transfer. On

the other hand, BeautyGAN adopts similar idea with dual

input and output for makeup transfer and removal and en-

hance the correctness of instance-level makeup transfer by

matching the color histogram in different segments of the

face [19]. However, GAN-based methods contain no en-

coder to construct the latent space from the data and thus

can not realize on-demand makeup transfer by simply inter-

polating the latent vectors.

2.4. Latent Space Adaption

The likelihood-based approaches, such as Variational

AutoEncoders (VAE) and Glow, generate realistic images

with a latent space, while manipulating the latent space

model can facilitate developing new image applications,

e.g., image editing [31], avatar synthesis [27]. Specifically,

VAE optimizes the likelihood by maximizing the variational

lower bound and learns a latent space that represents all the

data points. On the other hand, flow-based generative mod-

els [3, 4] construct a bijective reversible transfer function

F from the image space to the latent space so that modify-

ing latent vectors can be mapped back to real images with

F−1. Glow further improves the model architecture by a

new permutation layer which is learned after updating the

model rather than the fixed permutation layer [15].

3. BeautyGlow

3.1. Glow

We first present the Glow framework [15] as the prelim-

inary. Glow introduces an invertible function f compris-

ing a sequence of transformation matrices for mapping im-

ages into a latent space, where f is required to fulfill the

following properties. (1) The determinant of the Jacobian

matrix of the transformation matrix should be calculated ef-

ficiently. (2) From the sampled datapoint z in latent space,

mapping it back to the data x by using the inverse trans-

formation x = f−1(z) should also be obtained easily. To

accomplish these goals, Glow utilizes the additive layer and

affine coupling layer introduced in [4]. A coupling layer

represents a bijection function, which can update part of the

input vector or latent vectors efficiently. Also, squeezing

layer is adapted to implement the multi-scale architecture,

which divides the image into sub-images of shape 2×2×c,

then reshapes them into 1 ×1× 4c for squeezing image in-

formation into channels. On top of that, before propagating

the output of the current level to the next level, half of the

dimensions of the output are factored out and dumped into

latent space to reduce the computational cost and the num-

ber of parameters. Furthermore, Glow replaces the fixed

permutation in [4] with a new layer, Invertible 1 × 1 conv,

to avoid some components of the input vector is left un-

changed in the coupling layer. Based on this model, we

are able to transform input images into meaningful vectors

in latent space and manipulate the vectors for on-demand

makeup transfer.

3.2. Formulation

Based on the latent space derived from Glow, the goal is

to extract the makeup features from the reference makeup

image and apply it to the source non-makeup image. Specif-

ically, considering two domains, the non-makeup images

domain denoted as X ⊂ R
h×w×c where h, w, and c rep-

resent the height of input images, the width of input im-

ages, and the number of RGB channels, respectively. The

makeup images domain denoted as Y ⊂ R
h×w×c, which

are encoded into the latent space denoted asZ ⊂ R
c×h×w
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Figure 2: The framework of the BeautyGlow. Glow transforms all images in makeup domain IY and all images in the non-

makeup domainIX as inputs: they are encoded into latent space Z , denoted as LX and LY respectively. a vector obtained

from LX as source non-makeup, LX

s
, and a vector obtained from LY as reference makeup image, LY

r
, are decomposed into

two latent features (FX

s
,MX

s
), (FY

r
,MY

r
) respectively through a transformation matrix W . LY

s
is generated by adding FX

s

and MY

r
together and LY

s
can also be decomposed into reconstruction latent features, (FY

s
,MY

s
).

through Glow[15].

Given two images as inputs: a source image IX
s

∈ X and

a reference image IY
r

∈ Y are encoded into two latent vec-

tors, LX

s
∈ Z and LY

r
∈ Z respectively with Glow. After

that, a transformation matrix W is expected to extract facial

features denoted as FX

s
= LX

s
·W and extract makeup fea-

tures denoted as MY

r
= LY

r
· (I −W ), where I is identity

matrix. Here, we adopt the additive formulation, i.e., adding

FX

s
and MY

r
to form after-makeup latent vector LY

s
∈ Z ,

since 1) additive formulation can be computed on-the-fly,

and 2) the interpolation in additive formulation is intuitive.

The after-makeup vector LY

s
is then decoded back to image

domain as the after-makeup image IY
s

∈ Y . The model

architecture of BeautyGlow is shown in Figure 2.

However, how to learn the transformation matrix W that

perfectly decomposes the latent vectors into latent facial

features and latent makeup features remains challenging.

3.3. Objective

To tackle this challenge, we introduce several losses to

guide the decomposition. 1) The Perceptual loss is pro-

posed to extract the facial features. 2) Intra-domain loss

and inter-domain loss are designed for ensuring the after-

makeup image and de-makeup image being at the makeup

and non-makeup domain respectively. 3) Makeup loss is

to extract the makeup features. 4) Cycle consistency loss

maintains the face and makeup information as input fea-

tures. The details of loss functions and model architecture

are presented as follows, while the effects of different losses

are evaluated in Section 4.

Perceptual Loss. We first introduce the perceptual loss

Lp to teach W how to extract facial features. Since the

original source image is assumed to be non-makeup, we de-

fine the perceptual loss as follows.

Lp = ‖FX
s − LX

s ‖2, (1)

which constrains the distance between the facial latent fea-

ture FX
s and the latent features of original source image

LX
s .

Makeup Loss. Since the latent vector of the reference im-

age includes makeup features, which means the W should

be able to discriminate face features and makeup features.

However, there is no image representing makeup styles, and

thus the makeup features cannot be derived by transferring

the image through Glow. Therefore, it is challenging to train

how to describe a makeup style with several latent features.

Here, we first tackle this problem by assuming that the la-

tent features of a human face image are composed of fa-

cial features and makeup features. When the facial features
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are removed, the rest is makeup features. Meanwhile, as

shown in Glow[15], attributes could be extracted through

manipulating the latent features for images. Therefore, we

first calculate the average latent vector of all images with

makeup, denoted as L̄Y , and the average latent vector of all

images without makeup, denoted as L̄X . Since the differ-

ence (L̄Y − L̄X ) represents the direction from non-makeup

latent vector to makeup latent vector, which should be sim-

ilar to MY
r , we formulate the makeup loss Lm as follows.

Lm = ‖MY
r − (L̄Y − L̄X)‖2. (2)

Intra-Domain Loss. The makeup loss only forces MY
r to

be similar with the direction from non-makeup latent vector

to makeup latent vector, while the centroids of non-makeup

latent vectors and makeup latent vectors are not fully ex-

ploited. The facial latent vectors of reference images, FY

r
,

are supposed to be close to non-makeup domain rather than

makeup domain. Moreover, the after-makeup latent vectors

(LY

s
) are supposed to be close to the makeup domain instead

of the non-makeup domain. Therefore, we use the average

latent vector of all non-makeup images, L̄X , to represent

the centroid of non-makeup domain, and the average latent

vector of all makeup images, L̄Y to represent the centroid

of makeup domain. The intra-domain loss is then defined

as

Lintra = ‖FY
r − L̄X‖2 + ‖LY

s − L̄Y ‖2. (3)

Inter-Domain Loss. In addition to the intra-domain loss,

we further introduce inter-domain loss to ensure that FY

r

is away from the centroid of makeup domain to clearly de-

compose the facial latent vectors and makeup latent features

effectively. Meanwhile, LY

s
is also supposed to be away

from the centroid of non-makeup domain. As such, we for-

mulate the inter-domain loss as follows. Instead of the L2-

norm, we calculate the similarity between two latent vectors

A and B as

Sim(A,B) =
sum(A

⊗
B)

|A||B|
, (4)

where
⊗

denotes element-wise multiplication and | · | de-

note the L2-norm of the matrix. The loss function is ex-

pressed as

Linter = (1+Sim(FY
r , L̄Y ))+(1+Sim(LY

s , L̄
X)) (5)

Cycle Consistency Loss. In order to maintain the facial

and makeup information, two cycle consistency losses are

also designed in the latent space. Specifically, if we multi-

ply the after-makeup latent vector, i.e., LY

s
, with transfor-

mation matrix W , it supposed to be close to the facial latent

vectors of the source image, i.e., FY
s . On the other hand, if

we multiply LY

s
with (I −W ), it is supposed to be close

as makeup latent features of reference latent features MY
r .

Therefore, the loss function is formulated as

Lcyc = ‖LY
s W − FX

s ‖2 + ‖LY
s (I −W )−MY

r ‖2 (6)

Total loss. In sum, the overall loss function L is defined

as follows.

L = Lp + λcycLcyc + λmLm + λiaLintra + λieLinter

(7)

where λcyc, λm, λia, and λie are the weights to control the

relative importance of each term. The transformation matrix

W can be trained via the objective function in Equation 7

with gradient descent based method, which will be detailed

later.

4. Experimental Results

In this section, we first describe the implementation de-

tails and training parameter setting. Afterward, we briefly

introduce the baselines, which are the state-of-the-art meth-

ods in makeup transfer. We conduct both qualitative and

quantitative experiments to compare with baselines. A

qualitative analysis on different losses of BeautyGlow is

also presented. Finally, we show the advantages of flow-

based method by presenting the makeup results from light

to heavy, which is simply derived by interpolating the latent

vectors and inverting back to image domain.

4.1. Implementation Details

Training Pipeline. We evaluate our method on MT

dataset [19] consisting of about 4000 female images (1000

non-makeup images and 3000 makeup images). MT dataset

includes different races, poses, expression and makeup

styles varying from subtle to heavy. Therefore, we first fol-

low the architecture of Glow [15] with pre-trained weights.

Glow was originally trained on 5 machines with each 8

GPUs. Due to the limitation of the number of GPUs

and GPU memories, we resize the training image size to

128x128. It takes about 3 days to train a Glow model with

MT dataset.

Moreover, due to the resolution constraint, we first ap-

ply face parsing, i.e., separate different face parts and

keep makeup details. Images are separated (with/without

makeup) into left eye, right eye, lips, and the rest since eyes

and lips are significantly changed by makeup. Please note

that we only train single W which is shared by different

parts of the faces. In post-processing, we use Poisson blend-

ing to integrate the generated makeup facial parts and the

source image.
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Reference Source Liao et al. [21] Cycle-GAN [30] Chang et al. [1] Ours

Reference Source Liao et al. [21] Cycle-GAN [30] Li et al. [19] Ours

Figure 3: Makeup Transfer Results

Training Details. Given the dataset of unpaired makeup

and non-makeup images, we first use Glow to transform the

images into the latent space and calculate the centroids of

makeup and non-makeup latent domains. Afterward, we

train the transformation matrix W via the objective function

in Equation 7 with Adam optimizer, which is a classic ex-

tension of stochastic gradient descent procedure to update

model weights iteratively based on the training data. The

learning rate is set as 0.001 with the batch size as 100. The

size of the transformation matrix W is 128 × 128, while the

control parameters of perceptual loss, makeup loss, intra-

domain loss, inter-domain loss, and cycle consistency loss

are set as (λp = 0.01, λcyc = 0.001, λm = 0.1, λintra =
0.1, λinter = 1000), respectively.

4.2. Baselines

BeautyGlow is compared with several methods includ-

ing traditional method, style transfer and image domain

adoption via qualitative and quantitative experiments as

listed below.

Deep Image Analogy [21] extracts features by CNN and

adapts the notion of image analogy to the deep feature

space for obtaining semantically-meaningful dense corre-

spondences. Here, we add the WLS filter to keep details for

photo-to-photo transfer.

CycleGAN [30] is an unsupervised image-to-image trans-

lation work, which does not require paired images. There-

fore, makeup images and non-makeup images are regarded

as two different domains for training.

PairedCycleGAN [1] is a paired image-to-image makeup

transfer method which aims to transfer a specific reference

makeup to a source image.

BeautyGAN [19] is an instance-level makeup transfer

method for makeup transfer and removal via GAN. The re-

sults are enhanced by matching the color histogram in dif-

ferent segments of the face.

4.3. Qualitative Comparison

In Figure 3, we demonstrate a qualitative comparison of

the baselines and our results. The results produced by Im-

age Analogy show that eyeshadows and eyeliners disappear

and only subtle color changes stay around the eyes. This is

because it applies whole image transformation, parts aside

from makeup including skin tone and hair might also be

changed to an unnatural color. Compared with Image Anal-

ogy, image domain adoption methods can create a more

realistic look. CycleGAN [30] only synthesizes a general

makeup on the non-makeup face. The makeup style or

amount cannot be adjusted since the images are transferred

in only two general domain, makeup and non-makeup. The

general makeup, though realistic, cannot be used for spe-

cific makeup trials. Moreover, PairedCycleGAN [1] can

transfer makeup realistically and correctly in pairs. How-

ever, the disadvantages of PairedCycleGAN is that makeup

are generated by a fixed adversarial network so that users

cannot adjust the makeup to be lighter or heavier. There-

fore, when transferring some heavy makeup, the results may

look unpleasant and sometimes unrealistic, but users can

only find new reference images with lighter makeup, which

is time-consuming and even unfeasible.

Comparing to the baselines, our method successfully de-

composes the makeup latent vectors and non-makeup latent

vectors, so it does not change the look of the image severely

like style transfer. Meanwhile, we can generate a realistic
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Reference Source w.o. Lm w.o. Lintra Ours Reference Source w.o. Lm w.o. Lintra Ours

Figure 4: Analysis of Different Loss Terms of BeautyGlow.

Table 1: User Study Results

preference comparison our result baseline

Ours / Liao et al. [21] 60% 40%

Ours / Li et al. [19] 55% 45%

Ours / Chang et al. [1] 45% 55%

and accurate makeup for a non-makeup face comparable to

PairedCycleGAN. In Section 4.6, we show the power of the

ability to fine-tune the amount of makeup and customize it

for each face to get the perfect result.

4.4. Quantitative Comparison

For quantitative evaluation of BeautyGlow, a user study

is conducted with 50 volunteers (34 males and 16 females)

aged from 18 years old to 35 years old. To simplify the pro-

cess of comparison, a standard A/B test is used. Therefore,

each user is asked to compare the results of BeautyGlow

with Image Analogy [21], BeautyGlow with PairedCycle-

GAN [1], and BeautyGlow with BeautyGAN [19]. For each

user, we randomly choose fifteen pairs of source and ref-

erence images and generate the results by different meth-

ods. The positions of different methods for the A/B test is

also randomly selected to avoid the bias. Table 1 shows

the results of the A/B test. For the ease of comparison,

we normalized the votes and get the preference percent-

age. The results show that BeautyGlow significantly outper-

forms Image Analogy while is comparable to BeautyGAN

and PairedCycleGAN. Note that we observe some unusual

situations that user preference decreases while transferring

heavy makeup. Some exaggerated makeup is not suitable

for the source image, forcing users to choose a rather subtle

makeup face. As a result, with the latent space manipula-

tion in our model, we can fine-tune the makeup amount for

a more preferred look.

4.5. Loss Analysis

We introduce five losses for training the transformation

function. In Figure 4, we show the results of two important

loss terms by training the transformation function W with-

out the loss term. When removing Lm, the transformation

matrix learns makeup features without average makeup fea-

tures. Hence, the makeup style is over-enhanced, leading to

unnatural after-makeup images, especially in the regions of

eyes. On the other hand, without Lintra, the after-makeup

image contains no makeup components because there is no

loss term constraining the resulting image to be close to the

centroid of the makeup images. In addition, facial features

are supposed to be at the group of non-makeup images, so

the facial features extracted from makeup images would in-

clude makeup features.

We show the results of face components like eyes and

mouth for different pairs of a reference image and a source

image. In the first two rows, without using makeup loss,

the makeup style is over-emphasized and the color of other

regions is changed dramatically. When the intra-loss term is

removed, the result looks like the same as the source image.

Moreover, in the second row, the color of the results without

makeup loss is obviously brighter than the source and the

reference image.

4.6. Latent Space Manipulation

The highlighted property of BeautyGlow is the ability

to manipulate the latent vectors for generating the sane

makeup style with different lightness. To show the after-
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Reference Source 0.8 1.1 1.4 1.7

Reference Source 0.8 1.1 1.4 1.7

Figure 5: The obviousness of the makeup

makeup face with different makeup lightness, we manipu-

late the weight of the makeup features in the latent space. In

Figure 5, we synthesize 3 different lightness of two makeup

styles on different faces with the magnification of 0.7, 1.0,

1.5. In the first row, as the magnification increases, the

eyeshadows and lip color become redder and redder. In

the second row, the eyeshadows also become darker and

the lip color becomes redder. It is worth noting that even

though the makeup is magnified, the face is still not dis-

torted, which means the transformation matrix completely

decomposes the latent vector into the facial features and

makeup features for the manipulations.

5. Conclusions and Future Work

As quoted from Estée Lauder, “Glow is the essence of

beauty,” which is also true for makeup transfer. In this pa-

per, we propose BeautyGlow to decompose the latent vec-

tors derived from the Glow model into makeup and non-

makeup latent vectors. Since there is no paired dataset,

we formulate a new loss function containing perceptual

loss, makeup loss, inter-domain loss, intra-domain loss,

and cycle consistency loss, to guide the optimization of

the transformation matrix. Experimental results show that

the makeup transfer quality of BeautyGlow is comparable

to the state-of-the-art methods, while the unique ability to

manipulate latent vectors allows BeautyGlow to realize on-

demand makeup transfer. In the future, we plan to apply

the proposed general framework to other image synthesis

applications.
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