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Abstract

In zero-shot image retrieval (ZSIR) task, embedding

learning becomes more attractive, however, many meth-

ods follow the traditional metric learning idea and omit

the problems behind zero-shot settings. In this paper, we

first emphasize the importance of learning visual discrim-

inative metric and preventing the partial/selective learn-

ing behavior of learner in ZSIR, and then propose the De-

coupled Metric Learning (DeML) framework to achieve

these individually. Instead of coarsely optimizing an uni-

fied metric, we decouple it into multiple attention-specific

parts so as to recurrently induce the discrimination and ex-

plicitly enhance the generalization. And they are mainly

achieved by our object-attention module based on random

walk graph propagation and the channel-attention module

based on the adversary constraint, respectively. We demon-

strate the necessity of addressing the vital problems in ZSIR

on the popular benchmarks, outperforming the state-of-the-

art methods by a significant margin. Code is available at

http://www.bhchen.cn

1. Introduction

In zero-shot image retrieval (ZSIR), the model is re-

quired to learn embedding from the seen classes and

then to be capable of utilizing the learned knowledge

to distinguish the unseen classes without any attributes

or semantic information. Most existing works adopt

deep embedding (metric) learning and dedicate to explor-

ing powerful loss functions, such as pair-based methods

[33, 43, 29, 23, 32, 2, 35], and hard-example mining strate-

gies [16, 39, 29, 32], etc. These ideas can be summarised as:

learn a good matric on the seen categories so as to boost the

performance on the unseen ones. However, in fact, they ne-

glect the existence and significance of some vital problems

to ZSIR, thus are easily stuck in the particular data distri-

bution and knowledge zone of the seen training set, some

helpful knowledge for unseen classes may have been left
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Figure 1: Differences between (a) unified metric learning and (b) DeML. Our DeML

decouples the unified representations into multiple attention-specific learners so as to

encourage the discrimination and generalization of the holistic metric.

out with a high probability, as a result, their performances

are almost on par with each other and unsatisfactory.

Specifically, in ZSIR, the ideas above are actually un-

reasonable as the discrimination and generalization abili-

ties of the learned metric are highly influenced by the fol-

lowing two aspects: (1) the undiscriminating visual input,

which contains much noisy information (it is hard to know

where should be focused on), resulting in poor descriptors

and inducing difficulty in distinguishing the unseen classes.

In another word, undiscriminating visual input deteriorates

the discrimination of features. (2) partial/selective learning

behavior of deep models[3], specifically, for a functional

learner parameterized by CNN, when given an arbitrary in-

put, it will selectively learn partial attributes knowledge that

are the easiest ones to decrease the current training empir-

ical risk over the seen categories, instead of learning all-

sided details and information, thus yielding over-fitting on

seen categories and generalizing worse to the unseen ones.

For example on birds, if the head knowledge is enough to

distinguish the training seen classes, the deep model will

only focus on the head and ignore the other body parts

like back, foot and wing, while when testing on the un-

seen classes (which have similar head features but differ-

ent wing features), the trained model will easily fail to dis-

tinguish them1. This partial learning behavior sometimes

1Since in zero-shot settings, the unseen classes have no intersection

with the seen classes, this partial learning behavior is common.
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is one reason for neural redundancy, since all the neurons

only focus on the certain easy knowledge, causing that the

performance doesn’t increase much with the feature dimen-

sion. Moreover, when optimizing an unified metric as in the

aforementioned methods (as in Fig.1.(a)), these two issues

are commonly mixed with each other and jointly impede the

learning of representation, and without explicit and helpful

guidance, the poor discrimination and generalization char-

acteristics of features are greatly exacerbated regardless of

the efficacy of objective function and hard-sample mining

strategy. And most ZSIR works ignore the importance of

learning both discriminative and robust discriminators. To

this end, proposing knowledge-preserving and discrimina-

tive metric learning framework remains important.

In this paper, inspired by the idea of “divide and rule”,

we propose the Decoupled Metric Learning (DeML), a

novel and generally applicable framework, to alleviate the

above problems by decoupling the embedding representa-

tion into multiple attention-specific learners so as to encour-

age its discrimination and generalization in an explicit man-

ner, as shown in Fig.1.(b). Moreover, equipping each learn-

ers with the particular attention tasks will further alleviate

the neural redundancy and give chances of performance im-

provement. Our DeML is a model-agnostic learning frame-

work, and different from the existing metric learning works,

it has no need to mine hard samples or construct elaborate

sample-pairs. The main contributions are as follows:

•We provide insights of two vital problems to ZSIR that undis-

criminating visual input and partial/selective learning behavior of

learner will impede the discrimination and generalization of the

metric, resp. And propose DeML, a hybrid-attention based decou-

pling method, to address these challenges individually.

• DeML decouples the commonly used unified metric into

object-attention root-learners and channel-attention sub-learners,

aiming at recurrently inducing the discrimination and explicitly

promoting the diversity together with the generalization, resp.

• The decoupled learners are supported by the corresponding

random walk inferred object-attention modules (OAM)2 and the

adversarial channel-attention modules (CAM). They can be easily

performed as the drop-in parts and are model–agnostic.

•We demonstrate the necessity to learn discriminative and ro-

bust metric via our decoupling idea. Extensive experiments have

been performed on several challenging datasets for ZSIR, includ-

ing CUB [36], CARS [15], Stanford Online Products [23] and In-

Shop [18]. Our DeML achieves state-of-the-art performances and

surpasses other methods by a significant margin.

2. Related Work

Zero-shot learning: ZSL has been widely studied in

many tasks, such as image classification [17, 1, 8, 44],

hashing[31], video recognition [6] etc. However, different

from these ZSL tasks that are capable of exploiting the ex-

tra auxiliary supervision signals of unseen classes (e.g. se-

2Some works call it spatial-attention.

mantic word embedding of class name and explicit attribute

information), our DeML concentrates on a more general

version of zero-shot image retrieval (ZSIR), where there

are only similarity labels spq ∈ {0, 1} available. There-

fore, how to capture the discriminative and all-sided infor-

mation only from the input image is the mainstay of this

task.

Deep embedding/metric learning: With only spq avail-

able, many works seek to exploring deep metric learning

for ZSIR task. For example, sampling-Matters [39] pro-

poses distance weighted sampling strategy. Proxy-NCA

[21] explains why popular classification loss works from

a proxy-agent view, and its implementation is very similar

with Softmax. ALMN [2] proposes to optimize an adap-

tive large margin objective via the generated virtual points

instead of mining hard-samples. However, all the above

methods are to tackle with the unified metric by designing

losses and exploring sample-mining strategies, thus suffer

from the aforementioned issues easily. Additionally, HDC

[43] employs the cascaded models and selects hard-samples

from different levels and models. BIER loss [24, 25] adopts

the online gradients boosting methods. Although these two

methods try to improve the performances by resorting to the

ensemble idea, they can only learn from the undiscriminat-

ing input and also suffer from the partial learning behavior,

as a result, the discrimination and generalization of holistic

features are still limited.

Attention mechanism: Attention serves as a tool to bias

the allocation of available resources towards the most infor-

mative parts of an input. Many are implemented in combi-

nation with a gating mechanism (e.g. softmax or sigmoid)

and are widely applied in many tasks, e.g. image caption-

ing [4, 40], lip reading [5], image classification [12, 37, 7].

Schwartz et at. [30] adopt high order attention modules for

VQA. Fu et at. [7] propose to learn an attention network so

as to produce the attention proposals, while, it is optimized

in a two-stage manner, i.e. iteratively train the embedding

model and attention model. We emphasize that our DeML

is a hybrid-attention system. First, it adopts a parameter-

free object-attention module, which is performed by ran-

dom walk graph propagation and can be directly plugged

into any bedrock CNNs without training. Second, differ-

ent from [12, 4] where the channel-attention operations are

cascaded, i.e. only the most informative signal will be

captured, our DeML is equipped with a series of channel-

attention modules in parallelism, which are optimized by

the adversary module and insist to learn various combina-

tions of attributes simultaneously and to capture knowledge

as much as possible.

3. Decoupled Metric Learning

As discussed in Sec.1, in zero-shot setting, simply opti-

mizing an unified representation like in most existing works
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Figure 2: The framework of our DeML.
⊙

indicates the joint operation of cropping and zooming. The FC layer is first decoupled into two object-attention

root-learners(dashed rectangle and ellipse) for coarse and finer scale, resp. Then, each root-learner is further decoupled into three channel-attention sub-

learners (best viewed in colors). Each (root or sub) learner is supported by the corresponding attention module (OAM or CAM). The parameters to be shared

across streams have been annotated by ’shared’. (FNet+GNet) is the whole GooglenetV1, and we use FNeti, GNeti to indicate the nets at scale i.

Details of the adversary net is in Fig.3.(c)

wouldn’t guide the learning of discriminative and robust

metric as a joint result of (1) undiscriminating visual input

and (2) the partial/selective learning behavior3.

Naturally motivated by “divide and rule”, the intuitive

solution is to decouple the single representation into a se-

ries of artificially defined learners so as to explicitly en-

courage different learners to attend to different latent fea-

tures and improve the holistic feature’s discrimination and

diversity. Moreover, many research works point out that at-

tention mechanism is a crucial component connecting data

embeddings with decision making modules, and diverse at-

tentional cues allows the learning of various knowledge. We

follow this inspiring idea and recast the above solution as

hybrid-attention learning by decoupling the original unified

metric into several attention-specific parts, each part is fol-

lowed by the corresponding fc learner, i.e. object-attention

(OA) root-learner and channel-attention (CA) sub-learner.

The overall framework of DeML is illustrated in Fig.2 (for

clarity, we depict the network with only two OA root-

learners and three CA sub-learners under each root-learner

as an example).

Specifically, for the i-th scale, the embedding part

consists of three different components: (1) the bedrock

CNN, i.e. Googlenet-V1 [34] (we decompose it into
(Conv1−Pool3)

FNet

(Incep4−Pool5)
GNet

), (2) the object-attention

module (OAM) is to incrementally pinpoint the informa-

tive object-based region proposals for discriminative fea-

ture learning, and (3) the channel-attention module (CAM)

is to concurrently produce diverse attribute-based channel-

3Notably, these shortcomings also reside in conventional full-shot

tasks, while they heavily exacerbate the performances in zero-shot settings.

attention proposal cap(i,j). When given an image xn, we

will directly use it for the first scale input and employ its

cropped&zoomed version for the next scale input. At the

i-th scale, the input will first be encoded by FNeti and then

fed into multiple CAMs. The produced channel-attention

proposals cap(i,j) will then be encoded by the correspond-

ing subsequent GNeti and CA sub-learners. All the CA sub-

learners at the same scale constitute one OA root-learner.

We now define OAi, CA(i,j) as the corresponding learners

and OAi(·), CA(i,j)(·) as the corresponding encoding func-

tions, then give the holistic feature representation ϕ[xn] as:

ϕ[xn] = {OA1[x
1
n]; OA2[x

2
n]; · · · } (1)

where OAi[·] = {· · · ; CA(i,j)[·]; · · · }

where the input xn ∈ Xseen ≡ {xn}
N
n=1, xi

n

is the i-th scale image which is cropped and zoomed

from xi−1
n by OAMi−1, and x1

n = xn is the origi-

nal scale image. Notably, we use square brackets “[]”

to show the conditional relation, e.g. CA(i,j)[x
i
n] indi-

cates the CA learner CA(i,j) is conditional on input xi
n,

and this relation can also be formulated as CA(i,j)[x
i
n] =

CA(i,j)(g
i(CAM(i,j)(f

i(xi
n)))) (shows the encoding pro-

cess from image to feature space), where f i and gi in-

dicate the encoding functions of FNeti and GNeti, resp,

CAM(i,j) denotes the corresponding channel-attention

module (CAM), i ∈ [1 · · · I], j ∈ [1 · · · J ] (in Fig.2,

I=2, J=3). The total size of ϕ[xn] is d-dim, thus for I

OA learners and I × J CA learners, OAi(·) ∈ R
d
I and

CA(i,j)(·) ∈ R
d

I×J .

Below, we will introduce our OAM and CAM in Sec.3.1

and Sec.3.2 resp, and then show the objective metric loss

together with the regularization term in Sec.3.3.
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Figure 3: (a) The generation of object-attention proposal M l via random walk graph propagation. (b) The generation of channel-attention proposal cap(i,j)
via CAM, in this case, ’foot’ and ’wing’ are activated while ’body’ is suppressed, and if there are diverse CAMs , different cases will turn up, (c) The

adversary network, which is placed after the CA sub-learners.

3.1. Random Walk Inferred OAM

As we discussed above, in order to learn discriminative

OA learner, we should first provide the discriminative vi-

sual inputs. However, unlike the detection methods that

have precise bounding-box annotations about object loca-

tions(e.g. RPN [10, 26]), there are no auxiliary annotations

for training in ZSIR. We thus present the random walk in-

ferred object-attention module(OAM), a parameter-free and

spatial attention method, by performing graph propagation

over the receptive fields of deep responses in Conv maps, so

as to produce the object-attention proposals.

As illustrated in Fig.2, our OAM takes as input many

convolutional response maps (U lk ∈ R
Clk

×Hlk
×Wlk , k ∈

[1, 2, · · · ], Clk , Hlk and Wlk denote the number of chan-

nels, height and width of the lk-th layer, respectively), and

then gives the final object-attention proposal. For clarity, we

give a toy example and omit the subscript k for written con-

venience (if not specified), each spatial location (h,w) on

U l has a feature vector ul
h,w ∈ RCl . To produce the spatial

object-attention proposal M l ∈ RHl×Wl , a fully connected

directed graph Gl is first constructed by connecting every

location on U l with the weight matrix Dl ∈ RHlWl×HlWl ,

where Dl
hWl+w,h

′
Wl+w

′ indicates the weight of the edge

from node (h,w) to (h
′

, w
′

) and is defined as:

D
l

hWl+w,h
′
Wl+w

′ , ‖ul
h,w − u

l

h
′
,w

′ ‖ (2)

Before performing propagation, the weights of the out-

bound edges of each node are normalized to 1, i.e. Dl
a,b ←

Dl
a,b

∑HlWl

b
′
=1

Dl

a,b
′

. Then, a random walk graph propagation al-

gorithm [20] is employed to produce the object-attention

proposal M l. As shown in Fig.3.(a), the node (h,w) re-

ceives and diffuses mass via the inbound and outbound di-

rected edges respectively. Then this random walk propaga-

tion iteratively collects mass at the nodes that have high dis-

similarity with their surroundings (i.e. it will highlight the

saliency foreground object region), since the edge weight

(i.e. transition probability) is proportional to the dissimilar-

ity between two nodes as defined by Eq.2, transitions into

such subgraphs is likely, and unlikely if nodes have similar

deep features ul. By the globally objectness flow, it can not

only collects object evidence but also depresses noise re-

gions. For the convenience of random walk calculation, the

proposal map M l is first reshaped to a HlWl-dim vector,

and then it is updated by the iterative multiplication with

the weight matrix Dl, i.e. M ← D ×M .

Moreover, as a common knowledge that the response

maps at different layers are of different information, e.g. the

bottom layers have better predictive power for shape while

the top layers are robust to noisy regions [19, 27], our OAM

takes as input multiple Conv. layers U lk , k ∈ [1, 2, · · · ] so

as to avoid the influence of noise surroundings (e.g. trees

around birds), and each object-attention proposal M lk can

be obtained by performing random walk graph propagation

over U lk as follows:

M
lk ← (

T∏

t=1

D
lk )M lk (3)

M lk is first initialized with value 1
Hlk

Wlk

, and the weight

matrix Dlk is conditional on the response map U lk , then the

iterative update of M lk like M ← D ×M can be rewrit-

ten as the above equation and each M lk can reach its sta-

ble state with T = 10. After Eq.3, all M lk are reshaped

to 2D maps and resized to the same size as the input im-

age, then they are averaged to a single map, i.e. the final

object-attention proposal. In experiments, we find using

{k ∈ [1, 2], and l1 = Incep4e, l2 = Incep5b} is enough,

As in Fig.2, with the help of this proposal, the coarse scale

image is processed into the finer scale by operation
⊙

,

and then the finer scale input will benefit the discriminative

learning of the corresponding OA learner.

Remark: The procedure in Eq.3 can be viewed as a vari-

ant of the eigenvector centrality measure [22], which out-

puts a proposal map to indicate the mass of each location on

the deep response maps. It can also be regarded as a Markov

chain that can reach unique stable state since the chain is er-

godic, a property which emerges from the fact that the graph

G is by construction strongly connected. [11, 45]. More-

over, the random-walk based informative-region search is

computationally lightweight and parameter-free, thus it can

be easily employed in any bedrock CNNs and has no need to
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be additionally optimized, i.e. when given the well trained

convolutional maps U , it can directly infer the important ob-

ject region in an unsupervised manner. Finally, recurrently

executing OAMs will incrementally improve the discrimi-

nation of the corresponding OA learners.

3.2. Adversarial CAM

Although the OA learners can produce discriminative
representations, each single OA learner will still be likely to
suffer from the partial/selective learning behavior, i.e. only
focuses on certain attributes (e.g. heads of birds, bellows
of car, etc.) which are the easiest ones to reduce the cur-
rent training risk. Therefore, in order to improve the diver-
sity of each OA root-learner, we further decouple it into J
CA sub-learners which insist to capture various attributes
information coming from diverse channel-attention propos-
als cap(i,j) as in Fig.2, and each cap(i,j) is produced by a
particular channel-attention mudule (CAM(i,j)). For clar-
ity, we take one CAM for example, as shown in Fig.3.(b), it
takes as input U l ∈ RCl×Hl×Wl of the l-th layer (omit sub-
script k for convenience) and outputs a channel-weighted
counterpart of U l, i.e. cap(i,j). We formulate it as:

cap(i,j) = CAM(i,j)(U
l) = U

l
⊡ σ[W 2

(i,j)δ(W
1
(i,j)Ψ(U l))]

where U l is first aggregated to a channel descriptor

through spatial average pooling Ψ, then is passed through

two fully-connected layers (parameterized by W 1
(i,j) ∈

R64×Cl ,W 2
(i,j) ∈ RCl×64) that intend to capture the in-

teractions among channels and are followed by ReLU (δ)

and Sigmoid (σ) respectively. Finally, U l is reweighted by

the channel-wise multiplication ⊡ between 2D map U l
c and

scalar σ[W2δ(W1Ψ(U l))]c, where c is the channel index.

Since the filters in certain convolutional layers serve as

the local attribute detectors to some extend, the resulting

deep response maps will reserve the attribute information

in channels. In another word, different attributes reside in

different channels. Therefore, the reweighting operation in

our CAM can be regarded as an attributes selector(e.g. in

Fig.3.(b) it selects ’foot’ and ’wing’ yet ignores ’body’),

and the concerned cues(within cap(i,j)) will be passed to

the corresponding CA sub-learner. If there are diverse se-

lectors, i.e. multiple CAMs, capable of capturing differ-

ent combinations of attributes information in parallel, the

corresponding CA learners will focus on different attributes

knowledge, and the richness and diversity of each OA root-

learner will be significantly improved.
While, to explicitly encourage the diversity of CAMs,

directly adding diversity constraints after CAMs might be
detrimental, since in fact it is hard to know which channel
contains what attribute signal and which kind of channel
combination is beneficial to the embedding learning. To this
end, as shown in Fig.2, all cap(i,j) are first fed into the cor-
responding subsequent shared embedding layers, and the
diversity of CAMs are naturally transferred to that of the
CA learners. And in order to explicitly encourage the diver-
sity of CAMs, we can instead impose diversity constraints

on the CA learners. Then, an adversarial optimization strat-
egy is introduced as the diversity constraint by playing a
maxmin game, i.e. the adversary network tries to mini-
mize the discrepancies among CA learners while CAMs try
to maximize these discrepancies as follows:

max
fi,gi,CAMs

min
̥i

Ladv(x
i
n;̥

i; f i; gi;CAMs) =

λ0

J∑

j,j
′

‖̥i[CA(i,j)[x
i
n]]−̥

i[CA(i,j
′
)[x

i
n]]‖

2
2 (4)

where f i, gi and ̥i indicate the mapping functions

of FNeti, GNeti and the adversary network respectively,

λ0 is the loss weight. The above equation is a discrep-

ancy measurement over all J CA sub-learners that be-

long to the i-th OA root-learner. Moreover, to simplify

the two-stage optimization in this maxmin game, a gra-

dients reverse layer (GRL) [9] is introduced as shown in

Fig.3.(c), so as to make Eq.4 be equivalent to min̥i Ladv

and min(fi,gi,CAMs)(−Ladv).
Remark: Since at each scale i the params of GNeti (gi)

in different channel-attention branches are shared as shown

in Fig.2, when optimizing min(fi,gi,CAMs)(−Ladv), the

only differentiating parts are CAMs, in other words, only

diverse CAMs will make (−Ladv) small. Moreover, the

reason of using adversary objective instead of directly con-

strain CA learners to be different with each other is because

the definition of difference between learners is likely to be

hard to be artificially made than the similarity, we thus play

the above adversarial game so as to allow the automatic

learning of the optimal discrepancies between CAMs.

3.3. Objective Loss and Regularization Term

Employing multiple OAMs and CAMs, the holistic fea-

ture representation ϕ[xn] can be decoupled into a series of

attention-specific parts. Then, the binomial deviance loss

[41] is utilized and the empirical metric loss over all CA

sub-learners can be formulated as:

Lmetric =
1

IJ

I∑

i=1

J∑

j=1

∑

p, q

1

wpq

log (1 + e
−(2spq−1)α(D

(i,j)
pq −β)γpq )

(5)
where α = 2, β = 0.5 are the scaling and translation

parameters resp. γpq is the penalty coefficient and is set

to 1 if spq = 1(i.e. images xp, xq are from the same

class), otherwise γpq = 35. wpq is the number of posi-

tive pairs(negative pairs) if spq = 1(spq = 0). D
(i,j)
pq =

<CA(i,j)[x
i
p],CA(i,j)[x

i
q ]>

‖CA(i,j)[xi
p]‖‖CA(i,j)[xi

q ]‖
measures the distance between in-

puts xi
p and xi

q at learner CA(i,j). Notably, if J = 1,

the OA root-learner has no need to be decoupled, thus

CA(i,j) = OAi. Additionally, the learners are trained on

the relatively small datasets (compared to ImageNet [28])

from scratch and thus are easier to be over-fitting, following

the commonly used weight decay strategy which regularizes

the value of parameters not to be too large so as to reduce
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over-fitting, we present a regularization term for optimiz-

ing each learner, called activation decay, to constraint the

representation value as follows:

Lact =
λ1

2IJN

I∑

i=1

J∑

j=1

N∑

n=1

‖CA(i,j)[x
i
n]‖

2
2 + Lntri (6)

where Lntri = λ2

I∑

i=1

J∑

j=1

tr[(ωijω
T
ij − I)⊗ (ωijω

T
ij − I)]

where Lntri is used to avoid the trivial solution(i.e. all pa-

rameters are optimized to 0) when minimizing Lact, λ1, λ2

are trade-off hyper-parameters. ωij ∈ R
d
IJ

×d1 are the pa-

rameters in learner CA(i,j), d1 indicates its input channel

number. ⊗ refers to the Hadamard-Product. Finally, DeML

can be trained by jointly optimizing Eq.4, 5 & 6.

3.4. Discussion

Why decoupling? In ZSIR, the traditional idea of de-

vising loss functions for optimizing an unified metric omits

the issues of (1) undiscriminating visual input regions and

(2) the partial/selective learning behavior of learner, and

thus exhibits limitations in discriminative and knowledge-

preserving feature learning that is crucial for ZSIR. How-

ever, in our DeML, decoupling this unified metric into mul-

tiple separate learners gives us chances and flexibilities to

mitigate the above problems individually, i.e. recurrently

improve the discrimination via OA root-learners and ex-

plicitly encourage the diversity and richness via CA sub-

learners, and as a result, the redundancy in features is re-

duced and the representation ability is encouraged as well.

Additionally, in Sec.4, we show that our decoupling idea

outperforms the existing methods in ZSIR by a significant

margin even without hard-samples mining.

Relation to other ensemble methods: In deep metric

learning community, there are some other ensemble works

related to us. Yuan et al [43] employ multiple layers at dif-

ferent depths for hard-aware samples mining and then cas-

cade the learned embeddings together. Opitz et at [24, 25]

adopt the online gradients boosting and optimize different

learners with the reweighted data. Kim et at [13] try to in-

crease the feature diversity via contrastive loss but ignore

the importance of learning discriminative metric in ZSIR

task. In summary, although these methods aim at learning

ensemble metric, they easily suffer from the undiscriminat-

ing inputs, and the partial learning behaviors are not effec-

tively constrained as well. We emphasize that our DeML re-

casts the ensemble problem as a hybrid-attention model that

has a clear object of addressing the aforementioned issues

individually, and decouples the unified metric into multi-

ple attention-specific parts, so as to explicitly intensify both

the discrimination and diversity within each part of features,

thus capturing rich knowledge and being capable of gener-

alizing to unseen categories.

Relation to other attention mechanism: Many other

attention works, such as spatial-attention [40, 8], channel-

attention [4, 12] and semantic-attention [42, 30], employ

the task-specific attention modules to mine the most infor-

mative signals. While, we emphasize that our DeML is a

hybrid-attention system, which dedicates to capturing not

only the informative object-attention regions via OAMs but

also the diversity of attributes via CAMs. Moreover, OAM

differs from works [4, 40, 7] in that it is performed by the

random walk graph propagation, which is in a parameter-

free manner and can be directly employed without train-

ing. And different from [4, 12] where the channel-attention

modules are to extract the most informative channel-signals,

our parallel CAMs are constrained by the adversary task

such that they are different with each other and capable of

extracting rich and complementary attributes knowledge. In

summary, CAMs can work in conjunction with OAMs, and

the generalization and discrimination of the holistic metric

are explicitly and naturally ensured.

4. Experiments

Notation: For clarity, the conventional unified metric

learning(i.e. directly train d-dim features with Eq.5) is de-

noted by Ud, e.g. U512, and we set it as our baseline. The

proposed method is denoted by DeML(I,J), where there are

I OA root-learners and I × J CA sub-learners in total, d is

set to 512 by default and each OA(CA) learner is 512
I

( 512
IJ

)-

dim, if not divisible, operation floor is performed.

Implementation details: Following the codes released

by [3, 23], we choose the pretrained GooglenetV1 [34] as

our bedrock network and adopt the same data preprocess

method so as to make fair comparisons with other works.

The learners, CAMs and adversary networks are initialized

with random weights. CAMs are placed after pool3 layer,

OAM takes as inputs incep4e output and incep5b output.

Training: The optimizer is Adam [14] with learning rate

1e− 5 and weight decay 2e− 4. The training iterations

are 15k(CUB), 25k(CARS), 100k(Stanford Online Prod-

ucts and In-shop) resp. We set λ0 = 1, λ1 = 0.014, λ2 =
0.25 and 10 times learning rate for the learners.

Evaluation and datasets: For fair comparison, we fol-

low [23] to evaluate the retrieval performance by Recall@K

metric. For testing unseen images, the outputs of I × J

learners will be concatenated into the holistic feature af-

ter L2 normalization. Then we use the simple cosine dis-

tance rule for similarity measurement. The datasets include

CUB[36], CARS[15], Stanford Online Products[23] and In-

Shop[18]. There is no intersection of classes between

training and testing sets.

4.1. Results

Effect of activation decay: From Tab.1, one can ob-

serve that with the help of our activation decay Lact,

the performances of unified metric learning under differ-

ent feature sizes are consistently improved over both CUB
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Figure 4: (a) Object-attention regions at different scales inferred by OAMs. (b) Channel-attention proposals at certain channels output by CAMs.

Method CUB (R@1) CARS (R@1)

U64 50.0 65.4

U64+Lact 50.9 ↑ 67.1 ↑
U192 52.4 68.3

U192+Lact 54.9 ↑ 74.6 ↑
U384 53.0 69.1

U384+Lact 55.6 ↑ 77.4 ↑
U512 52.9 68.4

U512+Lact 56.2 ↑ 77.6 ↑

Table 1: Effect of Lact.

and CARs datasets, e.g.

(U512+Lact) vs. U512,

moreover, from Fig.5 one

can observe that the train-

ing curve of U512 rises fast

to a higher level, i.e. 1, but

its testing curve first rises a

bit and then drops continu-

ously to 0.2, indicating that U512 suffers from serious over-

fitting over the seen categories, while the training curve of

(U512+Lact) rises slower than U512 and its testing curve

has a rising trend, implying that Lact indeed serves as a

regularization term and can improve the generalization abil-

ity on unseen categories by reducing over-fitting. Addi-

tionally, from the results of (U64+Lact) to (U512+Lact),

one can observe that the performances increase with dimen-

sion d, but when d is large enough (e.g. from 384 to 512),

the performance gain is small (55.6% vs. 56.2% on CUB,

77.4% vs. 77.6% on CARS), and the similar phenomenon

can be observed from U64 to U512 as well, indicating that

the neural redundancy indeed exists and limits the further

improvement, and highlighting the necessity of our decou-

pling idea laterally.

Attention visualization: In order to intuitively under-

stand our attention modules, we provide clear visualiza-

tions of the corresponding attention proposals for qualita-

tive analysis, i.e. the attended regions at multiple scales by

the proposed OAMs and the diverse attribute proposals by

CAMs, Fig.4. Firstly, for object-attention regions, one can

observe that these localized regions at second or third scales

are discriminative to the corresponding categories, and are

easier to be recognized than the first scale. Secondly, for

channel-attention proposals, it can be observed that differ-

ent CAMs process the same input U l into diverse proposals,

which contain different attributes combinations, by differ-

ent weighting strategies. Thus forcing the following CA

learners to concentrate on different knowledge, the partial

learning behavior can be avoided. These above results are

consistent with human perception that it would be helpful to

look closer for better decisions and to learn rich knowledge

for handling unseen categories.

Effect of attention modules: We also conduct quanti-

CUB (R@1) CARS (R@1)

DeML H O (1st/2nd/3rd) H O (1st/2nd/3rd)

(I=1,J=1) 56.1 - 77.9 -

(I=1,J=4) 56.6 - 81.1 -

(I=1,J=8) 59.0 - 82.5 -

(I=2,J=1) 60.9 54 / 58.8 83.4 76.9 / 79.2

(I=2,J=4) 61.7 54.9 / 59.7 84.8 77.7 / 79.9

(I=3,J=1) 64.9 54 / 58 / 60.1 85.6 75.4 / 77.5 / 78.9

(I=3,J=3) 65.4 54.1 / 58.4 / 60.6 86.3 75.3 / 78.9 / 80.4

Table 2: Effect of attention modules. H and O indicate the retrieval results of features

coming from the holistic learner and OA root-learners, resp.

0 5 10 15 20 25
0.4

0.6

0.8

1

Iteration

T
ra

in
in

g
 S

et

Recall@1

 

 

U512
U512+act
our DeML(I=1,J=8)

0 5 10 15 20 25
0.2

0.4

0.6

0.8

Iteration

T
es

ti
n

g
 S

et

 

 

U512
U768+act
our DeML(I=1,J=8)

Figure 5: Training (seen) and testing (unseen) curves on CUB.

tative comparisons on attention modules in Tab.2. By de-

fault, dimension d is set to 512. The model DeML(I=1,J=1)

is very similar to model (U512+Lact) with only a small

difference of an extra single CAM, and from Tab.1 and

Tab.2, one can observe that their performances are almost

the same(56.2% vs. 56.1% on CUB, 77.6% vs. 77.9%
on CARS), implying that capturing the single attentional

knowledge via attention module might not be helpful for

ZSIR. Moreover, in Tab.2 one can observe that, by fix-

ing J=1, the holistic performance (H) will significantly

increase with I (56.1% → 60.9% → 64.9% on CUB,

77.9% → 83.4% → 85.6% on CARS), and the OA learner

at finer scale will be more discriminative than that at coarse

scale, e.g. in DeML(I=3,J=1) on CUB, the third OA learner

achieves 60.1%, the second gets 58% and the first gets 54%,

indicating that the more discernible the input is, the more

discriminative embedding is. Furthermore, when fixing I

to a certain value, decoupling each OA root-learner into

multiple CA sub-learners will consistently improve the per-

formances over both CUB and CARS, e.g. when I=1, the

result (H) increases with J from 56.1% to 59.0% (77.9%
to 82.5%) on CUB (CARS), and the similar improvements

can be also observed when I=2 or 3, revealing that explic-

itly encouraging the diversity and capturing rich knowledge

indeed improve the generalization of metric in ZSIR. This
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R@K(%) CUB-200 CARS-196 Stanford Online Products In-Shop

Method 1 2 4 8 1 2 4 8 1 10 100 1000 1 10 20 30 40 50

Lifted [23] 47.2 58.9 70.2 80.2 49.0 60.3 72.1 81.5 62.1 79.8 91.3 97.4 - - - - - -

N-pair [32] 51.0 63.3 74.3 83.2 71.1 79.7 86.5 91.6 67.7 83.8 93.0 97.8 - - - - - -

Angular [38] 53.6 65.0 75.3 83.7 71.3 80.7 87.0 91.8 70.9 85.0 93.5 98.0 - - - - - -

Proxy NCA [21] 49.2 61.9 67.9 72.4 73.2 82.4 86.4 88.7 73.7 - - - - - - - - -

ALMN [2] 52.4 64.8 75.4 84.3 71.6 81.3 88.2 93.4 69.9 84.8 92.8 - - - - - - -

ECAML [3] 55.7 66.5 76.7 85.1 84.5 90.4 93.8 96.6 71.3 85.6 93.6 98.0 83.8 95.1 96.6 97.3 97.7 98.0

HDC [43] ◦ 53.6 65.7 77.0 85.6 73.7 83.2 89.5 93.8 69.5 84.4 92.8 97.7 62.1 84.9 89.0 91.2 92.3 93.1

BIER [24] ◦ 55.3 67.2 76.9 85.1 78.0 85.8 91.1 95.1 72.7 86.5 94.0 98.0 76.9 92.8 95.2 96.2 96.7 97.1

ABE [13]4 ◦ 58.6 69.9 79.4 87.1 82.7 88.8 93.1 96.0 74.7 87.9 94.2 98.0 86.2 96.1 97.5 97.9 98.2 98.5

A-BIER [25] ◦ 57.5 68.7 78.3 86.0 82.0 89.0 93.2 96.1 74.2 86.9 94.0 97.8 83.1 95.1 96.9 97.5 97.8 98.0

baseline(U512) 52.9 65.0 75.4 83.6 68.4 78.7 86.0 91.2 68.7 84.0 92.7 97.6 81.8 94.1 95.7 96.5 97 97.3

DeML(I=3,J=3) 65.4 75.3 83.7 89.5 86.3 91.2 94.3 97.0 76.1∗ 88.4∗ 94.9∗ 98.1∗ 88.2 97.0 98.0 98.3 98.6 98.8

Table 3: Retrieval results on CUB [36], CARS [15] and Stanford Online Products [23]. Here, ◦ refers to other ensemble methods, the superscript ∗ indicates

the results are from model DeML(I=2,J=4) not DeML(I=3,J=3).

conclusion can also be demonstrated by Fig.5, i.e. the train-

ing curve of DeML(I=1,J=8) is much lower than that of

U512 or (U512+Lact), showing that the learned knowledge

are not specially prepared for the training seen categories

and the partial learning behavior is mitigated, while its test-

ing curve outperforms both U512 and (U512+Lact), imply-

ing that learning diverse knowledge will further improve the

generalization ability by reducing over-fitting. Worthy of

mention is that in theory bigger J will be more helpful(e.g.

J=8), however due to the limitation of GPU memory, during

training when I=3, J is limited to 3. In summary, the appro-

priate combination of (I,J) will significantly improve both

the discrimination and generalization of the deep metric in

an interpretable attention-based decoupling manner.

Effect of adversary loss: Unlike OAMs that can auto-

matically extract the object-attention regions via random-

walk graph propagation, the CAMs should be extra con-

strained so as to explicitly encourage the learning of com-

plementary attributes knowledge instead of the partial one.

From Tab.4, one can observe that without the constraint of

Ladv , the performances of DeML(I=1,J=8) are drastically

decreased over both CUB and CARS (i.e. from 59.0% to

52.0% on CUB and 82.5% to 68.2% on CARS), and the

similarities between different CA learners are obviously in-

creased from 0 to nearly 1, verifying that our adversary

loss Ladv indeed encourages the discrepancies between CA

learners (and CAMs) and reduces the neural redundancy,

as a result, the diverse and rich information are captured

such that the generalization ability is enhanced. More-

over, one can observe that even if there are 8 64-dim learn-

ers in (DeML(I=1,J=8) without Ladv), the performances

are close to (U64+Lact), since these 8 learners are super-

vised independently and thus are all likely to focus on the

same attributes knowledge that are the easiest one to reduce

the training risk, and then have little differences with each

other(’sim’ is close to 1), implying the redundant learners

will not contribute much and the partial learning behavior

will turn up easily without the diversity constraint.

Comparison with State-of-the-art: In order to high-

light the significance of our decoupling idea for zero-shot

retrieval, we compare DeML with some remarkable embed-

CUB (R@K) 1 2 4 8 sim

DeML(I=1,J=8) 59.0 70.2 79.7 87.4 -0.08 ±0.01

DeML(I=1,J=8) without Ladv 52.0 ↓ 63.9 ↓ 74.0 ↓ 82.3 ↓ 0.92 ±0.02 ↑

U64+Lact 50.9 62.8 74.0 82.6 -

CARS (R@K) 1 2 4 8 sim

DeML(I=1,J=8) 82.5 89.5 93.5 96.1 -0.09 ±0.01

DeML(I=1,J=8) without Ladv 68.2 ↓ 78.3 ↓ 85.4 ↓ 90.9 ↓ 0.95 ±0.01 ↑

U64+Lact 67.1 77.6 85.0 90.6 -

Table 4: Effect of adversary loss. ’sim’ indicates the mean cosine similarity between

CA learners.

ding works4, over the popular used datasets CUB, CARS,

Stanford Online Products and In-Shop Clothes. The com-

parison results are listed in Tab.3. From these tables, one

can observe that our baseline(U512) can only achieve the

general performances, and the performances of traditional

ideas of loss-designing and samples-mining are almost on

par with each other, while, by explicitly intensifying both

the discrimination and diversity within the deep metric,

our DeML can significantly improve the performances over

baseline model and outperforms other state-of-the-art meth-

ods by a noteworthy margin, demonstrating the necessity of

our explicit enhancement for discrimination and generaliza-

tion via the decoupling idea. Moreover, different from the

listed ensemble methods [43, 24, 25, 13], DeML has clear

objects of jointly mitigating the aforementioned issues that

are vital to ZSIR, and thus can easily surpass them. Worthy

of mention is that, we find DeML(I=2,J=4) is enough for

Stanford Online Products dataset, since as in Fig.4 the sec-

ond scale has been capable of localizing the discriminative

regions.

5. Conclusion
In this paper, we propose an interpretable DeML, a

hybrid-attention based decoupling method, for zero-shot

image retrieval task by explicitly intensifying the discrimi-

nation and generalization within the learned metric with the

proposed OAMs and CAMs. Extensive experiments vali-

date the necessity and effectiveness of our decoupling idea.
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