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Abstract

As an alternative to manual pixel-wise annotation, syn-
thetic data has been increasingly used for training semantic
segmentation models. Such synthetic images and seman-
tic labels can be easily generated from virtual 3D envi-
ronments. In this work, we propose an approach to cross-
domain semantic segmentation with the auxiliary geometric
information, which can also be easily obtained from vir-
tual environments. The geometric information is utilized on
two levels for reducing domain shift: on the input level, we
augment the standard image translation network with the
geometric information to translate synthetic images into re-
alistic style; on the output level, we build a task network
which simultaneously performs semantic segmentation and
depth estimation. Meanwhile, adversarial training is ap-
plied on the joint output space to preserve the correlation
between semantics and depth. The proposed approach is
validated on two pairs of synthetic to real dataset: Vir-
tual KITTI=KITTI, and SYNTHIA— Cityscapes, where we
achieve a clear performance gain compared to the baselines
and various competing methods, demonstrating the effec-
tiveness of the geometric information for cross-domain se-
mantic segmentation. Our implementation is available at
http://github.com/yuhuayc/gio—ada.

1. Introduction

Semantic segmentation refers to the task of classifying
each pixel in a given image to its semantic category, e.g.
sky, road, car. The task provides pixel-wise semantic un-
derstanding of scenes, and leads to many attractive applica-
tions such as robotics, autonomous driving efc. Like many
other visual perception tasks, deep neural networks [28] ex-
cel at semantic segmentation when trained on large-scale
labeled datasets. However, building such labeled datasets
for semantic segmentation is not an easy task, in terms of
both collecting and annotating: it is non-trivial to collect
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Figure 1. We aim to adapt a semantic segmentation model learned
from synthetic data to real data. The semantic label is only avail-
able in the source domain(synthetic data). Only unlabeled images
are given in the target domain(real data). The domain adaptation
process is strengthened by auxiliary geometric information in syn-
thetic data, which can be obtained easily from virtual environment.

images with large diversity of scenes and conditions; anno-
tating them can be even more costly due to the process of
acquiring pixel-wise labels.

To address these bottlenecks, synthetic data becomes a
charming alternative to supervise semantic segmentation
models. Recent advances in computer graphics make it
possible to automatically generate synthetic images, with
the corresponding per-pixel labels from virtual 3D envi-
ronments [46, 45]. Training on synthetic data seems to
be a tempting way to reduce annotation cost, however, the
mismatch in appearance often leads to a significant perfor-
mance drop when the learned models are applied to real
data.

Many works have been proposed to tackle this issue from
the domain distribution shift perspective using various do-
main adaptation techniques [21, 57, 5]. On the other hand,
image translation techniques [00] have also been widely
used to transform synthetic images into realistic style. This
can be seen as aligning the domain distribution at pixel
level [20]. Nevertheless, these works typically utilize only
synthetic images and the corresponding semantic labels.
However, a significant advantage of synthetic data has been
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unfortunately overlooked: one can actually obtain rich in-
formation from virtual environments, such as depth, surface
norm, optical flow, etc., at a much lower cost than obtaining
the information of the same kind in the real world.

As illustrated in Figure 1, the aim of this work is to
exploit the supplementary geometric information from the
synthetic domain for improving cross-domain semantic seg-
mentation in real data. We are motivated by the fact that
geometry and semantics are naturally coupled. Geometric
cue can usually imply semantics and vice verse. As shown
in previous works [54], joint reasoning the semantics and
depth improves the performance of both tasks. Moreover,
unlike the large gap between synthetic and real images, the
correlation between depth and semantics is more domain-
invariant and suffers less from domain shift. For example,
a road is usually flat, the sky is far away, poles are verti-
cal. These facts hold regardless in synthetic data and real
data. Thus, the correlation between semantics and geom-
etry is highly favoured for reducing the domain gap. Be-
sides, depth information is relatively easy to acquire from
synthetic data, as one can simply generate the depth from
virtual 3D environments, and no special equipment (e.g. Li-
dar, calibrated stereo cameras) is needed.

We present a new approach called Geometrically Guided
Input-Output Adaptation (GIO-Ada), in which we leverage
depth information for the domain adaptation task on two
levels: 1) on the input level, an augmented image transform
network takes synthetic image and its corresponding seman-
tic and depth map as input, and is trained to produce images
with realistic style by exploiting the intrinsic connection
between raw images, semantic and geometric information;
and 2) on the output level, a task network jointly performs
semantic segmentation and depth estimation using supervi-
sion from synthetic domain. Further, adversarial training is
applied on the joint output space of semantic segmentation
and depth estimation, thus preserving domain-invariant cor-
relation between semantics and depth. With the aforemen-
tioned modules, geometric information not only improves
the semantic segmentation, but also helps to alleviate the
domain gap between synthetic and real data.

The proposed approach is validated through extensive
experiments on Virtual KITTI [I1], KITTI [13], SYN-
THIA [47], and Cityscapes [7] datasets, where we achieve
significant performance improvement over the non-adaptive
baseline and competing methods that don’t leverage geo-
metric information. The experiments demonstrate that our
approach can improve cross-domain semantic segmenta-
tion by incorporating geometric information from synthetic
data.

2. Related Works

Semantic Segmentation is a highly active research
field. Recent approaches are mostly based on fully con-

volutional network [35], with modifications for pixel-wise
prediction, such as DilatedNet [56], DeepLab [3], PSP-
Net [59] etc. Such models are generally trained on datasets
with pixel-wise annotation, e.g., PASCAL [9], COCO [34],
and Cityscapes [7]. However, building such labeled datasets
is expensive and laborious. With the development of com-
puter graphics techniques, synthetic data enables an alter-
native approach to training semantic segmentation models
at a lower cost. To this end, several synthetic datasets have
been built, for example, GTAV [46], SYNTHIA [47], Vir-
tual KITTI [1 1], etc. These datasets are typically gener-
ated from virtual 3D environments, meaning that modali-
ties other than the semantic label can be generated easily as
well. Such modalities include optical flow, depth, surface
normal efc. Our work is motivated to leverage such free su-
pervision in synthetic data in order to effectively perform
cross-domain semantic segmentation.

Domain Adaptation is a classic problem in machine
learning and computer vision. It aims to mitigate the per-
formance drop caused by the distribution mismatch between
training and test data. It is mostly studied in image recog-
nition problems by both conventional approaches [29, 18,

, 10, 33] and CNN-based approaches [36, 12, 14, 50, 42,

, 31,19, 37, 38]. We refer to [43, 8] for comprehensive
surveys. Besides image classification, domain adaptation
has been studied in other vision tasks such as object detec-
tion [4], depth estimation [ 1] etc.

Our work is mostly related to cross-domain semantic
segmentation [21, 57, 20, 53, 48, 5, 62, 61]. Hoffman
et al. [21] propose to improve the cross-domain semantic
segmentation, by aligning the features from two domains
with adversarial training. Following this line, many works
have been proposed to address the domain shift problem in
semantic segmentation using different techniques, such as
curriculum style learning [57], distillation loss [5], output
space alignment [53], class-balanced self-training [62], con-
servative loss [01], etc. Moreover, inspired by the success
of generative adversarial network [44, 17] and image trans-
lation techniques [60, 22], a few works have also suggested
to transform synthetic images to realistic style, thus reduc-
ing domain gap on raw-pixel level [51, 20, 41, 20, 48, 16]
and to boost the semantic segmentation performance in real
world.

The aforementioned works typically only leverage la-
beled source images and unlabeled target images while ne-
glecting other information in the dataset, such as geometric
information. In this work we take advantage of privilege
depth information in the target domain. Similar idea has
been exploited for image recognition [32, 2], and by a con-
current work [30] for semantic segmentation.

Depth Aided Semantic Segmentation Depth estima-
tion and semantic segmentation are two fundamental tasks
of scene understanding. Many works have been proposed
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Figure 2. Overview of the proposed architecture. The flow of source data is shown in orange line, while the flow of target data is shown
in black line. The image transform network transforms synthetic images to realistic style, and the task network is used to perform semantic

segmentation and depth estimation simultaneously.

to jointly learn the two tasks in a mutually beneficial man-
ner. Wang et al. [54] build a hierarchical CRF with CNN to
leverage the geometric cue, and Kendall et al. [26] propose
a cross-task uncertainty to weight losses for the two tasks.
Besides, various techniques have been used for the task, in-
cluding fine-tuning [40], cross-modality influence [23], task
distillation module with intermediate auxiliary tasks [55],
recursive estimation [58], task attention loss [24]. More
broadly speaking, it can be related to multi-tasking [27]. In
this work, the correlation between semantics and depth is
also leveraged, but for the purpose of domain adaptation.

3. Methodology

In this section, we present our approach to learning se-
mantic segmentation models from synthetic data, with the
aid of depth information. Following unsupervised domain
adaptation protocol, synthetic data is utilized as the source
domain S, and real data as the target domain 7". In the
source domain, we have access to synthetic images x5 € S
along with their corresponding ground-truth labels, includ-
ing semantic segmentation labels y, and depth labels d;. In
the target domain, only unlabeled images z; € T are avail-
able.

3.1. Overview of the Proposed Approach

The overview of our proposed Geometrically Guided
Input-Output Adaptation (GIO-Ada) approach is illustrated
in Figure 2. To address the domain gap between synthetic
and real domains, domain adaptation is performed jointly
on two levels, namely input level and output level. Depth in-
formation (i.e., geometric information) is exploited for im-
proving adaptation on both levels.

Input-level adaptation aims to reduce visual differ-
ences at raw pixel level. The output from input-level adap-
tation are later used as input to the following task net-
work. For this purpose, we deploy an image transform net-
work Gimg which takes a synthetic image x, along with
its corresponding depth d; and semantic labels y, as input.
The transform network G/, is supposed to produce trans-
formed images s with visually similar appearances to the
images in the target domain, and at the same time preserves
useful information for semantic segmentation and depth es-
timation.

Most of the existing pixel-level adaptation methods do
not consider the depth information of the source domain.
This is apparently not optimal for several reasons: geomet-
ric information becomes more difficult to recover once dis-
carded in the rendering process. On the other hand, geomet-
ric information is highly correlated with semantic informa-
tion. Due to these reasons, we use the depth information as
an auxiliary input of the image transform network to better
preserve information during image translation.

Output-level adaptation aims to align the outputs of the
task network for two domains, and also retain the coherent
correlation between tasks. The output-level adaptation in-
cludes a task network Gy,sr and an output-level discrimi-
nator Doytput. Grask takes real images x, or transformed
synthetic images ¢ as input, then simultaneously predicts
semantic segmentation y and depth prediction d. Doutput
tries to determine if the outputs (semantics and depth) are
predicted from a transformed synthetic image or a real one.

Utilizing geometric information in output-level adapta-
tion brings several benefits. First, by learning depth estima-
tion as an auxiliary task, we can learn representation which
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is more robust against domain shift. Second, the correlation
between semantics and depth can be used as a powerful cue
for domain alignment. Since no ground-truth label is given
in the target domain, aligning the output space between the
two domains can be a highly useful supervision signal to
guide the training. Unlike the previous work [53] which
only aligns the output space of a single task, here we con-
sider the joint output space of semantic segmentation and
depth estimation. In this way, we align not only the output
distributions of each individual task, but also the underlying
interconnection between different tasks. This is proven to
be effective for boosting the performance of the two tasks.
It is also consistent with our motivation that such connec-
tions suffer less from domain shift, for instance, the sky is
always far away, cars are usually on the street efc. Hereby,
we respectively elaborate the adaptation on the two levels
in the following sections.

3.2. Input-Level Adaptation

To transform synthetic images into the real-style images,
we build an image transform network Gj,,, with synthetic
image x,, semantic segmentation label y, and depth map d
as input. In particular, the depth map is normalized into a
range of [0, 1] among all images in the dataset, and the se-
mantic label is represented as a one-hot map of C' channels
where C'is the total number of categories. The network pro-
duces the transformed image &5 = Gimg (s, Ys, ds), Which
is expected to be realistic-looking and still contains vital
information for the task networks (e.g., semantic segmenta-
tion, depth estimation.).

Inspired by recent works on generative adversarial net-
works (GANs) [17], we apply a discriminator D, , to guar-
antee the realism of generated images. The discriminator
Dy is trained to distinguish between transformed syn-
thetic images and real images. At the same time, D;y,q is
also used to guide the training of the image transform net-
work in a similar way to the adversarial training strategy in
GANSs. Similar with previous works [20, 60], we use Patch-
GAN [22] to operate on patches, from which we obtain the
discriminator output in the form of a two-dimensional map.
The loss for training D;,,4 can be written as follows:

'C'input = IEthXT [log Dimg(xt)] (1)
+Exs~Xs UOg(l - Dimg(‘%S))] )

in which we omit the image width and height dimension for
simplicity.

As mentioned above, the transformed images are ex-
pected to be useful for the tasks at hand. This is achieved
by joint training the image transform network with the task
network (details are provided in the next section). Since
the image transform network is differentiable, the gradients
from the task network can guide the transform network to

ensure the preservation of useful information from synthetic
data.

3.3. Output-Level Adaptation

Our task network G5k concurrently performs semantic
segmentation and depth estimation for a given input image.
The network is shared between two domains and takes ei-
ther a transformed synthetic image 2 or a real image x; as
input. Specifically, a feature extractor is shared between the
two tasks, with two decoders on top of it respectively for
each task, namely one decoder for semantic segmentation
output and the other one for depth estimation output.

The semantic segmentation task is learned by minimiz-
ing a standard cross-entropy loss:

ESEQ = EISNXS [CE(ymgs)]a (2)

where 1, stands for ground-truth semantic labels, and ¥,
stands for predicted labels. With regard to the semantic seg-
mentation task, depth estimation can be seen as an auxiliary
task. As a common practice, we deploy the ¢; loss for the
depth estimation task as follows:

Laeptn = B, oxs[l|ds — dsl|1], 3)

where d, stands for ground-truth depth, and d, stands for
predicted depth. Note that both losses only apply to the
source domain, where supervision is available.

To ensure that the task network performs well in the tar-
get domain, we further apply a discriminator Dy,4x on the
outputs as inspired by [53]. However, instead of using only
the semantic segmentation output, our work jointly consid-
ers both semantics and depth, as the inherent correlation be-
tween semantics and depth information could be a helpful
cue to effectively reduce domain difference. In particular,
we concatenate the output of semantic segmentation pre-
diction ¥ (resp. y;) and the output of depth estimation map
d; (resp. c’lvt), which leads to a total of C' + 1 channels in
the concatenated output. We use the concatenated output to
train the discriminator Dy, s, Which distinguishes outputs of
the source domain from those of the target domain. Similar
t0 Dimg, Diast 1s also formulated as a PatchGAN in favour
of its awareness of spatial contextual relations. The loss for
D1 can be written as follows:

['output = EactNXT |:10g Doutput(gta gt):| (4)

+EI5~XS |:10g(1 - Doutput(d:sa@is))} .

3.4. Overall Training Objective

Bring together the input-level and the output-level mod-
ules, we jointly train all networks Giask, Gimg, Dimg and
D oyiput- The overall objective is written as follows:
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non-adapt 793 605 0.0 0.3 95 668 83 859 592 48 | 375
input-level adapt | 83.2 674 10.8 219 245 688 65 883 77.8 9.3 | 459
output-level adapt | 81.1 69.1 7.1 86 283 795 433 86.0 793 17.8 | 50.0
GIO-Ada 814 712 11.3 266 23.6 828 565 884 80.1 12.7 | 53.5
Table 1. Quantitative results on Virtual KITTI—-KITTI. The results are reported using mloU over 10 categories. The best result is
denoted in bold.
4.1. Experiment Settings
min - max {Lseg + Adeptn Laepth 5) Following the common unsupervised domain adaptation

img img
Gtask Doutput

+)\input['input + Aoutput‘Coutput}a

where As act as the trade-off weights to balance different
loss terms. The min-max problem is optimized with the
adversarial training strategy. Note that domain adaptation
procedure is only performed in the training phase. During
test time, only G,sr is applied on real images, and other
components such as Gipg, Dimg and Doyipu are removed
during inference.

3.5. Implementation Details

In our GIO-Ada approach, the image transform network
Gimg resembles the generator in CycleGAN [60], which
is based on the network in [25] with several convolutional
layers and residual blocks. For the task network, we deploy
similar architecture with DeepLab-v2 model [3] with VGG
backbone [52]. In more details, on the top of shared VGG
encoder, we build two separate decoders: one for depth es-
timation, and the other for semantic segmentation. ASPP
module from DeepLab v2 are used in both decoders, where
the only difference is the number of output channel. The
task network is initialized with the ImageNet pre-trained
weights. Moreover, the discriminators are based on Patch-
GAN [22], for which the weights are randomly initialized
from a Gaussian distribution.

In the training, the trade-off parameters are set as
Adepth = 0.1, Xinpur = 0.1, Aoytpur = 0.001. Each mini-
batch contains two images, one from the source domain and
the other sampled from the target domain. Random horizon-
tal flip is used for data augmentation. We use Adam opti-
mizer with an initial learning rate of 2 x 10~%. The network
is trained for 10 epochs.

4. Experiments

In this section, we verify the effectiveness of our pro-
posed GIO-Ada approach for semantic segmentation from
synthetic data to real scenarios.

protocol, we use a synthetic dataset as the source domain,
and a real dataset as the target domain. For the synthetic
datasets, we use Virtual KITTI[11] and SYNTHIA [47], as
depth information is available for these two datasets. Ac-
cordingly, KITTI [13] and Cityscapes [7] are used as the
real datasets, which results in two adaptation pairs: Virtual
KITTI—=KITTI, and SYNTHIA—Cityscapes. We briefly
introduce the datasets used in our experiments as below.

KITTI [13] is a dataset on autonomous driving, which
consists of images depicting several driving urban scenar-
ios. It is collected by moving vehicles in multiple cities.
The official split for semantic segmentation is used in our
experiment, which contains 200 training images, and 200
test images. The images have a spatial resolution around
1242 x 375. As the ground-truth label is only available in
the training set, thus we use the official unlabeled test im-
ages to adapt our model, and we report the results on the
official training set.

Virtual KITTI [11] is a photo-realistic synthetic dataset
which contains 21,260 images. Each image is densely an-
notated at pixel level with category and depth information.
It is designed to mimic the conditions of KITTI dataset and
has similar scene layout, camera viewpoint, and image reso-
lution as KITTTI dataset, thus making it ideal to study the do-
main adaptation problems between synthetic and real data.

Cityscapes [7] consists of 2,975 images in the training
set, and 500 images in the validation set. The images have
a fixed spatial resolution of 2048 x 1024 pixels. Due to the
large size of image, as a common practice we down-size
the images to half resolution (at 1024 x 512 pixels). The
training set is used to adapt the model, and we report our
results on the validation set.

SYNTHIA [47] is a dataset with synthetic images of
urban scenes and pixel-wise annotations. The render-
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na cg ed +d +s +sd
375 39.8 435 442 447 459

Table 2. Ablation study on input-level adaptation. mIoU over
10 categories is reported. na: non-adaptive baseline; cg: image
translation with CycleGAN [60]; gd: image transform network is
guided by the task network; +d: with additional depth input to the
image transform network; +s: with additional semantic label in-
put; +sd: with both semantic and depth labels as additional input,
which is also our final model for input-level adaptation.

ing covers a variety of environments and weather condi-
tions. In our experiment, we adopt the SYNTHIA-RAND-
CITYSCAPES subset, which contains 9,400 images com-
patible with the Cityscapes categories.

4.2. Results on Virtual KITTI-KITTI

We first evaluate the proposed method for learning se-
mantic segmentation from the Virtual KITTI dataset to the
KITTT dataset. The 10 common categories between two
datasets are used for performance evaluation. We report
the results using mean of Intersection over Union (mloU),
which are summarized in Table 1. Overall, our GIO-
Ada improves the mloU over the non-adaptive baseline by
4-16%, which confirms the effectiveness of our method for
cross-domain semantic segmentation. To further study the
benefits of the adaptation modules on different levels, we
break down the performance by testing the ablated ver-
sions of our approach: the input-level adaptation achieves
+8.4% performance gain, while the output-level adapta-
tion achieves +12.5% improvements. This demonstrates
the effectiveness of both modules for adapting segmenta-
tion models form the synthetic domain to the real domain.
Moreover, the two adaptation modules are also shown to be
complementary, as combining them can further reduce the
domain gap.

We also provide a few qualitative examples in Figure 3.
From those results, we observe that the segmentation results
generally get improved with our GIO-Ada approach. Espe-
cially, by leveraging the geometric cues, our model produce
improved segmentation quality on objects with geometric
structure, such as poles, traffic signs, efc., which are usually
challenging for existing methods.

To further investigate the different design variants, espe-
cially with a focus on the importance geometric cue in the
two components. We conduct further ablation studies on the
two adaptation modules individually in below.

Ablation study on input-level adaptation: In our final
input-level adaptation model, we use an image transform
network, which takes an image and its corresponding se-
mantic and depth label as input. To investigate the benefits

na ss depth sep joint
37.5 459 438 463 50.0

Table 3. Ablation study on output-level adaptation. mloU over
10 categories is reported. na: the non-adaptive baseline; ss: align-
ing the semantic segmentation output; depth: aligning the depth
estimation output; sep: individually aligning outputs of semantic
segmentation and depth estimation; joint: aligning the joint out-
put space of semantic segmentation and depth estimation, which
is also our final model for output-level adaptation.

of using additional inputs, we test three variants of input-
level adaptation module with only depth, with only seman-
tic label, or with none as additional input. We also include
[60], an image translation model commonly adapted for do-
main adaptation for comparison.

The results are summarized in Table 2. We observe
that all other methods outperform the non-adaptive base-
line, demonstrating the importance of input-level adapta-
tion. However, CycleGAN only improves the baseline re-
sult by +2.3%, which is less effective compared to the im-
provement of +6% achieved by the task network. This in-
dicates that the gradient from the task network is a useful
guidance for the image transform network to preserve use-
ful information. Nevertheless, the performance can be fur-
ther boosted when additional information is further taken as
input. Adding individually depth and semantic segmenta-
tion as the additional input gives an improvement of +6.7%
and +7.2%, respectively, and integrating them together pro-
duces +8.4% performance gain. The results suggest that
the geometric information can be very useful in the image
transformation process in the sense that it helps to preserve
rich information in the raw 3D environment.

We further demonstrate this by providing a few exam-
ples of translated images with CycleGAN and our approach
in Figure 4, in which we clearly observe that our model is
able to preserves more of the geometric and semantic con-
sistency during the translation process. More specifically,
CycleGAN is observed to hallucinate buildings and trees in
the sky (row 1,2,4), the poles turn into trees (row 5), and
cars turn to road (row 3). In comparison, our approach is
able to preserve the semantic and geometric consistency.

Ablation study on output-level adaptation: We also
study different variants of the output-level adaptation.
There are several possible alternatives to our joint output
space adaptation. For example, performing the output space
alignment proposed by [53] in semantic segmentation space
and depth estimation space separately. Additionally, we try
to build two discriminators to individually align the two out-
put spaces, without considering the correlation between the
two tasks. We compare these variants to our final model
which aligns the joint output space of semantic segmenta-

1846



= =] = ] L

R R EE R R

S &8 2 £ 5 35 & & 3 <% 5§ B S £ £ g|lE|ln

o = “— (=¥ 2} = [=1)) a. ) 5 )

-z E E ¢ ; :

FCNs WId [21] 115 19.6 30.8 44 00 203 0.1 11.7 423 687 512 3.8 540 32 02 06 ]20.1]229
Curriculum [57] 652 26.1 749 0.1 0.5 107 3.7 3.0 76.1 70.6 47.1 82 432 20.7 0.7 13.1|29.0|348
Cross-City [6] 627 256 783 - - - 12 54 813 81.0 374 64 635 161 12 46| - [357
ROAD-Net [5] 777 300 77.5 9.6 03 258 103 15.6 77.6 79.8 445 16.6 67.8 14.5 7.0 23.8|36.1|41.7
Tsai et al. [53] 789 292 755 - - - 0.1 48 726 767 434 88 71.1 160 3.6 84| - |376
Sankaranarayanan ef al. [19] | 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 482 152 70.5 17.4 8.7 16.7|36.1|42.1
CBST [62] 69.6 28.7 695 12.1 0.1 254 119 13.6 82.0 81.9 49.1 145 66.0 6.6 3.7 32.4|354(40.7
non-adapt 97 14.1 585 4.7 03 227 19 129 70.7 609 502 7.2 322 174 1.3 80 |23.3]265
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output-level adapt 79.6 29.7 75.7 114 03 253 11.1 148 76.7 769 453 159 67.7 15.8 4.8 13.5]35.3|40.6
GIO-Ada 783 292 769 11.4 0.3 265 10.8 17.2 81.7 81.9 458 154 68.0 159 7.5 30.4|37.3|43.0

Table 4. Comparison with state-of-the-arts methods for cross-domain semantic segmentation from SYNTHIA to Cityscapes. All
results are based on VGG as the backbone architecture. Some works only report on 13 classes, we hereby mark these excluded categories
with *. We also report the average performance over 13 classes as mloU excl. *. The best results are denoted in bold.

tion and depth estimation.

The results are shown in Table 3. First, we observe that
all variants achieve significant gain over the baseline, show-
ing the effectiveness of domain adaptation techniques in
general. Particularly, output space alignment on semantic
segmentation prediction [53] achieves performance gain of
+8.4%, while the improvement of the same output space
adaptation module on depth prediction is +6.3%. This is
not surprising, considering our final objective is semantic
segmentation. Aligning the semantic segmentation output
has a more direct influence on the segmentation results. We
then combine depth alignment and semantic segmentation
alignment, which gives an improvement of +8.8% over the
baseline, marginally better than using only semantic seg-
mentation alignment. This suggests that trivially optimizing
each task can not bring in performance gain without mod-
eling the correlation between the tasks. Finally, by aligning
the joint output space of semantic segmentation and depth
estimation, we achieve a notable improvement of +12.5%,
showing that joint correlation is highly effective for reduc-
ing domain shift, which also verifies our motivations.

4.3. Results on SYNTHIA — Cityscapes

To facilitate the comparison with other state-of-the-art
works, we further evaluate the proposed method on SYN-
THIA to Cityscapes setting following [21, 57, 6, 5, 53, 49,

]. The results of all methods are summarized in Table 4.
For a fair comparison, all methods are based on VGG-16
backbones.

Similarly to the setting of Virtual KITTI — KITTI,
the adaptation at both input and output levels is helpful
for performance improvement: the input-level adaptation
improves the baseline by +10.5%, while the output-level
adaptation improves it by +12.0%. Integrating the two

modules gives a larger performance gain of +14.0% over
the non-adaptive baseline. This again verifies the effective-
ness of our adaptation modules in both the input and output
levels.

Our GIO-Ada outperforms all other competing methods
by a notable margin. We attribute this to the supplement
of geometric cues to the semantic segmentation task dur-
ing domain adaptation. Nevertheless, our method takes the
complementary information of the geometric cue, which is
often overlooked by other methods. Our method has the po-
tential to be integrated with other techniques for potential
improvement.

5. Conclusion

In this paper, we hav