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Abstract

As an alternative to manual pixel-wise annotation, syn-

thetic data has been increasingly used for training semantic

segmentation models. Such synthetic images and seman-

tic labels can be easily generated from virtual 3D envi-

ronments. In this work, we propose an approach to cross-

domain semantic segmentation with the auxiliary geometric

information, which can also be easily obtained from vir-

tual environments. The geometric information is utilized on

two levels for reducing domain shift: on the input level, we

augment the standard image translation network with the

geometric information to translate synthetic images into re-

alistic style; on the output level, we build a task network

which simultaneously performs semantic segmentation and

depth estimation. Meanwhile, adversarial training is ap-

plied on the joint output space to preserve the correlation

between semantics and depth. The proposed approach is

validated on two pairs of synthetic to real dataset: Vir-

tual KITTI→KITTI, and SYNTHIA→Cityscapes, where we

achieve a clear performance gain compared to the baselines

and various competing methods, demonstrating the effec-

tiveness of the geometric information for cross-domain se-

mantic segmentation. Our implementation is available at

http://github.com/yuhuayc/gio-ada.

1. Introduction

Semantic segmentation refers to the task of classifying

each pixel in a given image to its semantic category, e.g.

sky, road, car. The task provides pixel-wise semantic un-

derstanding of scenes, and leads to many attractive applica-

tions such as robotics, autonomous driving etc. Like many

other visual perception tasks, deep neural networks [28] ex-

cel at semantic segmentation when trained on large-scale

labeled datasets. However, building such labeled datasets

for semantic segmentation is not an easy task, in terms of

both collecting and annotating: it is non-trivial to collect
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Figure 1. We aim to adapt a semantic segmentation model learned

from synthetic data to real data. The semantic label is only avail-

able in the source domain(synthetic data). Only unlabeled images

are given in the target domain(real data). The domain adaptation

process is strengthened by auxiliary geometric information in syn-

thetic data, which can be obtained easily from virtual environment.

images with large diversity of scenes and conditions; anno-

tating them can be even more costly due to the process of

acquiring pixel-wise labels.

To address these bottlenecks, synthetic data becomes a

charming alternative to supervise semantic segmentation

models. Recent advances in computer graphics make it

possible to automatically generate synthetic images, with

the corresponding per-pixel labels from virtual 3D envi-

ronments [46, 45]. Training on synthetic data seems to

be a tempting way to reduce annotation cost, however, the

mismatch in appearance often leads to a significant perfor-

mance drop when the learned models are applied to real

data.

Many works have been proposed to tackle this issue from

the domain distribution shift perspective using various do-

main adaptation techniques [21, 57, 5]. On the other hand,

image translation techniques [60] have also been widely

used to transform synthetic images into realistic style. This

can be seen as aligning the domain distribution at pixel

level [20]. Nevertheless, these works typically utilize only

synthetic images and the corresponding semantic labels.

However, a significant advantage of synthetic data has been
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unfortunately overlooked: one can actually obtain rich in-

formation from virtual environments, such as depth, surface

norm, optical flow, etc., at a much lower cost than obtaining

the information of the same kind in the real world.

As illustrated in Figure 1, the aim of this work is to

exploit the supplementary geometric information from the

synthetic domain for improving cross-domain semantic seg-

mentation in real data. We are motivated by the fact that

geometry and semantics are naturally coupled. Geometric

cue can usually imply semantics and vice verse. As shown

in previous works [54], joint reasoning the semantics and

depth improves the performance of both tasks. Moreover,

unlike the large gap between synthetic and real images, the

correlation between depth and semantics is more domain-

invariant and suffers less from domain shift. For example,

a road is usually flat, the sky is far away, poles are verti-

cal. These facts hold regardless in synthetic data and real

data. Thus, the correlation between semantics and geom-

etry is highly favoured for reducing the domain gap. Be-

sides, depth information is relatively easy to acquire from

synthetic data, as one can simply generate the depth from

virtual 3D environments, and no special equipment (e.g. Li-

dar, calibrated stereo cameras) is needed.

We present a new approach called Geometrically Guided

Input-Output Adaptation (GIO-Ada), in which we leverage

depth information for the domain adaptation task on two

levels: 1) on the input level, an augmented image transform

network takes synthetic image and its corresponding seman-

tic and depth map as input, and is trained to produce images

with realistic style by exploiting the intrinsic connection

between raw images, semantic and geometric information;

and 2) on the output level, a task network jointly performs

semantic segmentation and depth estimation using supervi-

sion from synthetic domain. Further, adversarial training is

applied on the joint output space of semantic segmentation

and depth estimation, thus preserving domain-invariant cor-

relation between semantics and depth. With the aforemen-

tioned modules, geometric information not only improves

the semantic segmentation, but also helps to alleviate the

domain gap between synthetic and real data.

The proposed approach is validated through extensive

experiments on Virtual KITTI [11], KITTI [13], SYN-

THIA [47], and Cityscapes [7] datasets, where we achieve

significant performance improvement over the non-adaptive

baseline and competing methods that don’t leverage geo-

metric information. The experiments demonstrate that our

approach can improve cross-domain semantic segmenta-

tion by incorporating geometric information from synthetic

data.

2. Related Works

Semantic Segmentation is a highly active research

field. Recent approaches are mostly based on fully con-

volutional network [35], with modifications for pixel-wise

prediction, such as DilatedNet [56], DeepLab [3], PSP-

Net [59] etc. Such models are generally trained on datasets

with pixel-wise annotation, e.g., PASCAL [9], COCO [34],

and Cityscapes [7]. However, building such labeled datasets

is expensive and laborious. With the development of com-

puter graphics techniques, synthetic data enables an alter-

native approach to training semantic segmentation models

at a lower cost. To this end, several synthetic datasets have

been built, for example, GTAV [46], SYNTHIA [47], Vir-

tual KITTI [11], etc. These datasets are typically gener-

ated from virtual 3D environments, meaning that modali-

ties other than the semantic label can be generated easily as

well. Such modalities include optical flow, depth, surface

normal etc. Our work is motivated to leverage such free su-

pervision in synthetic data in order to effectively perform

cross-domain semantic segmentation.

Domain Adaptation is a classic problem in machine

learning and computer vision. It aims to mitigate the per-

formance drop caused by the distribution mismatch between

training and test data. It is mostly studied in image recog-

nition problems by both conventional approaches [29, 18,

15, 10, 33] and CNN-based approaches [36, 12, 14, 50, 42,

39, 31, 19, 37, 38]. We refer to [43, 8] for comprehensive

surveys. Besides image classification, domain adaptation

has been studied in other vision tasks such as object detec-

tion [4], depth estimation [1] etc.

Our work is mostly related to cross-domain semantic

segmentation [21, 57, 20, 53, 48, 5, 62, 61]. Hoffman

et al. [21] propose to improve the cross-domain semantic

segmentation, by aligning the features from two domains

with adversarial training. Following this line, many works

have been proposed to address the domain shift problem in

semantic segmentation using different techniques, such as

curriculum style learning [57], distillation loss [5], output

space alignment [53], class-balanced self-training [62], con-

servative loss [61], etc. Moreover, inspired by the success

of generative adversarial network [44, 17] and image trans-

lation techniques [60, 22], a few works have also suggested

to transform synthetic images to realistic style, thus reduc-

ing domain gap on raw-pixel level [51, 20, 41, 20, 48, 16]

and to boost the semantic segmentation performance in real

world.

The aforementioned works typically only leverage la-

beled source images and unlabeled target images while ne-

glecting other information in the dataset, such as geometric

information. In this work we take advantage of privilege

depth information in the target domain. Similar idea has

been exploited for image recognition [32, 2], and by a con-

current work [30] for semantic segmentation.

Depth Aided Semantic Segmentation Depth estima-

tion and semantic segmentation are two fundamental tasks

of scene understanding. Many works have been proposed
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Figure 2. Overview of the proposed architecture. The flow of source data is shown in orange line, while the flow of target data is shown

in black line. The image transform network transforms synthetic images to realistic style, and the task network is used to perform semantic

segmentation and depth estimation simultaneously.

to jointly learn the two tasks in a mutually beneficial man-

ner. Wang et al. [54] build a hierarchical CRF with CNN to

leverage the geometric cue, and Kendall et al. [26] propose

a cross-task uncertainty to weight losses for the two tasks.

Besides, various techniques have been used for the task, in-

cluding fine-tuning [40], cross-modality influence [23], task

distillation module with intermediate auxiliary tasks [55],

recursive estimation [58], task attention loss [24]. More

broadly speaking, it can be related to multi-tasking [27]. In

this work, the correlation between semantics and depth is

also leveraged, but for the purpose of domain adaptation.

3. Methodology

In this section, we present our approach to learning se-

mantic segmentation models from synthetic data, with the

aid of depth information. Following unsupervised domain

adaptation protocol, synthetic data is utilized as the source

domain S, and real data as the target domain T . In the

source domain, we have access to synthetic images xs ∈ S

along with their corresponding ground-truth labels, includ-

ing semantic segmentation labels ys and depth labels ds. In

the target domain, only unlabeled images xt ∈ T are avail-

able.

3.1. Overview of the Proposed Approach

The overview of our proposed Geometrically Guided

Input-Output Adaptation (GIO-Ada) approach is illustrated

in Figure 2. To address the domain gap between synthetic

and real domains, domain adaptation is performed jointly

on two levels, namely input level and output level. Depth in-

formation (i.e., geometric information) is exploited for im-

proving adaptation on both levels.

Input-level adaptation aims to reduce visual differ-

ences at raw pixel level. The output from input-level adap-

tation are later used as input to the following task net-

work. For this purpose, we deploy an image transform net-

work Gimg which takes a synthetic image xs, along with

its corresponding depth ds and semantic labels ys as input.

The transform network Gimg is supposed to produce trans-

formed images x̂s with visually similar appearances to the

images in the target domain, and at the same time preserves

useful information for semantic segmentation and depth es-

timation.

Most of the existing pixel-level adaptation methods do

not consider the depth information of the source domain.

This is apparently not optimal for several reasons: geomet-

ric information becomes more difficult to recover once dis-

carded in the rendering process. On the other hand, geomet-

ric information is highly correlated with semantic informa-

tion. Due to these reasons, we use the depth information as

an auxiliary input of the image transform network to better

preserve information during image translation.

Output-level adaptation aims to align the outputs of the

task network for two domains, and also retain the coherent

correlation between tasks. The output-level adaptation in-

cludes a task network Gtask and an output-level discrimi-

nator Doutput. Gtask takes real images xt or transformed

synthetic images x̂s as input, then simultaneously predicts

semantic segmentation ey and depth prediction ed. Doutput

tries to determine if the outputs (semantics and depth) are

predicted from a transformed synthetic image or a real one.

Utilizing geometric information in output-level adapta-

tion brings several benefits. First, by learning depth estima-

tion as an auxiliary task, we can learn representation which
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is more robust against domain shift. Second, the correlation

between semantics and depth can be used as a powerful cue

for domain alignment. Since no ground-truth label is given

in the target domain, aligning the output space between the

two domains can be a highly useful supervision signal to

guide the training. Unlike the previous work [53] which

only aligns the output space of a single task, here we con-

sider the joint output space of semantic segmentation and

depth estimation. In this way, we align not only the output

distributions of each individual task, but also the underlying

interconnection between different tasks. This is proven to

be effective for boosting the performance of the two tasks.

It is also consistent with our motivation that such connec-

tions suffer less from domain shift, for instance, the sky is

always far away, cars are usually on the street etc. Hereby,

we respectively elaborate the adaptation on the two levels

in the following sections.

3.2. Input-Level Adaptation

To transform synthetic images into the real-style images,

we build an image transform network Gimg with synthetic

image xs, semantic segmentation label ys and depth map ds
as input. In particular, the depth map is normalized into a

range of [0, 1] among all images in the dataset, and the se-

mantic label is represented as a one-hot map of C channels

where C is the total number of categories. The network pro-

duces the transformed image x̂s = Gimg(xs, ys, ds), which

is expected to be realistic-looking and still contains vital

information for the task networks (e.g., semantic segmenta-

tion, depth estimation.).

Inspired by recent works on generative adversarial net-

works (GANs) [17], we apply a discriminator Dimg to guar-

antee the realism of generated images. The discriminator

Dimg is trained to distinguish between transformed syn-

thetic images and real images. At the same time, Dimg is

also used to guide the training of the image transform net-

work in a similar way to the adversarial training strategy in

GANs. Similar with previous works [20, 60], we use Patch-

GAN [22] to operate on patches, from which we obtain the

discriminator output in the form of a two-dimensional map.

The loss for training Dimg can be written as follows:

Linput = Ext∼XT
[logDimg(xt)] (1)

+Exs∼XS
[log(1−Dimg(x̂s))] ,

in which we omit the image width and height dimension for

simplicity.

As mentioned above, the transformed images are ex-

pected to be useful for the tasks at hand. This is achieved

by joint training the image transform network with the task

network (details are provided in the next section). Since

the image transform network is differentiable, the gradients

from the task network can guide the transform network to

ensure the preservation of useful information from synthetic

data.

3.3. Output-Level Adaptation

Our task network Gtask concurrently performs semantic

segmentation and depth estimation for a given input image.

The network is shared between two domains and takes ei-

ther a transformed synthetic image x̂s or a real image xt as

input. Specifically, a feature extractor is shared between the

two tasks, with two decoders on top of it respectively for

each task, namely one decoder for semantic segmentation

output and the other one for depth estimation output.

The semantic segmentation task is learned by minimiz-

ing a standard cross-entropy loss:

Lseg = Exs∼XS
[CE(ys, eys)], (2)

where ys stands for ground-truth semantic labels, and eys
stands for predicted labels. With regard to the semantic seg-

mentation task, depth estimation can be seen as an auxiliary

task. As a common practice, we deploy the `1 loss for the

depth estimation task as follows:

Ldepth = Exs∼XS
[||ds − eds||1], (3)

where ds stands for ground-truth depth, and eds stands for

predicted depth. Note that both losses only apply to the

source domain, where supervision is available.

To ensure that the task network performs well in the tar-

get domain, we further apply a discriminator Dtask on the

outputs as inspired by [53]. However, instead of using only

the semantic segmentation output, our work jointly consid-

ers both semantics and depth, as the inherent correlation be-

tween semantics and depth information could be a helpful

cue to effectively reduce domain difference. In particular,

we concatenate the output of semantic segmentation pre-

diction eys (resp. eyt) and the output of depth estimation map
eds (resp. edt), which leads to a total of C + 1 channels in

the concatenated output. We use the concatenated output to

train the discriminator Dtask which distinguishes outputs of

the source domain from those of the target domain. Similar

to Dimg , Dtask is also formulated as a PatchGAN in favour

of its awareness of spatial contextual relations. The loss for

Dtask can be written as follows:

Loutput = Ext∼XT

h
logDoutput(edt, eyt)

i
(4)

+Exs∼XS

h
log(1−Doutput( eds, eys))

i
.

3.4. Overall Training Objective

Bring together the input-level and the output-level mod-

ules, we jointly train all networks Gtask, Gimg , Dimg and

Doutput. The overall objective is written as follows:
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non-adapt 79.3 60.5 0.0 0.3 9.5 66.8 8.3 85.9 59.2 4.8 37.5

input-level adapt 83.2 67.4 10.8 21.9 24.5 68.8 6.5 88.3 77.8 9.3 45.9

output-level adapt 81.1 69.1 7.1 8.6 28.3 79.5 43.3 86.0 79.3 17.8 50.0

GIO-Ada 81.4 71.2 11.3 26.6 23.6 82.8 56.5 88.4 80.1 12.7 53.5

Table 1. Quantitative results on Virtual KITTI→KITTI. The results are reported using mIoU over 10 categories. The best result is

denoted in bold.

min
Gimg

Gtask

max
Dimg

Doutput

{Lseg + �depthLdepth (5)

+�inputLinput + �outputLoutput},

where �s act as the trade-off weights to balance different

loss terms. The min-max problem is optimized with the

adversarial training strategy. Note that domain adaptation

procedure is only performed in the training phase. During

test time, only Gtask is applied on real images, and other

components such as Gimg , Dimg and Doutput are removed

during inference.

3.5. Implementation Details

In our GIO-Ada approach, the image transform network

Gimg resembles the generator in CycleGAN [60], which

is based on the network in [25] with several convolutional

layers and residual blocks. For the task network, we deploy

similar architecture with DeepLab-v2 model [3] with VGG

backbone [52]. In more details, on the top of shared VGG

encoder, we build two separate decoders: one for depth es-

timation, and the other for semantic segmentation. ASPP

module from DeepLab v2 are used in both decoders, where

the only difference is the number of output channel. The

task network is initialized with the ImageNet pre-trained

weights. Moreover, the discriminators are based on Patch-

GAN [22], for which the weights are randomly initialized

from a Gaussian distribution.

In the training, the trade-off parameters are set as

�depth = 0.1,�input = 0.1,�output = 0.001. Each mini-

batch contains two images, one from the source domain and

the other sampled from the target domain. Random horizon-

tal flip is used for data augmentation. We use Adam opti-

mizer with an initial learning rate of 2×10−4. The network

is trained for 10 epochs.

4. Experiments

In this section, we verify the effectiveness of our pro-

posed GIO-Ada approach for semantic segmentation from

synthetic data to real scenarios.

4.1. Experiment Settings

Following the common unsupervised domain adaptation

protocol, we use a synthetic dataset as the source domain,

and a real dataset as the target domain. For the synthetic

datasets, we use Virtual KITTI [11] and SYNTHIA [47], as

depth information is available for these two datasets. Ac-

cordingly, KITTI [13] and Cityscapes [7] are used as the

real datasets, which results in two adaptation pairs: Virtual

KITTI→KITTI, and SYNTHIA→Cityscapes. We briefly

introduce the datasets used in our experiments as below.

KITTI [13] is a dataset on autonomous driving, which

consists of images depicting several driving urban scenar-

ios. It is collected by moving vehicles in multiple cities.

The official split for semantic segmentation is used in our

experiment, which contains 200 training images, and 200

test images. The images have a spatial resolution around

1242 × 375. As the ground-truth label is only available in

the training set, thus we use the official unlabeled test im-

ages to adapt our model, and we report the results on the

official training set.

Virtual KITTI [11] is a photo-realistic synthetic dataset

which contains 21,260 images. Each image is densely an-

notated at pixel level with category and depth information.

It is designed to mimic the conditions of KITTI dataset and

has similar scene layout, camera viewpoint, and image reso-

lution as KITTI dataset, thus making it ideal to study the do-

main adaptation problems between synthetic and real data.

Cityscapes [7] consists of 2, 975 images in the training

set, and 500 images in the validation set. The images have

a fixed spatial resolution of 2048× 1024 pixels. Due to the

large size of image, as a common practice we down-size

the images to half resolution (at 1024 × 512 pixels). The

training set is used to adapt the model, and we report our

results on the validation set.

SYNTHIA [47] is a dataset with synthetic images of

urban scenes and pixel-wise annotations. The render-
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na cg gd +d +s +sd

37.5 39.8 43.5 44.2 44.7 45.9

Table 2. Ablation study on input-level adaptation. mIoU over

10 categories is reported. na: non-adaptive baseline; cg: image

translation with CycleGAN [60]; gd: image transform network is

guided by the task network; +d: with additional depth input to the

image transform network; +s: with additional semantic label in-

put; +sd: with both semantic and depth labels as additional input,

which is also our final model for input-level adaptation.

ing covers a variety of environments and weather condi-

tions. In our experiment, we adopt the SYNTHIA-RAND-

CITYSCAPES subset, which contains 9,400 images com-

patible with the Cityscapes categories.

4.2. Results on Virtual KITTI→KITTI

We first evaluate the proposed method for learning se-

mantic segmentation from the Virtual KITTI dataset to the

KITTI dataset. The 10 common categories between two

datasets are used for performance evaluation. We report

the results using mean of Intersection over Union (mIoU),

which are summarized in Table 1. Overall, our GIO-

Ada improves the mIoU over the non-adaptive baseline by

+16%, which confirms the effectiveness of our method for

cross-domain semantic segmentation. To further study the

benefits of the adaptation modules on different levels, we

break down the performance by testing the ablated ver-

sions of our approach: the input-level adaptation achieves

+8.4% performance gain, while the output-level adapta-

tion achieves +12.5% improvements. This demonstrates

the effectiveness of both modules for adapting segmenta-

tion models form the synthetic domain to the real domain.

Moreover, the two adaptation modules are also shown to be

complementary, as combining them can further reduce the

domain gap.

We also provide a few qualitative examples in Figure 3.

From those results, we observe that the segmentation results

generally get improved with our GIO-Ada approach. Espe-

cially, by leveraging the geometric cues, our model produce

improved segmentation quality on objects with geometric

structure, such as poles, traffic signs, etc., which are usually

challenging for existing methods.

To further investigate the different design variants, espe-

cially with a focus on the importance geometric cue in the

two components. We conduct further ablation studies on the

two adaptation modules individually in below.

Ablation study on input-level adaptation: In our final

input-level adaptation model, we use an image transform

network, which takes an image and its corresponding se-

mantic and depth label as input. To investigate the benefits

na ss depth sep joint

37.5 45.9 43.8 46.3 50.0

Table 3. Ablation study on output-level adaptation. mIoU over

10 categories is reported. na: the non-adaptive baseline; ss: align-

ing the semantic segmentation output; depth: aligning the depth

estimation output; sep: individually aligning outputs of semantic

segmentation and depth estimation; joint: aligning the joint out-

put space of semantic segmentation and depth estimation, which

is also our final model for output-level adaptation.

of using additional inputs, we test three variants of input-

level adaptation module with only depth, with only seman-

tic label, or with none as additional input. We also include

[60], an image translation model commonly adapted for do-

main adaptation for comparison.

The results are summarized in Table 2. We observe

that all other methods outperform the non-adaptive base-

line, demonstrating the importance of input-level adapta-

tion. However, CycleGAN only improves the baseline re-

sult by +2.3%, which is less effective compared to the im-

provement of +6% achieved by the task network. This in-

dicates that the gradient from the task network is a useful

guidance for the image transform network to preserve use-

ful information. Nevertheless, the performance can be fur-

ther boosted when additional information is further taken as

input. Adding individually depth and semantic segmenta-

tion as the additional input gives an improvement of +6.7%
and +7.2%, respectively, and integrating them together pro-

duces +8.4% performance gain. The results suggest that

the geometric information can be very useful in the image

transformation process in the sense that it helps to preserve

rich information in the raw 3D environment.

We further demonstrate this by providing a few exam-

ples of translated images with CycleGAN and our approach

in Figure 4, in which we clearly observe that our model is

able to preserves more of the geometric and semantic con-

sistency during the translation process. More specifically,

CycleGAN is observed to hallucinate buildings and trees in

the sky (row 1,2,4), the poles turn into trees (row 5), and

cars turn to road (row 3). In comparison, our approach is

able to preserve the semantic and geometric consistency.

Ablation study on output-level adaptation: We also

study different variants of the output-level adaptation.

There are several possible alternatives to our joint output

space adaptation. For example, performing the output space

alignment proposed by [53] in semantic segmentation space

and depth estimation space separately. Additionally, we try

to build two discriminators to individually align the two out-

put spaces, without considering the correlation between the

two tasks. We compare these variants to our final model

which aligns the joint output space of semantic segmenta-
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FCNs Wld [21] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.1 22.9

Curriculum [57] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8

Cross-City [6] 62.7 25.6 78.3 - - - 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 - 35.7

ROAD-Net [5] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.1 41.7

Tsai et al. [53] 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6

Sankaranarayanan et al. [49] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1 42.1

CBST [62] 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 40.7

non-adapt 9.7 14.1 58.5 4.7 0.3 22.7 1.9 12.9 70.7 60.9 50.2 7.2 32.2 17.4 1.3 8.0 23.3 26.5

input-level adapt 77.0 29.3 67.9 0.1 0.1 24.7 10.7 17.4 79.4 78.8 49.2 13.7 70.3 4.3 5.8 12.8 33.8 39.7

output-level adapt 79.6 29.7 75.7 11.4 0.3 25.3 11.1 14.8 76.7 76.9 45.3 15.9 67.7 15.8 4.8 13.5 35.3 40.6

GIO-Ada 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3 43.0

Table 4. Comparison with state-of-the-arts methods for cross-domain semantic segmentation from SYNTHIA to Cityscapes. All

results are based on VGG as the backbone architecture. Some works only report on 13 classes, we hereby mark these excluded categories

with *. We also report the average performance over 13 classes as mIoU excl. *. The best results are denoted in bold.

tion and depth estimation.

The results are shown in Table 3. First, we observe that

all variants achieve significant gain over the baseline, show-

ing the effectiveness of domain adaptation techniques in

general. Particularly, output space alignment on semantic

segmentation prediction [53] achieves performance gain of

+8.4%, while the improvement of the same output space

adaptation module on depth prediction is +6.3%. This is

not surprising, considering our final objective is semantic

segmentation. Aligning the semantic segmentation output

has a more direct influence on the segmentation results. We

then combine depth alignment and semantic segmentation

alignment, which gives an improvement of +8.8% over the

baseline, marginally better than using only semantic seg-

mentation alignment. This suggests that trivially optimizing

each task can not bring in performance gain without mod-

eling the correlation between the tasks. Finally, by aligning

the joint output space of semantic segmentation and depth

estimation, we achieve a notable improvement of +12.5%,

showing that joint correlation is highly effective for reduc-

ing domain shift, which also verifies our motivations.

4.3. Results on SYNTHIA→Cityscapes

To facilitate the comparison with other state-of-the-art

works, we further evaluate the proposed method on SYN-

THIA to Cityscapes setting following [21, 57, 6, 5, 53, 49,

62]. The results of all methods are summarized in Table 4.

For a fair comparison, all methods are based on VGG-16

backbones.

Similarly to the setting of Virtual KITTI → KITTI,

the adaptation at both input and output levels is helpful

for performance improvement: the input-level adaptation

improves the baseline by +10.5%, while the output-level

adaptation improves it by +12.0%. Integrating the two

modules gives a larger performance gain of +14.0% over

the non-adaptive baseline. This again verifies the effective-

ness of our adaptation modules in both the input and output

levels.

Our GIO-Ada outperforms all other competing methods

by a notable margin. We attribute this to the supplement

of geometric cues to the semantic segmentation task dur-

ing domain adaptation. Nevertheless, our method takes the

complementary information of the geometric cue, which is

often overlooked by other methods. Our method has the po-

tential to be integrated with other techniques for potential

improvement.

5. Conclusion

In this paper, we have introduced Geometrically Guided

Input-Output Adaptation (GIO-Ada) approach, which ef-

fectively leverages the geometric information in synthetic

data to tackle the cross-domain semantic segmentation

problem. Geometrically guided adaptation is performed on

two different levels: 1) on the input level, depth information

together with the semantic annotation is used as additional

input for guiding the image transform network to reduce the

domain shift on raw pixels, and 2) on the output level, depth

prediction and semantic prediction are used to form a joint

output space, on which an adversarial training strategy is

applied to reduce the domain shift. We have experimentally

validated our method on two pairs of datasets. The results

demonstrate effectiveness of our GIO-Ada for cross-domain

semantic segmentation with leveraged geometric informa-

tion from virtual data.
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Figure 3. Semantic segmentation qualitative results on KITTI dataset. We follow the color encoding scheme of Cityscapes to colorize

the label map. From left to right: left: input image, middle: non-adaptive results, and right: GIO-Ada results. Note that our approach

yields noticeable improvements for objects with geometric structure, such as poles, traffic signs, etc.

Figure 4. Qualitative results on input-level adaptation. From left to right: left: input synthetic image, we compare the image translation

results of middle: CycleGAN, with right: GIO-Ada result. Note that CycleGAN hallucinates objects in the transformation process, while

GIO-Ada is able to preserve the semantic and geometric information.
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