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Abstract

Depth estimation from a single image in the wild re-

mains a challenging problem. One main obstacle is the

lack of high-quality training data for images in the wild.

In this paper we propose a method to automatically gen-

erate such data through Structure-from-Motion (SfM) on

Internet videos. The core of this method is a Qual-

ity Assessment Network that identifies high-quality recon-

structions obtained from SfM. Using this method, we col-

lect single-view depth training data from a large num-

ber of YouTube videos and construct a new dataset called

YouTube3D. Experiments show that YouTube3D is use-

ful in training depth estimation networks and advances

the state of the art of single-view depth estimation in

the wild. Project website: http://www-personal.

umich.edu/˜wfchen/youtube3d.

1. Introduction

This paper addresses the problem of single-image depth

estimation, a fundamental computer vision problem that re-

mains challenging. Despite significant recent progress [45,

15, 35, 24, 17, 27, 46, 49, 11, 25, 22, 50, 23, 13, 43, 54,

20, 44], current systems still perform poorly on arbitrary

images in the wild [6]. One major obstacle is the lack

of diverse training data, as most existing RGB-D datasets

were collected via depth sensors and are limited to rooms

[39, 10, 5] and roads [14]. As shown by recent work [6],

systems trained on such data are unable to generalize to di-

verse scenes in the real world.

One way to address this data issue is crowdsourcing, as

demonstrated by Chen et al. [6], who crowdsourced hu-

man annotations of depth and constructed a dataset called

“Depth-in-the-Wild (DIW)” that captures a broad range of

scenes. One drawback, though, is that it requires a large

amount of manual labor. Another possibility is to use syn-

thetic data [4, 28, 34, 21], but it remains unclear how to

automatically generate scenes that match the diversity of

real-world images.

In this paper we explore a new approach that automat-

ically collects single-view training data on natural in-the-

wild images, without the need for crowdsourcing or com-

puter graphics. The idea is to reconstruct 3D points from

Internet videos using Structure-from-Motion (SfM), which

matches feature points across video frames and infers depth

using multiview geometry. The reconstructed 3D points can

then be used to train single-view depth estimation. Because

there is a virtually unlimited supply of Internet videos,

this approach is especially attractive for generating a large

amount of single-view training data.

However, to implement such an approach in practice,

there remains a significant technical hurdle—despite great

successes [1, 19, 36, 37, 30], existing SfM systems are still

far from reliable when applied to arbitrary Internet videos.

This is because SfM operates by matching features across

video frames and reconstructing depth assuming a static

scene, but feature matches are often unreliable and scenes

often contain moving objects, both of which cause SfM to

produce erroneous 3D reconstructions. That is, if we sim-

ply apply an off-the-shelf SfM system to arbitrary Inter-

net videos, the resulting single-view training data will have

poor quality.

To address this issue, we propose to train a deep net-

work to automatically assess the quality of a SfM recon-

struction. The network predicts a quality score of a SfM

construction by examining the operation of the entire SfM

pipeline—the input, the final output, along with interme-

diate outputs generated inside the pipeline. We call this

network a Quality Assessment Network (QANet). Using a

QANet, we filter out unreliable reconstructions and obtain

high-quality single-view training data. Fig. 1 illustrates our

data collection method.

It is worth noting that because Internet videos are vir-

tually unlimited, it is sufficient for a QANet to be able to

reliably identify a small proportion of high-quality recon-

structions. In other words, high precision is necessary but

high recall is not. This means that training a QANet will

not be hopelessly difficult because we do not need to detect

every good reconstruction, only some good reconstructions.

We experiment using Internet videos in the wild. Our ex-

periments show that with QANet integrated with SfM, we
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Figure 1. An overview of our data collection method. Given an arbitrary video, we follow standard steps of structure-from-motion: ex-

tracting feature points and matching them across frames, estimating the camera parameters, and performing triangulation to obtain a

reconstruction. A Quality Assessment Network (QANet) examines the operation of the SfM pipeline and assigns a score to the reconstruc-

tion. If the score is above a certain threshold, this reconstruction is deemed of high quality, and we use it as single-view depth training data.

Otherwise, the reconstruction is discarded.

can collect high-quality single-view training data from un-

labeled videos, and such training data can supplement exist-

ing data to significantly improve the performance of single-

image depth estimation.

Using our proposed method, we constructed a new

dataset called YouTube3D, which consists of 795K in-the-

wild images, each associated with depth annotations gen-

erated from SfM reconstructions filtered by a QANet. We

show that as a standalone training set for in-the-wild depth

estimation, YouTube3D is superior to existing datasets con-

structed with human annotation. YouTube3D also out-

performs MegaDepth [26], a recent datatset automatically

collected through SfM on Internet images. In addition,

we show that as a supplement to existing RGB-D data,

YouTube3D advances the state-of-the-art of single-image

depth estimation in the wild.

Our contributions are two fold: (1) we propose a new

method to automatically collect high-quality training data

for single-view depth by integrating SfM and a quality

assessment network; (2) using this method we construct

YouTube3D, a large-scale dataset that advances the state of

the art of single-view depth estimation in the wild.

2. Related Work

RGB-D from depth sensors A large amount of RGB-D

data from depth sensors has played a key role in driving re-

cent research on single-image depth estimation [14, 39, 5,

10, 38]. But due to the limitations of depth sensors and the

manual effort involved in data collection, these datasets lack

the diversity needed for arbitrary real world scenes. For ex-

ample, KITTI [14] consists mainly of road scenes; NYU

Depth [39], ScanNet [10] and Matterport3D [5] consist of

only indoor scenes. Our work seeks to address this draw-

back by focusing on diverse images in the wild.

RGB-D from computer graphics RGB-D from computer

graphics is an attractive option because the depth will be of

high quality and it is easy to generate a large amount. In-

deed, synthetic data has been used in computer vision with

much success [16, 42, 28, 41, 4, 12, 8, 47, 33]. In particular,

SUNCG [40] has been shown to improve single-view sur-

face normal estimation on natural indoor images from the

NYU Depth dataset [53]. However, the diversity of syn-

thetic data is limited by the availability of 3D “assets”, i.e.

shapes, materials, layouts, etc., and it remains difficult to

automatically compose diverse scenes representative of the

real world.

RGB-D from crowdsourcing Crowdsourcing depth anno-

tations [6, 7] has recently received increasing attention. It’s

appealing because it can be applied to a truly diverse set of

in-the-wild images. Chen et al. [6] crowdsourced annota-

tions of relative depth and constructed Depth in the Wild

(DIW), a large-scale dataset for single-view depth in the

wild. The main drawback of crowdsourcing is, obviously,

the cost of manual labor, and our work attempts to mitigate
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or avoid this cost through an automatic method.

RGB-D from multiview geometry When multiple images

of the same scene are available, depth can be reconstructed

through multiview geometry. Prior work has exploited this

fact to collect RGB-D data. Xian et al. [48] perform stere-

opsis on stereo images, i.e. pairs of images taken by two

calibrated cameras, to collect a dataset called “ReDWeb”.

Li et al. [26] perform SfM on unordered collections of on-

line images of the same scenes to collect a dataset called

“MegaDepth”.

Our work differs from prior work in two ways. First,

we use a new source of RGB data—monocular videos—

which likely offer better availability and diversity—stereo

images have limited availability because they must be taken

by stereo cameras. Multiple images of the same scene tend

to be biased toward well-known sites frequented by tourists.

Second, our method of quality assessment is new. Both

prior works performed some form of quality assessment, but

neither used learning. Xian et al. [48] manually remove

some poor reconstructions; Li et al. [26] use handcrafted

criteria based on semantic segmentation. In contrast, our

quality assessment network can learn criteria and patterns

beyond those that are easy to handcraft.

Predicting failure Our work is also related to prior work

on predicting failures for vision systems [52, 9, 3, 2]. For

example, Zhang et al. [52] predict failure for a variety of

vision tasks based solely on the input. Daftry et al. [9] pre-

dict failures in an autonomous navigation system directly

from the input video stream. Our method is different in that

we predict failure in a SfM system to filter reconstructions,

based not on the input images but on the outputs of the SfM

system.

3. Approach

Our method consists of two main steps: SfM followed by

quality assessment, as illustrated by Fig. 1. SfM produces

candidate 3D reconstructions, which are then filtered by a

QANet before we use them to generate single-view training

data.

3.1. Structure from Motion

The SfM component of our method is standard. We first

detect and match features across frames. We then estimate

the fundamental matrix and perform triangulation to pro-

duce 3D points.

It is worth noting that SfM produces only a sparse re-

construction. Although we can generate a dense point cloud

by a subsequent step of multiview stereopsis, we choose to

forgo it, because stereopsis in unconstrained settings tends

to contain a large amount of error, especially in the presence

of low-texture surfaces or moving objects.

Our SfM component also involves a couple minor mod-

ifications compared to a standard full-fledged SfM system.

First, we only perform two-view reconstruction. This is to

simplify the task of quality assessment—the quality assess-

ment network only needs to examine two input images as

opposed to many. Second, we do not perform bundle ad-

justment [18], because we observe that with unknown fo-

cal length of Internet videos (we assume a centered prin-

cipal point and focal length is the only unknown intrinsic

parameter), it often leads to poor results. This is because

bundle adjustment is sensitive to initialization, and tends to

converge to an incorrect local minimum if the initialization

of focal length is not already close to correct. Instead, we

search a range of focal lengths and pick the one that leads to

the smallest reprojection error after triangulation. This ap-

proach does not get stuck in local minima, and is justified by

the fact that focal length can be uniquely determined when

it is the only unknown intrinsic parameter of a fixed camera

across two views [31].

3.2. Quality Assessment Network (QANet)

The task of a quality assessment network is to identify

good SfM reconstructions and filter out bad ones. In this

section we discuss important design decisions including the

input, output, architecture, and training of a QANet.

Input to QANet The input to a QANet should include

a variety of cues from the operation of a SfM pipeline on

a particular input. Recall that we consider only two-view

reconstruction; thus the input to SfM is only two video

frames.

We consider cues associated with the entire reconstruc-

tion (reconstruction-wise cues) as well as those associated

with each reconstructed 3D point (point-wise cues). Our

reconstruction-wise cues include the inferred focal length

and the average reprojection error. Our point-wise cues in-

clude the 2D coordinates of a feature match, the Sampson

distance of a feature match under the recovered fundamen-

tal matrix, and the angle between the two rays connecting

the reconstructed 3D point and the camera centers.

Note that we do not use any information from the pixel

values. The QANet only has access to geometrical informa-

tion of the matched featues. This is to allow better general-

ization by preventing overfitting to image content.

Also note that in a SfM pipeline RANSAC is typically

used to handle outliers. That is, multiple reconstructions are

attempted on random subsets of the feature matches. Here

we apply the QANet only to the best subset free from out-

liers.

Output of QANet The output of a QANet is a quality

score for the entire reconstruction, i.e. a sparse point cloud.

5606



shared

mlp(6,64,128,256)

Nx256

Max
pool

256 mlp(256+32,512,256,64,1)

Score

mlp(2,32,64,128,64,32)
2 32

concat 256+32

Point-wise Branch

Reconstruction-wise Branch

N
 x

 6

shared

mlp(6,64,128,256)
Maxpool

256

mlp(256+32,512,256,64,1)
Score

concatenate

256+32

Point-wise Branch

mlp(2,32,64,128,64,32)
2 32
Reconstruction-wise Branch

N
 x

 6

N
 x

 2
56... ...

Figure 2. Architecture of the Quality Assessment Network

(QANet).

Ideally, this score should correspond to a similarity met-

ric between two point clouds, the reconstructed one and the

ground truth.

There are many possible choices of the similarity met-

ric, with different levels of invariance and robustness (e.g.

invariance to scale, and robustness to deformation and out-

liers). Which one to use should be application dependent

and is not the main concern of this work. And it is sufficient

to note that our method is general and not tied to a particular

similarity metric.

QANet architecture Fig. 2 illustrates the architecture

of our QANet. It consists of two branches. The

reconstruction-wise branch processes the reconstruction-

wise cues (the focal length and overall reprojection er-

ror). The point-wise branch processes features associated

with each reconstructed point. The outputs from the two

branches are then concatenated and fed into multiple fully

connected layers to produce a quality score.

Point-wise cues need a separate branch because they in-

volve an unordered set of feature vectors with a variable

size. To be invariant to the number and ordering of the

vectors, we employ an architecture similar to that of Point-

Net [32]. In this architecture, each vector is independently

processed by shared subnetwork and the results are max-

pooled at the end.

QANet training To train a QANet, a straightforward ap-

proach is to use a regression loss that minimizes the dif-

ference between the predicted quality score and the ground

truth score—the similarity between the reconstructed 3D

point cloud and the ground truth.

However, using a regression loss makes learning harder

than necessary. In fact, the absolute value of the score mat-

ters much less than the ordering of the score, because when

we use a QANet for filtering, we remove all reconstruc-

tions with scores below a threshold, which can be chosen

by cross-validation. In other words, the network just needs

to tell that one construction is better than another, but does

not need to quantify the exact degree. Moreover, the preci-

sion of top-ranked reconstructions is much more important

than the rest, and should be given more emphasis in the loss.

This observation motivates us to use a ranking loss. Let

s1 be the “ground truth quality score” (i.e. similarity to the

ground truth reconstruction) of a reconstruction in the train-

ing set. Let s′
1

be its predicted quality score by the QANet.

Similarly, let s2 be the ground truth quality of another re-

construction, and let s′
2

be the predicted quality score. We

define a ranking loss h(s′
1
, s′

2
, s1, s2) on this pair of recon-

structions:

h(s′
1
, s′

2
, s1, s2) =

{

ln (1 + exp(s′
2
− s′

1
)) , if s1 > s2

ln (1 + exp(s′
1
− s′

2
)) , if s1 < s2

(1)

This loss imposes a penalty if the score ordering of the pair

is incorrect. When applied to all possible pairs, it gen-

erates a very large total penalty if a bad reconstruction is

ranked top, because many pairs will have the wrong order-

ing. Obviously, in practice we cannot afford to train with all

possible pairs. Instead, we uniformly sample random pairs

whose difference in ground truth quality scores are larger

than some threshold.

4. Experiments

Relative depth One implementation question we have

left open in the previous sections is the choice of the

“ground truth” quality score for the QANet. Specifically,

to train an actual QANet, we need a similarity metric that

compares a reconstructed point cloud with the ground truth

point cloud (the clouds have the same number of points and

known correspondence).

In our experiments we define the similarity metric based

on relative depth. We consider all pairs of points in the

reconstructed cloud, and calculate the percentage of pairs

that have the same depth ordering as the ground truth. Note

that depth ordering is view dependent, and because our SfM

component performs two-view reconstruction, we take the

average from both views.

Our choice of relative depth as the quality measure is

motivated by two reasons. First, relative depth is more ro-

bust to outliers. Unlike metrics based on metric difference

such as RMSE, with relative depth a single outlier point will

not be able to dominate the error. Second, relative depth has

been used as a standard evaluation metric for depth predic-

tion in the wild [6, 24, 48, 51], partly because it would be

difficult to obtain ground truth for arbitrary Internet images

except to use humans, which are good at annotating relative

depth but not metric depth.

Another implementation question is how to train a

single-view depth network with the single-view data gen-

erated by our method, i.e. 3D points from SfM filtered by

the QANet. Here we opt to also derive relative depth from

the 3D points. In other words, the final form of our automat-

ically collected training data is a set of video frames, each

associated with a set of 2D points with their “ground truth”

depth ordering.
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Figure 3. The quality-ranking curve on the FlyingThings3D

dataset.
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Figure 4. The quality-ranking curve on the NYU dataset.

One advantage of using relative depth as training data

is that it is scale-invariant and sidesteps the issue of scale

ambiguity in our SfM reconstructions. In addition, prior

work [6] has shown that relative depth can serve as a good

source of supervision even when the goal is to predict dense

metric depth. Last but not least, using relative depth allows

us to compare our automatically collected data with prior

work such as MegaDepth [26], which also generates train-

ing data in the form of relative depth.

4.1. Evaluating QANet

We first evaluate whether the QANet, as a standalone

component, can be successfully trained to identify high-

quality reconstructions.

We train the QANet using a combination of exist-

ing RGB-D video datasets: NYU Depth [39], FlyingTh-

ings3D [28], and SceneNet [29]. We use the RGB videos

to produce SfM reconstructions and use the depth maps to

compute the ground truth quality score for each reconstruc-

tion.

We measure the performance of our QANet by plotting

a quality-ranking curve—the Y-axis is the average ground-

QANet Variants AUC

NYU FlyingThings3D

-2D 80.53% 85.34%

-Sam 83.20% 88.66%

-Ang 82.09% 85.00%

-Focal 82.54% 88.37%

-RepErr 83.37% 88.50%

Full 83.56% 89.02%

Upperbound 87.49% 91.28%

Random Ranking 75.09% 71.41%

Table 1. AUC (area under curve) for different ablated versions of

the QANet.

truth quality (i.e. percentage of correct releative depth or-

derings) of the top n% reconstructions ranked by QANet,

and the X-axis is the number n. At the same n, a better

QANet would have a better average quality.

We test our QANet on the test splits of FlyingThings3D

and NYU Depth. The results are shown in Fig. 3 and Fig. 4.

In both figures, we provide an Upperbound curve from a

perfect ranking of the reconstructions, and a Random Rank-

ing curve from a random ranking of the reconstructions.

From Fig. 3 and Fig. 4 we see that our QANet can suc-

cessfully rank reconstructions by quality. On FlyingTh-

ings3D, the average quality of unfiltered (or randomly

ranked) reconstructions is 71.41%, whereas the top 20% re-

constructions ranked by QANet have an average quality of

95.26%. On NYU Depth, the numbers are 75.09% versus

86.80%.

In addition, we see that the QANet curve is quite close to

the upperbound curve. On FlyingThings3D, the AUC (area

under curve) of the upperbound curve is 91.28%, and the

AUC of QANet is 89.02%. On NYU Depth, the numbers

are 87.49% and 83.56%.

Ablative Studies We next study the contributions of dif-

ferent cues to quality assessment. We train five ablated ver-

sions of QANet by (1) removing 2D coordinate feature (-

2D); (2) removing Sampson distance feature (-Sam); (3)

removing angle feature (-Ang); (4) removing focal length

(-Focal); (5) removing reprojection error (-RepErr).

We compare their performances in terms of AUC with

the full QANet in Tab. 1. They all underperform the full

QANet, indicating that all cues contribute to successful

quality assessment.

4.2. Evaluating the full method

We now turn to evaluating our full data collection

method. To this end, we need a way to compare our dataset

with those collected by alternative methods.

Note that it is insufficient to compare datasets using the

accuracy of the ground truth labels, because the datasets
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Figure 5. Examples of automatically collected relative depth annotations in YouTube3D. The relative depth pairs are visualized as two

connected points, with red point being closer than the blue point. These relative depth annotations are mostly correct.

may have different numbers of images, different images,

or different annotations on the same images (e.g. different

pairs of points for relative depth). A dataset may have less

accurate labels, but may still end up more useful due to

other reasons such as better diversity or more informative

annotations.

Instead, we compare datasets by their usefulness for

training. In our case, a dataset is better if it trains a bet-

ter deep network for single-view depth estimation. Given

a dataset of relative depth, we use the method of Chen et

al. [6] to train a image-to-depth network by imposing a

ranking loss on the output depth values to encourage agree-

ment with the ground truth orderings. We measure the per-

formance of the trained network by the weighted human

disagreement rate (WHDR) [6], i.e. the percentage of in-

correctly ordered point pairs.

YouTube3D We crawled 0.9 million YouTube videos us-

ing random keywords. Pairs of frames are randomly sam-

pled and selected if feature matches exist between them. We

apply our method to these pairs and obtain 2 million fil-

tered reconstructions spanning 121,054 videos. From these

reconstructions we construct a dataset called YouTube3D,

which consists of 795,066 images, with an average of 281

relative depth pairs per image. Example images and anno-

tations of YouTube3D are shown in Fig. 5.

As a baseline, we construct another dataset called YTUF .

It is built from all reconstructions that are used in construct-

ing YouTube3D but without applying the QANet filtering.

Note that YTUF is a superset of YouTube3D, and contains

3.5M images.

Colmap Our implementation of SfM is adapted from

Colmap [36], a state-of-the-art SfM system. We use the

same feature matches generated by Colmap, and modified

the remaining steps as described in Sec. 3.1. In our experi-

ments, we also include the original unmodified Colmap sys-

tem as a baseline. To generate relative depth from the sparse

point clouds given by Colmap, we randomly sample point

pairs and project them into different views.

We run Colmap on the same set of features and matches

Training Sets WHDR

NYU 31.31% [6]

DIW 22.14% [6]

MegaDepth 22.97% [26]

YTCol 34.47%

YTUF 25.11%

QA train 31.77%

NYU + QA train 31.22%

YouTube3D 19.01%

Table 2. Error rate on the DIW test set by the Hourglass Net-

work [6] trained on different standalone datasets.

as used in constructing YouTube3D and YTUF , obtaining

647,143 reconstructions that span 486,768 videos. From

them we construct a dataset called YTCol. It contains 3M

images, with an average of 4,755 relative depth pairs per

image.

Depth-in-the-Wild (DIW) We use the Depth-in-the-Wild

(DIW) dataset [6] to evaluate the performance of a single-

view depth network. DIW consists of Internet images that

cover diverse types of scenes. It has 74,000 test and 420,000

train images; each image has human annotated relative

depth for one pair of points. In addition to using the test

split of DIW for evaluation, we also use its training split as

a standalone training set.

Evaluation as standalone dataset We evaluate

YouTube3D as a standalone dataset and compare it

with other datasets. That is, we train a single-view depth

network from scratch using each dataset and measure the

performance on DIW. To directly compare with existing

results in the literature, we use the same hourglass network

that has been used in a number of prior works [6, 26].

Tab. 2 compares the DIW performance of a hourglass

network trained on YouTube3D against those trained on

three other datasets: MegaDepth [24], NYU Depth [39],

and the training split of DIW [6]. The results are shown

in Tab. 2. We see that YouTube3D not only outperforms
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datasets used for training.

NYU Depth, which was acquired with depth sensors, but

also MegaDepth, another high-quality depth dataset col-

lected via SfM. Most notably, even though the evaluation is

on DIW, YouTube3D outperforms the training split of DIW,

showing that our automatic data collection method is a vi-

able substitute for manual annotation.

Tab. 2 also compares YouTube3D against YTUF

(YouTube3D without QANet filtering) and YTCol (off-the-

shelf SfM). We see that YouTube3D outperforms the unfil-

tered set YTUF by a large margin, even though YTUF is a

much larger superset of YouTube3D. This underscores the

effectiveness of QANet filtering. Moreover, YouTube3D

outperforms YTCol by an even larger margin, indicating

our method is much better than a direct application of off-

the-shelf state-of-the-art SfM to Internet videos. Notably,

YTUF already outperforms YTCol significantly. This is a

result of our modifications described in Sec. 3.1: (1) we

require the estimate of the fundamental matrix to have zero

outliers during RANSAC; (2) we replace bundle adjustment

with a grid-search of focal length.

Fig. 6 shows a qualitative comparison of depth estima-

tion by networks trained with different datasets. We can see

that training on YouTube3D generally produces better re-

sults than others, especially compared to Y TCol and NYU.

We also include a comparison between YouTube3D and

QA train, the data used to train QANet. This is to an-

swer the question whether a naive use of this extra data—

using it directly to train a single-view depth network—

would give the same advantage enjoyed by YouTube3D,

rendering our method unnecessary. We see in Tab. 2 that

training single-view depth directly from QA train is much

worse than YouTube3D (31.77% vs. 19.01%), showing that

QA train itself is a not a good training set for mapping pix-

els to depth. In addition, adding QA train to NYU Depth

(NYU + QA train in Tab. 2) barely improves the perfor-

mance of NYU Depth alone. This shows that a naive use

of this extra data will not result in the improvement achiev-

Network Training Sets WHDR

Hourglass NYU + DIW 14.39% [6]

[6] NYU + DIW + YouTube3D 13.50%

EncDecResNet ImageNet + ReDWeb 14.33%

[48] ImageNet + ReDWeb + DIW 11.37%

EncDecResNet ImageNet + ReDWeb 16.31%

(Our Impl ImageNet + YouTube3D 16.21%

of [48]) ImageNet + ReDWeb + DIW 12.03%

ImageNet + ReDWeb + DIW + YouTube3D 10.59%

Table 3. Error rate on the DIW test set by networks trained with

and without YouTube3D as supplement.

able by our method. It also shows that QANet generalizes

well to images in the wild, even when trained on data that

is quite different in terms of pixel content. It is worth not-

ing that this result should not be surprising, because QANet

does not use pixel values to assess quality and only uses the

geometry of the feature matches.

Evaluation as supplemental dataset We evaluate

YouTube3D as supplemental data. Prior works have

demonstrated state-of-the-art performance on DIW by

combining multiple sources of training data [6, 48]. We

investigate whether adding YouTube3D as additional data

would improve state-of-the-art systems.

We first add YouTube3D to NYU + DIW, the combined

training set used by Chen et al. [6] to train the first state-of-

art system for single-view depth in the wild. We train the

same hourglass network used in [6]. Results in Tab. 3 show

that with the addition of YouTube3D, the network is able to

achieve a significant improvement.

We next evaluate whether YouTube3D can improve

the best existing result on DIW, achieved by an encoder-

decoder network based on ResNet50 [48] (which we will

refer to as an EncDecResNet subsequently). The network

is trained on a combination of ImageNet, DIW, and ReD-

Web, a relative depth dataset collected by performing stere-

opsis on stereo images with manual removal of poor-quality

reconstructions. Tab. 3 summarizes our results, which we
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Figure 7. Qualitative results on the DIW test set by the EncDecResNet [6] trained on ImageNet + ReDWeb + DIW (w/o YouTube3D), and

fine-tuned on YouTube3D (w/ YouTube3D).

elaborate below.

We implement our own version of the EncDecResNet

used in [48], because there is no public code available as of

writing. As a validation of our implementation, we train the

network on ImageNet and ReDWeb, and achieve an error

rate of 16.31%, which is slightly worse than but sufficiently

close to the 14.33% reported in [48]1. This discrepancy

is likely because certain details (e.g. the exact number of

channels at each layer) are different in our implementation

because they are not available in their paper.

As an aside, we train the same EncDecResNet on Im-

ageNet and YouTube3D, which gives an error rate of

16.21%, which is comparable with the 16.31% given by

ImageNet and ReDWeb. This suggests that YouTube3D is

as useful as ReDWeb. This is noteworthy because unlike

ReDWeb, YouTube3D is not restricted to stereo images and

does not involve any manual filtering. Note that it is not

meaningful to compare with the 14.33% reported in [48]—

to compare two training datasets we need to train the exact

same network, but the 14.33% is likely from a slightly dif-

ferent network due to the unavailability of some details in

[48].

Finally, we train an EncDecResNet on the combina-

tion of ImageNet, DIW, and ReDWeb, which has produced

the current state of the art on DIW in [48]. With our

own implementation we achieve an error rate of 12.03%,

slightly worse than the 11.37% reported in [48]. Adding

YouTube3D to the mix, we achieve an error rate of 10.59%,

a new state of the art performance on DIW (see Fig. 7 for ex-

ample depth estimates). This result demonstrates the effec-

tiveness of YouTube3D as supplemental single-view train-

ing data.

1All results in [48] are with ImageNet.

Discussion The above results suggest that our proposed

method can generate high-quality training data for single-

view depth in the wild. Such results are significant, because

our dataset is gathered by a completely automatic method,

while datasets like DIW [6] and ReDWeb [48] are con-

strained by manual labor and/or the availability of stereo

images. Our automatic method can be readily applied to a

much larger set of Internet videos and thus has potential to

advance the state of the art of single-view depth even more

significantly.

5. Conclusion

In this paper we propose a fully automatic and scalable

method for collecting training data for single-view depth

from Internet videos. Our method performs SfM and uses

a Quality Assessment Network to find high-quality recon-

structions, which are used to produce single-view depth

ground truths. We apply the proposed method on YouTube

videos and construct a single-view depth dataset called

YouTube3D. We show that YouTube3D is useful both as

a standalone and as a supplemental dataset in training depth

predictors. With it, we obtain state-of-the-art results on

single-view depth estimation in the wild.
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