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Abstract

This paper proposes an uncalibrated photometric stereo

method for non-Lambertian scenes based on deep learning.

Unlike previous approaches that heavily rely on assump-

tions of specific reflectances and light source distributions,

our method is able to determine both shape and light di-

rections of a scene with unknown arbitrary reflectances ob-

served under unknown varying light directions. To achieve

this goal, we propose a two-stage deep learning architec-

ture, called SDPS-Net, which can effectively take advantage

of intermediate supervision, resulting in reduced learning

difficulty compared to a single-stage model. Experiments

on both synthetic and real datasets show that our proposed

approach significantly outperforms previous uncalibrated

photometric stereo methods.

1. Introduction

Photometric stereo aims at recovering the surface normal

of a static object from a set of images captured under differ-

ent light directions [34, 29]. Calibrated photometric stereo

methods assume known light directions, and promising re-

sults have been reported [28] at the cost of tedious light

source calibration. The problem of uncalibrated photomet-

ric stereo, where light directions are unknown, still remains

an open challenge, and its stable solution is wanted because

of the ease of setting. In this work, we study the problem

of uncalibrated photometric stereo for surfaces with general

and unknown isotropic reflectance.

Most of the existing methods for uncalibrated photomet-

ric stereo [2, 27, 23] assume a simplified reflectance model,

such as the Lambertian model, and focus on resolving the

shape-light ambiguity, such as the Generalized Bas-Relief

(GBR) ambiguity [3]. Although methods of [19, 20] can

handle surfaces with general bidirectional reflectance dis-

tribution functions (BRDFs), they rely on a uniform distri-

bution of light directions for deriving a solution.

Recently, with the great success of deep learning in var-

ious computer vision tasks, deep learning based methods

have been introduced to calibrated photometric stereo [25,

31, 15, 5]. Instead of explicitly modeling complex sur-

face reflectances, they directly learn the mapping from re-

flectance observations to surface normals given light direc-

tions. Although they have obtained promising results in a

calibrated setting, they cannot handle the more challenging

problem of uncalibrated photometric stereo, where light di-

rections are unknown. One simple strategy to handle uncal-

ibrated photometric stereo with deep learning is to directly

learn the mapping from images to surface normals without

taking the light directions as input. However, as reported

in [5], the performance of such a model lags far behind

those which take both images and light directions as input.

In this paper, we propose a two-stage model named Self-

calibrating Deep Photometric Stereo Networks (SDPS-Net)

to tackle this problem. The first stage of SDPS-Net, de-

noted as Lighting Calibration Network (LCNet), takes an

arbitrary number of images as input and estimates their

corresponding light directions and intensities. The second

stage of SDPS-Net, denoted as Normal Estimation Network

(NENet), estimates a surface normal map of a scene based

on the lighting conditions estimated by LCNet and the input

images. The rationales behind the design of our two-stage

model are as follows. First, lighting information is very im-

portant for normal estimation since lighting is the source of

various cues, such as shading and reflectance, and estimat-

ing the light directions (3-vectors) and intensities (scalars)

is in principle much easier than directly estimating the nor-

mal map (a 3-vector at each pixel location) together with the

lighting conditions. Second, by explicitly learning to esti-

mate light directions and intensities, the model can take ad-

vantage of the intermediate supervision, resulting in a more

interpretable behavior. Last, the proposed LCNet can be

seamlessly integrated with existing calibrated photometric

stereo methods, which enables them to deal with unknown

lighting conditions. Our code and model can be found at

https://guanyingc.github.io/SDPS-Net.

2. Related Work

In this section, we review learning based photometric

stereo and uncalibrated photometric stereo methods. We

also briefly review the loosely related work on learning
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based lighting estimation. Readers are referred to [28] for

a comprehensive survey on calibrated photometric stereo

with Lambertian surfaces and general BRDFs using non-

learning based methods.

Learning based photometric stereo Recently, a few

deep learning based methods have been introduced to cali-

brated photometric stereo [25, 31, 15, 5]. Santo et al. [25]

proposed a fully-connected network to learn the mapping

from reflectance observations captured under a pre-defined

set of light directions to surface normal in a pixel-wise

manner. Taniai and Maehara [31] introduced an unsuper-

vised learning framework that predicts both the surface nor-

mals and reflectance images of an object. Their model is

“trained” at test time for each test object by minimizing the

reconstruction loss between the input images and the ren-

dered images. Ikehata [15] introduced a fixed shape rep-

resentation, called observation map, that is invariant to the

number and permutation of the images. For each surface

point of the object, all its observations are merged into an

observation map based on the given light directions, and

the observation map is then fed to a convolutional neural

network (CNN) to regress the normal vector. Chen et al. [5]

proposed a fully-convolutional network (FCN) to infer the

normal map from the input image-lighting pairs, and an

order-agnostic max-pooling operation was adopted to han-

dle an arbitrary number of inputs. All the above methods

assume known lighting conditions and cannot handle un-

calibrated photometric stereo, where the light directions and

intensities are not known a priori.

Uncalibrated photometric stereo When lighting is un-

known, the surface normals of a Lambertian object can

only be estimated up to a 3 × 3 linear ambiguity [12],

which can be reduced to a 3-parameter GBR ambigu-

ity [3, 36] using the surface integrability constraint. Pre-

vious work used additional clues like albedo priors [2, 27],

inter-reflections [4], specular spikes [7], Torrance and Spar-

row reflectance model [11], reflectance symmetry [30, 35],

multi-view images [9], and local diffuse maxima [23], to re-

solve the GBR ambiguity. Cho et al. [6] considered a semi-

calibrated case where the light directions are known but not

their intensities. There are few works that can handle non-

Lambertian surfaces under unknown lighting. Hertzmann

and Seitz [13] proposed an exemplar based method by in-

serting an additional reference object to the scene. Methods

based on cues like similarity in radiance changes [26, 19]

and attached shadow [22] were also introduced, but they re-

quire the light sources to be uniformly distributed on the

whole sphere. Recently, Lu et al. [18] introduced a method

based on the “constrained half-vector symmetry” to work

with non-uniform lightings. Different from these traditional

methods, our method can deal with surfaces with general

and unknown isotropic reflectance without the need of ex-

plicitly utilizing any additional clues or reference objects,

solving a complex optimization problem at test time, or

making assumptions on the light source distribution. The

work most related to ours is the UPS-FCN introduced in [5].

UPS-FCN is a single-stage model that directly regresses

surface normals from images that are normalized by the

known light intensities. Its performance lags far behind the

calibrated methods. In contrast, our method solves the prob-

lem in two stages. We first tackles an easier problem of

estimating the light directions and intensities, and then esti-

mates the surface normals using the estimated lightings and

the input images.

Learning based lighting estimation Recently, learning

based single-image lighting estimation methods have at-

tracted considerable attention. Gardner et al. [10] intro-

duced a CNN for estimating HDR environment lighting

from an indoor scene image. Hold-Goeffroy et al. [14]

learned outdoor lighting using a physically-based sky

model. Weber et al. [32] estimated indoor environment

lighting from an image of an object with known shape.

Zhou et al. [37] estimated lighting, in the form of Spherical

Harmonics, from a human face image by assuming a Lam-

bertian reflectance model. Different from the above meth-

ods, our method can estimate accurate directional lightings

from multiple images of a static object with general shape

and non-Lambertian surface.

3. Image Formation Model

Following the conventional practice, we assume an or-

thographic camera with linear radiometric response, white

directional lightings coming from the upper-hemisphere,

and the viewing direction pointing towards the viewer. In

the rest of this paper, we refer to light direction and in-

tensity as “lighting”. Consider a non-Lambertian surface

whose appearance is described by a general isotropic BRDF

ρ. Given a surface point with normal n ∈ R
3 being illumi-

nated by the j-th incoming lighting with direction lj ∈ R
3

and intensity ej ∈ R, the image formation model can be

expressed as

mj = ejρ(n, lj) max(n⊤
lj , 0) + ǫj , (1)

where m represents the measured intensity, max(:, 0) ac-

counts for attached shadows, and ǫ accounts for the global

illumination effects (cast shadows and inter-reflections) and

noise.

Based on this model, given the observations of p sur-

face points under q different incoming lightings, the goal

of uncalibrated photometric stereo is to estimate the surface

normals for these p surface points given only the measured

intensities. In this work, we tackle this problem using a

two-stage approach. In particular, we first estimate light-

ings from the measured intensities, and then solve for the

surface normals using the estimated lightings and measured

intensities.
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Figure 1. The network architecture of SDPS-Net is composed of (a) Lighting Calibration Network and (b) Normal Estimation Network.

Kernel sizes for all convolutional layers are 3× 3, and values above the layers indicate the number of feature channels.

4. Learning Uncalibrated Photometric Stereo

In this section, we introduce our two-stage framework,

called SDPS-Net, for uncalibrated photometric stereo (see

Fig. 1). The first stage of SDPS-Net, denoted as Light-

ing Calibration Network (LCNet, Fig. 1 (a)), takes an ar-

bitrary number of images as input and estimates their cor-

responding light directions and intensities. The second

stage of SDPS-Net, denoted as Normal Estimation Network

(NENet, Fig. 1 (b)), estimates an accurate normal map of

the object based on the lightings estimated by LCNet and

the input images.

4.1. Lighting Calibration Network

To estimate lightings from the images, an intuitive ap-

proach would be directly regressing the light direction vec-

tors and intensity values. However, we propose that for-

mulating the lighting estimation as a classification problem

is a superior choice, as will be verified by our experiments.

Our arguments are as follows. Fist, classifying a light direc-

tion into a certain range is easier than regressing the exact

value(s), and this will reduce the learning difficulty. Sec-

ond, taking discretized light directions as input may allow

NENet to better tolerate small errors in the estimated light

directions.

Discretization of lighting space Since we cast our light-

ing estimation as a classification problem, we need to dis-

cretize the continuous lighting space. Note that a light di-

rection in the upper-hemisphere can be described by its az-

imuth φ ∈ [0◦, 180◦] and elevation θ ∈ [−90◦, 90◦] (see

Fig. 2 (a)). We can discretize the light directoin space by

evenly dividing both the azimuth and elevation into Kd

bins, resulting in K2

d classes (see Fig. 2 (b)). Solving a K2

d -

class classification problem is not computationally efficient,

z
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P

φ
θ

y

zz

xx
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Figure 2. (a) Illustration of the coordinate system (z axis is the

viewing direction). φ ∈ [0◦, 180◦] and θ ∈ [−90◦, 90◦] are the

azimuth and elevation of the light direction, respectively. (b) Ex-

ample discretization of the light direction space when Kd = 18.

as the softmax probability vector will have a very high di-

mension even when Kd is not large (e.g., K2

d = 1, 296 when

Kd = 36). Instead, we estimate the azimuth and elevation

of a light direction separately, leading to two Kd-class clas-

sification problems. Similarly, we evenly divide the range

of possible light intensities into Ke classes (e.g., Ke = 20
for a possible light intensity range of [0.2, 2.0]).

Local-global feature fusion A straightforward approach

to estimate the lighting for each image is simply taking a

single image as input, encoding it into a feature map using

a CNN, and feeding the feature map to a lighting prediction

layer. It is not surprising that the result of such a simple so-

lution is far from satisfactory. Note that the appearance of

an object is determined by its surface geometry, reflectance

model and the lighting. The feature map extracted from a

single observation obviously does not provide sufficient in-

formation for resolving the shape-light ambiguity. Thanks

to the nature of photometric stereo where multiple observa-

tions of an object are considered, we propose a local-global
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feature fusion strategy to extract more comprehensive infor-

mation from multiple observations.

Specifically, we separately feed each image into a

shared-weight feature extractor to extract a feature map,

which we call local feature as it only provides information

from a single observation. All local features of the input

images are then aggregated into a global feature through

a max-pooling operation, which has been proven to be effi-

cient and robust on aggregating salient features from a vary-

ing number of unordered inputs [33, 5]. Such a global fea-

ture is expected to convey implicit surface geometry and

reflectance information of the object which help resolve the

ambiguity in lighting estimation. Each local feature is con-

catenated with the global feature, and fed to a shared-weight

lighting estimation sub-network to predict the lighting for

each individual image. By taking both local and global fea-

tures into account, our model can produce much more reli-

able results than using the local features alone. We empir-

ically found that additionally including the object mask as

input can effectively improve the performance of lighting

estimation, as will be seen in the experiment section.

Network architecture LCNet is a multi-input-multi-

output (MIMO) network that consists of a shared-weight

feature extractor, an aggregation layer (i.e., max-pooling

layer), and a shared-weight lighting estimation sub-network

(see Fig. 1 (a)). It takes the observations of the object to-

gether with the object mask as input, and outputs the light

directions and intensities in the form of softmax probability

vectors of dimension Kd (azimuth), Kd (elevation) and Ke

(intensity), respectively. We convert the output of LCNet to

3-vector light directions and scalar intensity values by sim-

ply taking the middle value of the range with the highest

probability1.

Loss function Multi-class cross entropy loss is adopted

for both light direction and intensity estimation, and the

overall loss function is

LLight = λlaLla + λleLle + λeLe, (2)

where Lla and Lle are the loss terms for azimuth and eleva-

tion of the light direction, and Le is the loss term for light

intensity. During training, weights λla , λle and λe for the

loss terms are set to 1.

4.2. Normal Estimation Network

NENet is a multi-input-single-output (MISO) network.

The network architecture of NENet is similar to PS-

FCN [5], consisting of a shared-weight feature extractor,

an aggregation layer, and a normal regression sub-network

(see Fig. 1 (b)). The key difference between NENet and

1We have experimentally verified that alternative ways like taking the

expectation of the probability vector or performing quadratic interpolation

in the neighborhood of the peak value do not improve the result.

PS-FCN is that PS-FCN requires accurate lightings as in-

put, whereas NENet is trained with discretized lightings es-

timated by the LCNet and shows a more robust behavior

over noise in the lightings.

NENet first normalizes the input images using the light

intensities predicted by LCNet, and then concatenates the

light directions predicted by LCNet with the images to form

the input of the shared-weight feature extractor. Given an

image of size h× w, the loss function for NENet is

LNormal =
1

hw

hw
∑

i

(

1− n
⊤
i ñi

)

, (3)

where ni and ñi denote the predicted normal and the

ground-truth normal, respectively, at pixel i.

4.3. Training Data

We adopted the publicly available synthetic Blobby and

Sculpture datasets [5] for training. Blobby and Sculpture

datasets provide surfaces with complex normal distributions

and diverse materials from MERL dataset [21]. Effects

of cast shadow and inter-reflection were considered during

rendering using the physically based raytracer Mitsuba [16].

There are 85, 212 samples in total. Each sample was ren-

dered under 64 distinct light directions sampled from the

upper-hemisphere with uniform light intensity, resulting in

5, 453, 568 images (85, 212 × 64). The rendered images

have a dimension of 128× 128.

To simulate images under different light intensities,

we randomly generated light intensities in the range of

[0.2, 2.0] to scale the magnitude of the images (i.e., the ratio

of the highest light intensity to the lowest one is 10)2. Note

that this selected range contains a wider range of intensity

value than the public photometric stereo datasets like DiLi-

GenT benchmark [28] and Gourd&Apple dataset [1]. The

color intensities of the input images were normalized to the

range of [0, 1]. During training, we applied noise pertur-

bation in the range of [−0.025, 0.025] for data augmenta-

tion, and the input image size for LCNet and NENet was

128 × 128. At test time, NENet can take images of dif-

ferent dimensions, while the input for LCNet is rescaled to

128×128 as it contains fully-connected layers and requires

the input to have a fixed spatial dimension. Trained only

on the synthetic dataset, we will show that our model can

generalize well on real datasets.

5. Experimental Results

We performed network analysis for our method, and

compared our method with the previous state-of-the-art

methods on both synthetic and real datasets.

2Note that the ratio (other than the exact value) matters, since light

intensity can only be estimated up to a scale factor.
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Implementation details Our framework was imple-

mented in PyTorch [24] and Adam optimizer [17] was used

with default parameters. LCNet and NENet contain 4.4
million and 2.2 million parameters, respectively. We first

trained LCNet using a batch size of 32 for 20 epochs un-

til convergence, and then trained NENet from scratch given

the lightings estimated by LCNet with a batch size of 16
for 10 epochs. We found that end-to-end fine-tuning did not

improve the performance. The learning rate was initially set

to 0.0005 and halved every 5 and 2 epochs for LCNet and

NENet, respectively. It took about 22 hours to train LCNet

and 26 hours to train NENet on a single Titan X Pascal GPU

with a fixed input image number of 32.

Evaluation metrics To measure the accuracy of the pre-

dicted light directions and surface normals, the widely used

mean angular error (MAE) in degree is adopted. Since the

light intensities among the testing images can only be esti-

mated up to a scale factor s, we introduce the scale-invariant

relative error

Eerr =
1

q

q
∑

i

(

|sei − ẽi|

ẽi

)

, (4)

where q is the number of images, ei and ẽi are the esti-

mated and ground-truth light intensities, respectively, for

image i. The scale factor s is computed by solving

argmin
s

∑n

i (sei − ẽi)
2 with least squares3.

5.1. Network Analysis with Synthetic Data

MERLTest dataset To quantitatively perform network

analysis for our method, we rendered a synthetic dataset,

denoted as MERLTest, of sphere and bunny shapes, de-

noted as SPHERE and BUNNY hereafter, respectively, us-

ing the physically based raytracer Mitsuba [16]. Each

shape was rendered with 100 isotropic BRDFs from MERL

dataset [21] under 100 light directions sampled from

the upper-hemisphere, leading to 200 test objects (see

Fig. 3). Cast shadows and inter-reflections are considered

for BUNNY. For all experiments on synthetic dataset in-

volving input with unknown light intensities, we randomly

generated light intensities in the range of [0.2, 2.0]. Each

experiment was repeated five times and the average results

were reported.

Discretization of lighting space For a given number of

bins Kd, the maximum deviation angle for azimuth and el-

evation of a light direction is δ = 180◦/(Kd × 2) after

discretization (e.g., δ = 2.5◦ when Kd = 36). To investi-

gate how light direction discretization affects the normal es-

timation accuracy, we adopted the state-of-the-art calibrated

method PS-FCN [5] and MERLTest dataset as the testbed.

3As the calibrated intensity in the real dataset is in the form of 3-

vector, we repeat the estimated intensity to be a 3-vector and calculate the

average result.

(a) Light source (b) SPHERE (pearl-paint) (c) BUNNY (pink-jasper)

Figure 3. (a) Lighting distribution of MERLTest dataset. The light

direction is visualized by mapping a 3-d vector [x, y, z] to a point

[x, y]. (b) and (c) show a sample image and ground-truth normal

for SPHERE and BUNNY, respectively.
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Figure 4. (a) Light directions A,B,C, and D have the maximum

deviation angles with the light direction P after discretization. (b)

Upper-bound of normal estimation error for PS-FCN [5] under dif-

ferent light direction space discretization levels (∞ indicates no

discretization).

We divided the azimuth and elevation of light directions

into different number of bins ranging from 2 to 180. For a

specific bin number, we replaced each ground-truth light di-

rection by each of the four light directions having the max-

imum possible angular deviations after discretization (see

Fig. 4 (a)), respectively. We then used those light direc-

tions as input for PS-FCN to infer surface normals. The

normal estimation error reported in Fig. 4 (b) is the upper-

bound error for PS-FCN caused by the discretization. We

can see that the increase in error caused by discretization

is marginal when Kd ≥ 30. In our implementation, we

empirically set Kd and Ke to 36 and 20, respectively. We

experimentally found that the performance of LCNet is ro-

bust to different discretization levels. We chose a relatively

sparse discretization of lighting space in this paper as it may

allow NENet to learn to better tolerate small errors in the es-

timated lighting at test time.

Effectiveness of LCNet To validate the design of LC-

Net, we compared LCNet with three baseline models for

lighting estimation. The first baseline model, denoted as

LCNetreg, is a regression based model that directly regresses

the light direction vectors and intensity values (please refer

to the supplementary for implementation details). The sec-

ond baseline model, denoted as LCNetw/o mask, is a classifi-

cation based model that only takes the images as input with-

out the object mask input. The last baseline model, denoted

as LCNetlocal, is a classification based model that indepen-

dently estimates lighting for each observation (i.e., without
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Table 1. Lighting estimation results on the MERLTest dataset. The

results are averaged over samples rendered with 100 BRDFs.

SPHERE BUNNY

ID Model Direction Intensity Direction Intensity

A0 LCNet 3.47 0.082 5.38 0.089

A1 LCNetreg 4.10 0.104 5.46 0.094

A2 LCNetw/o mask 5.46 0.104 8.85 0.144

A3 LCNetlocal 6.87 0.198 9.98 0.255

local-global feature fusion). All models were trained under

the same setting, and the results are summarized in Table 1.

Experiments with IDs A0 & A1 in Table 1 show that

the proposed classification based LCNet consistently out-

performed the regression based baseline on both light di-

rection and intensity estimation. This echoes our hypothesis

that classifying a light direction to a certain range is easier

than regressing an exact value. Thus, solving the classifi-

cation problem reduces the learning difficulty and improves

the performance. Experiments with IDs A0 & A2 show that

taking the object mask as input can effectively improve the

lighting estimation results. This might be explained by the

fact that object mask provides strong information for oc-

cluding contours of the object, and helps the network dis-

tinguish the shadow region from the non-object region. Ex-

periments with IDs A0 & A3 show that the proposed local-

global feature fusion strategy can effectively make use of

information from multiple observations, and significantly

improve the lighting estimation accuracy. Please refer to

our supplementary for detailed lighting estimation results

of LCNet on BUNNY from MERLTest dataset.

Effectiveness of NENet Experiments with IDs B1 & B2

in Table 2 show that after training with the discretized light-

ings estimated by LCNet, NENet performs better than PS-

FCN given possibly noisy lightings at test time, while ex-

periments with IDs B3 & B4 show that training NENet

with the light directions estimated by the regression based

baseline is not always helpful. This result further demon-

strates that the proposed framework is robust to noisy light-

ings. Experiments with IDs B0 & B1 show the proposed

method achieved results comparable to the fully calibrated

method PS-FCN [5], with average MAEs of 2.71 and 4.09
on SPHERE and BUNNY, respectively.

Figure 5 shows that the performances of LCNet and

NENet increased with the number of input images. This

is expected, since more useful information can be used to

infer the lightings and normals with more input images.

Comparison with single-stage models To validate the

effectiveness of the proposed two-stage framework, we

compared our method with five different single-stage base-

line models. We first retrained UPS-FCN [5], denoted as

UPS-FCNretrain, with images scaled by randomly generated

light intensities to allow it adapt to unknown intensities at

test time. We then increased the model capacity of UPS-

Table 2. Normal estimation results on the MERLTest dataset. The

numbers are the average MAE over samples rendered with 100
BRDFs (value the lower the better). NENet† was trained given the

lightings estimated by LCNetreg.

ID Model # Param SPHERE BUNNY

B0 PS-FCN [5] 2.2 M 2.66 3.80

B1 LCNet + NENet 6.6 M 2.71 4.09

B2 LCNet + PS-FCN 6.6 M 3.19 4.67

B3 LCNetreg + NENet† 6.6 M 3.22 4.99

B4 LCNetreg + PS-FCN 6.6 M 3.73 4.96

B5 UPS-FCNdeep+mask 6.1 M 3.65 6.41

B6 UPS-FCNdeep 6.1 M 4.30 7.29

B7 UPS-FCNwide 6.4 M 5.61 8.85

B8 UPS-FCNest light 5.7 M 6.80 10.62

B9 UPS-FCNretrain 2.2 M 7.44 12.34
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Figure 5. Results of SDPS-Net on SPHERE from MERLTest dataset

with varying input image numbers.

FCN by introducing a wider network (i.e., more channels in

the convolutional layers) and a deeper network (i.e., more

convolutional layers), denoted as UPS-FCNwide and UPS-

FCNdeep, respectively. We also trained a deeper network,

denoted as UPS-FCNdeep+mask, that takes both the images

and object mask as input. We last investigated the effect

of having additional lighting supervision by training a vari-

ant model, denoted as UPS-FCNest light, to simultaneously

estimate lighting and surface normal. Please refer to our

supplementary for detailed network architectures.

Experiments with IDs B5-B9 in Table 2 show that uti-

lizing a wider or deeper network, taking the object mask as

input, or incorporating additional lighting supervision can

improve the performance of single-stage model in some ex-

tent. However, experiments with IDs B1 & B5 show that

the proposed method significantly outperformed the best-

performing single-stage model, especially on surfaces with

complex geometry such as BUNNY, when the input as well

as the number of parameters are comparable. This result in-

dicates that simply increasing the layer numbers or channel

numbers of the network, or incorporating additional light-

ing supervision cannot produce optimal results.

Comparison with the non-learning method [23] To

further verify the effectiveness of our method over non-

learning method, we compared SDPS-Net with the existing

uncalibrated method PF14 [23], which achieved state-of-

the-art results on the DiLiGenT benchmark [28], on differ-
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(d) Light intensity estimation results
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(e) Surface normal estimation results

Figure 6. Comparison between SDPS-Net and PF14 [23] on

BUNNY rendered with four different types of BRDFs under a near

uniform lighting distribution and a biased lighting distribution.

ent lighting distributions and types of BRDFs. Specifically,

we considered one near uniform and one biased lighting dis-

tribution (see Fig. 6 (a)). We rendered BUNNY using four

typical types of BRDFs, including the Lambertian model

and three other types from MERL dataset [21], namely, Fab-

ric, Plastic, and Phenolic. They contained 15, 12, 9, and 12
different BRDFs, respectively. We reported the average re-

sults for each type (see Fig. 6 (b) for an example of each

type.).

Figures 6 (c)-(e) compare SDPS-Net and PF14 on light-

ing estimation and normal estimation. The following obser-

vations are made: 1) PF14 performed well on light direction

and normal estimation for diffuse or near diffuse surfaces

(i.e., Lambertian and Fabric), but will quickly degenerate

when dealing with non-Lambertian surfaces. Besides, it

cannot reliably estimate light intensities for all the BRDFs.

2) SDPS-Net performed well on different types of BRDFs,

especially on surfaces exhibit specular highlights. This re-

sult suggests that specular highlight is an important clue for

uncalibrated photometric stereo [7]. 3) The performance of

light direction and normal estimation of both methods will

have a trend of decreasing when dealing with biased light-

ing distribution, while the performance of intensity estima-

tion will slightly improve.

(a) DiLiGenT (b) APPLE (c) GOURD1 (d) GOURD2 (e) Light Stage 0

1

Figure 7. Lighting distributions of real testing datasets. The light

direction is visualized by mapping a 3-d vector [x, y, z] to a point

[x, y]. The color of the point indicates the light intensity (value is

divided by the highest intensity to normalize to [0, 1]).

5.2. Evaluation on Real Datasets

Real testing datasets We evaluated our method on

three publicly available non-Lambertian photometric

stereo datasets, namely the DiLiGenT benchmark [28],

Gourd&Apple dataset [1] and Light Stage Data Gallery [8].

Figure 7 visualizes the lighting distribution of these datasets

(note that for Light Stage Data Gallery, we only used 133
images with the front side of the object under illumination).

Since Gourd&Apple dataset and Light Stage Data Gallery

only provide calibrated lightings (without ground-truth nor-

mal maps), we quantitatively evaluated our method on light-

ing estimation while qualitatively evaluated it on normal es-

timation.

Evaluation on DiLiGenT benchmark Table 3 (a)-(b)

show that LCNet outperformed the regression based base-

line LCNetreg and achieved highly accurate results on both

light direction and intensity estimation on DiLiGenT bench-

mark, with an average MAE of 4.92 and an average rela-

tive error of 0.068, respectively. Table 3 (c) compares the

normal estimation results of SDPS-Net with previous state-

of-the-art methods on DiLiGenT benchmark. SDPS-Net

achieved state-of-the-art results on almost all objects with

an average MAE of 9.51, except for the BEAR object. Al-

though UPS-FCNdeep+mask achieved reasonably good results

on objects with smooth surface and uniform material (e.g.,

BALL), it had difficulties in handling surfaces with com-

plex geometry and spatially-varying BRDFs (e.g., READ-

ING and HARVEST). The normal estimation network cou-

pled with LCNet (i.e., SDPS-Net) outperforms that with

LCNetreg (i.e., LCNetreg+NENet†) with a clear improve-

ment of 1.52 in average MAE, demonstrating the effec-

tiveness of the proposed classification based LCNet. It is

interesting to see that, coupled with our LCNet, the cali-

brated methods L2 baseline [34] and IS18 [15] can already

achieve results comparable to the previous state-of-the-art

methods. This result indicates that our proposed LCNet

can be integrated with existing calibrated methods to help

handle cases where lighting conditions are unknown. Fig-

ures 8 (a)-(b) show the qualitative results of SDPS-Net on

DiLiGenT benchmark.

Evaluation on other real datasets Table 4 shows that

SDPS-Net can estimate accurate light directions and inten-

sities for the challenging Gourd&Apple dataset and Light
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Figure 8. Qualitative results of SDPS-Net on the real testing datasets. The first to the fourth rows show the object, estimated normal map,

error distribution of light direction and light intensity estimation, respectively.

Table 3. Results of SDPS-Net on the DiLiGenT benchmark.

(a) Results on light direction estimation.

Method BALL CAT POT1 BEAR POT2 BUDDHA GOBLET READING COW HARVEST Avg.

LCNetreg 4.94 5.82 5.62 7.19 4.82 3.90 12.89 7.90 4.19 9.50 6.68

LCNet 3.27 4.08 5.44 3.47 2.87 4.34 10.36 4.50 4.52 6.32 4.92

(b) Results on light intensity estimation.

Method BALL CAT POT1 BEAR POT2 BUDDHA GOBLET READING COW HARVEST Avg.

LCNetreg 0.032 0.051 0.048 0.167 0.074 0.080 0.075 0.141 0.044 0.085 0.080

LCNet 0.039 0.095 0.058 0.061 0.048 0.048 0.067 0.105 0.073 0.082 0.068

(c) Results on normal estimation. (Best viewed in PDF with zoom.)

Method BALL CAT POT1 BEAR POT2 BUDDHA GOBLET READING COW HARVEST Avg.

AM07 [2] 7.27 31.45 18.37 16.81 49.16 32.81 46.54 53.65 54.72 61.70 37.25

SM10 [27] 8.90 19.84 16.68 11.98 50.68 15.54 48.79 26.93 22.73 73.86 29.59

WT13 [35] 4.39 36.55 9.39 6.42 14.52 13.19 20.57 58.96 19.75 55.51 23.93

LM13 [19] 22.43 25.01 32.82 15.44 20.57 25.76 29.16 48.16 22.53 34.45 27.63

PF14 [23] 4.77 9.54 9.51 9.07 15.90 14.92 29.93 24.18 19.53 29.21 16.66

LC18 [18] 9.30 12.60 12.40 10.90 15.70 19.00 18.30 22.30 15.00 28.00 16.30

UPS-FCN [5] 6.62 14.68 13.98 11.23 14.19 15.87 20.72 23.26 11.91 27.79 16.02

LCNet + L2 [34] 4.90 11.12 9.72 9.35 14.70 14.86 18.29 20.11 25.08 29.17 15.73

LCNet + IS18 [15] 6.37 15.64 10.58 8.48 12.24 13.94 18.54 23.78 29.31 25.69 16.46

UPS-FCNdeep+mask 3.96 12.16 11.13 7.19 11.11 13.06 18.07 20.46 11.84 27.22 13.62

LCNetreg+NENet† 3.87 8.97 8.04 15.98 8.36 9.42 11.49 16.99 8.83 18.38 11.03

SDPS-Net 2.77 8.06 8.14 6.89 7.50 8.97 11.91 14.90 8.48 17.43 9.51

Stage Data Gallery. Our method can also reliably recover

visually pleasing surface normal of these two datasets (see

Fig. 8 (c)-(g)), clearly demonstrating the practicality of the

proposed methods in real world applications. Please refer

to our supplementary for more results.

6. Conclusion and Discussion

In this paper, we have proposed a two-stage deep learn-

ing framework, called SDPS-Net, for uncalibrated photo-

metric stereo. The first stage of our framework takes an

arbitrary number of images as input and estimates their cor-

responding light directions and intensities, while the second

stage predicts the normal map of the object based on the

lightings estimated in the first stage and the input images.

By explicitly learning to estimate lighting conditions, our

two-stage framework can take advantage of the intermedi-

Table 4. Lighting estimation results of SDPS-Net on the

Gourd&Apple dataset and the Light Stage Data Gallery.

(a) Results on the Gourd&Apple dataset.

APPLE GOURD1 GOURD2 Avg.

Direction 9.31 4.07 7.11 6.83

Intensity 0.106 0.048 0.186 0.113

(b) Results on the Light Stage Data Gallery.

HELMET

SIDE
PLANT

FIGHTING

KNIGHT

KNEELING

KNIGHT

STANDING

KNIGHT

HELMET

FRONT
Avg.

Direction 6.57 16.06 15.95 19.84 11.60 11.62 13.61

Intensity 0.212 0.170 0.214 0.199 0.286 0.248 0.221

ate supervision to reduce the learning difficulty and improve

the final normal estimation results. Besides, the first stage

of our framework can be seamlessly integrated with existing

calibrated methods, which enables them to handle uncali-

brated photometric stereo. Experiments on both synthetic

and real datasets showed that our method significantly out-

performed existing state-of-the-art uncalibrated photomet-

ric stereo methods.

Since our framework is trained only on surfaces with

uniform material, it may not perform well in dealing with

steep color changes caused by multi-material surfaces (see

Fig. 8 (b) for an example). In the future, we will investi-

gate better training datasets and network architectures for

handling surfaces with spatially-varying BRDFs.
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