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Abstract

Conditional GANs are at the forefront of natural image

synthesis. The main drawback of such models is the neces-

sity for labeled data. In this work we exploit two popular

unsupervised learning techniques, adversarial training and

self-supervision, and take a step towards bridging the gap

between conditional and unconditional GANs. In particular,

we allow the networks to collaborate on the task of repre-

sentation learning, while being adversarial with respect to

the classic GAN game. The role of self-supervision is to

encourage the discriminator to learn meaningful feature rep-

resentations which are not forgotten during training. We test

empirically both the quality of the learned image represen-

tations, and the quality of the synthesized images. Under

the same conditions, the self-supervised GAN attains a simi-

lar performance to state-of-the-art conditional counterparts.

Finally, we show that this approach to fully unsupervised

learning can be scaled to attain an FID of 23.4 on uncondi-

tional IMAGENET generation.1

1. Introduction

Generative Adversarial Networks (GANs) are a class of

unsupervised generative models [1]. GANs involve train-

ing a generator and discriminator model in an adversarial

game, such that the generator learns to produce samples from

a desired data distribution. Training GANs is challenging

because it involves searching for a Nash equilibrium of a non-

convex game in a high-dimensional parameter space. In prac-

tice, GANs are typically trained using alternating stochastic

gradient descent which is often unstable and lacks theoretical

guarantees [2]. Consequently, training may exhibit instabil-

ity, divergence, cyclic behavior, or mode collapse [3]. As a

result, many techniques to stabilize GAN training have been

∗Work done at Google.
1Code at https://github.com/google/compare_gan.

proposed [4, 5, 6, 7, 8, 9, 10]. A major contributor to train-

ing instability is the fact that the generator and discriminator

learn in a non-stationary environment. In particular, the dis-

criminator is a classifier for which the distribution of one

class (the fake samples) shifts as the generator changes dur-

ing training. In non-stationary online environments, neural

networks forget previous tasks [11, 12, 13]. If the discrimi-

nator forgets previous classification boundaries, training may

become unstable or cyclic. This issue is usually addressed

either by reusing old samples or by applying continual learn-

ing techniques [14, 15, 16, 17, 18, 19]. These issues become

more prominent in the context of complex data sets. A key

technique in these settings is conditioning [9, 20, 21, 22]

whereby both the generator and discriminator have access to

labeled data. Arguably, augmenting the discriminator with

supervised information encourages it to learn more stable

representations which opposes catastrophic forgetting. Fur-

thermore, learning the conditional model for each class is

easier than learning the joint distribution. The main draw-

back in this setting is the necessity for labeled data. Even

when labeled data is available, it is usually sparse and covers

only a limited amount of high level abstractions.

Motivated by the aforementioned challenges, our goal is

to show that one can recover the benefits of conditioning,

without requiring labeled data. To ensure that the representa-

tions learned by the discriminator are more stable and useful,

we add an auxiliary, self-supervised loss to the discriminator.

This leads to more stable training because the dependence

of the discriminator’s representations on the quality of the

generator’s output is reduced. We introduce a novel model –

the self-supervised GAN – in which the generator and dis-

criminator collaborate on the task of representation learning,

and compete on the generative task.

Our contributions We present an unsupervised gener-

ative model that combines adversarial training with self-

supervised learning. Our model recovers the benefits of

conditional GANs, but requires no labeled data. In particu-
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Figure 1: Discriminator with rotation-based self-supervision. The discriminator, D, performs two tasks: true vs. fake binary

classification, and rotation degree classification. Both the fake and real images are rotated by 0, 90, 180, and 270 degrees. The

colored arrows indicate that only the upright images are considered for true vs. fake classification loss task. For the rotation

loss, all images are classified by the discriminator according to their rotation degree.

lar, under the same training conditions, the self-supervised

GAN closes the gap in natural image synthesis between un-

conditional and conditional models. Within this setting the

quality of discriminator’s representations is greatly increased

which might be of separate interest in the context of transfer

learning. A large-scale implementation of the model leads to

promising results on unconditional IMAGENET generation,

a task considered daunting by the community. We believe

that this work is an important step in the direction of high

quality, fully unsupervised, natural image synthesis.

2. A Key Issue: Discriminator Forgetting

The original value function for GAN training is [1]:

V (G,D) =E
x∼Pdata(x)[logPD(S = 1 | x)]

+ E
x∼PG(x)[log(1− PD(S = 0 | x))]

(1)

where Pdata is the true data distribution, and PG is the

distribution induced by transforming a simple distribution

z ∼ P (z) using the deterministic mapping given by the gen-

erator, x = G(z), and PD is the discriminator’s Bernoulli

distribution over the labels (true or fake). In the original

minimax setting the generator maximizes Equation 1 with

respect to it’s parameters, while the discriminator minimizes

it. Training is typically performed via alternating stochastic

gradient descent. Therefore, at iteration t during training,

the discriminator classifies samples as coming from Pdata

or P
(t)
G . As the parameters of G change, the distribution

P
(t)
G changes, which implies a non-stationary online learn-

ing problem for the discriminator.

This challenge has received a great deal of attention and

explicit temporal dependencies have been proposed to im-

prove training in this setting [2, 15, 17, 19]. Furthermore,

in online learning of non-convex functions, neural networks

have been shown to forget previous tasks [11, 12, 13]. In

the context of GANs, learning varying levels of detail, struc-

ture, and texture, can be considered different tasks. For

example, if the generator first learns the global structure,

the discriminator will naturally try to build a representation

which allows it to efficiently penalize the generator based

only on the differences in global structure, or the lack of lo-

cal structure. As such, one source of instability in training is

that the discriminator is not incentivised to maintain a useful

data representation as long as the current representation is

useful to discriminate between the classes.

Further evidence can be gathered by considering the gen-

erator and discriminator at convergence. Indeed, Goodfel-

low et al. [1] show that the optimal discriminator estimates

the likelihood ratio between the generated and real data

distributions. Therefore, given a perfect generator, where

PG = Pdata, the optimal discriminator simply outputs 0.5,

which is a constant and doesn’t depend on the input. Hence,

this discriminator would have no requirement to retain mean-

ingful representations. Furthermore, if regularization is ap-

plied, the discriminator might ignore all but the minor fea-

tures which distinguish real and fake data.

We demonstrate the impact of discriminator forgetting in

two settings. (1) A simple scenario shown in Figure 3(a),

and, (2) during the training of a GAN shown in Figure 2. In

the first case a classifier is trained sequentially on 1-vs.-all
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Figure 2: Performance of a linear classification model,

trained on IMAGENET on representations extracted from

the final layer of the discriminator. Uncond-GAN denotes

an unconditional GAN. SS-GAN denotes the same model

when self-supervision is added. For the Uncond-GAN, the

representation gathers information about the class of the

image and the accuracy increases. However, after 500k

iterations, the representations lose information about the

classes and performance decreases. SS-GAN alleviates this

problem. More details are presented in Section 4.

classification tasks on each of the ten classes in CIFAR10. It

is trained for 1k iterations on each task before switching to

the next. At 10k iterations the training cycle repeats from the

first task. Figure 3(a) shows substantial forgetting, despite

the tasks being similar. Each time the task switches, the

classifier accuracy drops substantially. After 10k iterations,

the cycle of tasks repeats, and the accuracy is the same as

the first cycle. No useful information is carried across tasks.

This demonstrates that the model does not retain general-

izable representations in this non-stationary environment.

In the second setting shown in Figure 2 we observe a simi-

lar effect during GAN training. Every 100k iterations, the

discriminator representations are evaluated on IMAGENET

classification; the full protocol is described in Section 4.4.

During training, classification of the unconditional GAN

increases, then decreases, indicating that information about

the classes is acquired and later forgotten. This forgetting

correlates with training instability. Adding self-supervision,

as detailed in the following section, prevents this forgetting

of the classes in the discriminator representations.

3. The Self-Supervised GAN

Motivated by the main challenge of discriminator forget-

ting, we aim to imbue the discriminator with a mechanism

which allows learning useful representations, independently

of the quality of the current generator. To this end, we exploit

recent advancements in self-supervised approaches for repre-

sentation learning. The main idea behind self-supervision is
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Figure 3: Image classification accuracy when the underly-

ing class distribution shifts every 1k iterations. The vertical

dashed line indicates the end of an entire cycle through the

tasks, and return to the original classification task at t = 0.

Left: vanilla classifier. Right: classifier with an additional

self-supervised loss. This example demonstrates that a clas-

sifier may fail to learn generalizable representations in a

non-stationary environment, but self-supervision helps miti-

gate this problem.

to train a model on a pretext task like predicting rotation an-

gle or relative location of an image patch, and then extracting

representations from the resulting networks [23, 24, 25]. We

propose to add a self-supervised task to our discriminator.

In particular, we apply the state-of-the-art self-

supervision method based on image rotation [26]. In this

method, the images are rotated, and the angle of rotation be-

comes the artificial label (cf. Figure 1). The self-supervised

task is then to predict the angle of rotation of an image.

The effects of this additional loss on the image classifica-

tion task is evident in Figure 3(b): When coupled with the

self-supervised loss, the network learns representations that

transfer across tasks and the performance continually im-

proves. On the second cycle through the tasks, from 10k

iterations onward, performance is improved. Intuitively, this

loss encourages the classifier to learn useful image represen-

tations to detect the rotation angles, which transfers to the

image classification task.

We augment the discriminator with a rotation-based loss

which results in the following loss functions:

LG = −V (G,D)− αEx∼PG
Er∼R [logQD(R = r | xr)] ,

LD = V (G,D)− βEx∼Pdata
Er∼R [logQD(R = r | xr)] ,

where V (G,D) is the value function from Equation 1, r ∈ R
is a rotation selected from a set of possible rotations. In this

work we use R = {0
◦

, 90
◦

, 180
◦

, 270
◦

} as in Gidaris et al.

[26]. Image x rotated by r degrees is denoted as x
r, and

Q(R | xr) is the discriminator’s predictive distribution over

the angles of rotation of the sample.
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Collaborative Adversarial Training In our model, the

generator and discriminator are adversarial with respect to

the true vs. fake prediction loss, V (G,D), however, they are

collaborative with respect to the rotation task. First, consider

the value function of the generator which biases the gener-

ation towards images, that when rotated, the discriminator

can detect their rotation angle. Note that the generator is

not conditional but only generates “upright” images which

are subsequently rotated and fed to the discriminator. On

the other hand, the discriminator is trained to detect rota-

tion angles based only on the true data. In other words, the

parameters of the discriminator get updated only based on

the rotation loss on the true data. This prevents the undesir-

able collaborative solution whereby the generator generates

images whose subsequent rotation is easy to detect. As a

result, the generator is encouraged to generate images that

are rotation-detectable because they share features with real

images that are used for rotation classification.

In practice, we use a single discriminator network with

two heads to compute PD and QD. Figure 1 depicts the

training pipeline. We rotate the real and generated images in

four major rotations. The goal of the discriminator on non-

rotated images is to predict whether the input is true or fake.

On rotated real images, its goal is to detect the rotation angle.

The goal of the generator is to generate images matching

the observed data, whose representation in the feature space

of the discriminator allows detecting rotations. With α > 0
convergence to the true data distribution PG = Pdata is

not guaranteed. However, annealing α towards zero during

training will restore the guarantees.

4. Experiments

We demonstrate empirically that (1) self-supervision im-

proves the representation quality with respect to baseline

GAN models, and that (2) it leads to improved unconditional

generation for complex datasets, matching the performance

of conditional GANs, under equal training conditions.

4.1. Experimental Settings

Datasets We focus primarily on IMAGENET, the largest

and most diverse image dataset commonly used to evaluate

GANs. Until now, most GANs trained on IMAGENET are

conditional. IMAGENET contains 1.3M training images and

50k test images. We resize the images to 128 × 128 × 3
as done in Miyato and Koyama [21] and Zhang et al. [9].

We provide additional comparison on three smaller datasets,

namely CIFAR10, CELEBA-HQ, LSUN-BEDROOM, for which

unconditional GANs can be successfully trained. The LSUN-

BEDROOM dataset [27] contains 3M images. We partition

these randomly into a test set containing approximately 30k

images and a train set containing the rest. CELEBA-HQ

contains 30k images [10]. We use the 128× 128× 3 version

DATASET METHOD FID

CIFAR10

Uncond-GAN 19.73

Cond-GAN 15.60

SS-GAN 17.11

SS-GAN (sBN) 15.65

IMAGENET

Uncond-GAN 56.67

Cond-GAN 42.07

SS-GAN 47.56

SS-GAN (sBN) 43.87

LSUN-BEDROOM

Uncond-GAN 16.02

SS-GAN 13.66

SS-GAN (sBN) 13.30

CELEBA-HQ

Uncond-GAN 23.77

SS-GAN 26.11

SS-GAN (sBN) 24.36

Table 1: Best FID attained across three random seeds. In this

setting the proposed approach recovers most of the benefits

of conditioning.

obtained by running the code provided by the authors.2 We

use 3k examples as the test set and the remaining examples as

the training set. CIFAR10 contains 70k images (32×32×3),

partitioned into 60k training instances and 10k test instances.

Models We compare the self-supervised GAN (SS-GAN)

to two well-performing baseline models, namely (1) the

unconditional GAN with spectral normalization proposed

in Miyato et al. [6], denoted Uncond-GAN, and (2) the condi-

tional GAN using the label-conditioning strategy and the Pro-

jection Conditional GAN (Cond-GAN) [21]. We chose the

latter as it was shown to outperform the AC-GAN [20], and is

adopted by the best performing conditional GANs [9, 3, 22].

We use ResNet architectures for the generator and dis-

criminator as in Miyato et al. [6]. For the conditional gen-

erator in Cond-GAN, we apply label-conditional batch nor-

malization. In contrast, SS-GAN does not use conditional

batch normalization. However, to have a similar effect on

the generator, we consider a variant of SS-GAN where we

apply the self-modulated batch normalization which does

not require labels [7] and denote it SS-GAN (sBN). We note

that labels are available only for CIFAR10 and IMAGENET,

so Cond-GAN is only applied on those data sets.

We use a batch size of 64 and to implement the rotation-

loss we rotate 16 images in the batch in all four considered

directions. We do not add any new images into the batch to

compute the rotation loss. For the true vs. fake task we use

the hinge loss from Miyato et al. [6]. We set β = 1 or the

the self-supervised loss. For α we performed a small sweep

2https://github.com/tkarras/progressive_

growing_of_gans.
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CIFAR10 IMAGENET

TYPE λ β1 β2 D ITERS UNCOND-GAN SS-GAN UNCOND-GAN SS-GAN

GRADIENT PENALTY

1
0.0 0.900

1 121.05 ± 31.44 25.8 ± 0.71 183.36 ± 77.21 80.67 ± 0.43

2 28.11 ± 0.66 26.98 ± 0.54 85.13 ± 2.88 83.08 ± 0.38

0.5 0.999 1 78.54 ± 6.23 25.89 ± 0.33 104.73 ± 2.71 91.63 ± 2.78

10
0.0 0.900

1 188.52 ± 64.54 28.48 ± 0.68 227.04 ± 31.45 85.38 ± 2.7

2 29.11 ± 0.85 27.74 ± 0.73 227.74 ± 16.82 80.82 ± 0.64

0.5 0.999 1 117.67 ± 17.46 25.22 ± 0.38 242.71 ± 13.62 144.35 ± 91.4

SPECTRAL NORM 0
0.0 0.900

1 87.86 ± 3.44 19.65 ± 0.9 129.96 ± 6.6 86.09 ± 7.66

2 20.24 ± 0.62 17.88 ± 0.64 80.05 ± 1.33 70.64 ± 0.31

0.5 0.999 1 86.87 ± 8.03 18.23 ± 0.56 201.94 ± 27.28 99.97 ± 2.75

Table 2: FID for unconditional GANs under different hyperparameter settings. Mean and standard deviations are computed

across three random seeds. Adding the self-supervision loss reduces the sensitivity of GAN training to hyperparameters.

α ∈ {0.2, 0.5, 1}, and select α = 0.2 for all datasets (see the

appendix for details). For all other hyperparameters, we use

the values in Miyato et al. [6] and Miyato and Koyama [21].

We train CIFAR10, LSUN-BEDROOM and CELEBA-HQ for

100k steps on a single P100 GPU. For IMAGENET we train

for 1M steps. For all datasets we use the Adam optimizer

with learning rate 0.0002.

4.2. Comparison of Sample Quality

Metrics To evaluate generated samples from different

methods quantitatively, we use the Frechet Inception Dis-

tance (FID) [28]. In FID, the true data and generated sam-

ples are first embedded in a specific layer of a pre-trained

Inception network. Then, a multivariate Gaussian is fit

to the data and the distance computed as FID(x, g) =

||µx − µg||
2
2 + Tr(Σx + Σg − 2(ΣxΣg)

1

2 ), where µ and

Σ denote the empirical mean and covariance and subscripts

x and g denote the true and generated data respectively. FID

is shown to be sensitive to both the addition of spurious

modes and to mode dropping [29, 30]. An alternative ap-

proximate measure of sample quality is Inceptions Score

(IS) Salimans et al. [2]. Since it has some flaws Barratt and

Sharma [31], we use FID as the main metric in this work.

Results Figure 4 shows FID training curves on CIFAR10

and IMAGENET. Table 1 shows the FID of the best run

across three random seeds for each dataset and model com-

bination. The unconditional GAN is unstable on IMAGENET

and the training often diverges. The conditional counterpart

outperforms it substantially. The proposed method, namely

SS-GAN, is stable on IMAGENET, and performs substan-

tially better than the unconditional GAN. When equipped

with self-modulation it matches the performance on the con-

ditional GAN. In terms of mean performance (Figure 4)

the proposed approach matches the conditional GAN, and

in terms of the best models selected across random seeds

(Table 1), the performance gap is within 5%. On CIFAR10

and LSUN-BEDROOM we observe a substantial improvement

over the unconditional GAN and matching the performance

of the conditional GAN. Self-supervision appears not to

significantly improve the results on CELEBA-HQ. We posit

that this is due to low-diversity in CELEBA-HQ, and also for

which rotation task is less informative.

Robustness across hyperparameters GANs are fragile;

changes to the hyperparameter settings have a substantial

impact to their performance [30, 32]. Therefore, we evaluate

different hyperparameter settings to test the stability of SS-

GAN. We consider two classes of hyperparameters: First,

those controlling the Lipschitz constant of the discriminator,

a central quantity analyzed in the GAN literature [6, 33]. We

evaluate two state-of-the-art techniques: gradient penalty [5],

and spectral normalization [6]. The gradient penalty intro-

duces a regularization strength parameter, λ. We test two

values λ ∈ {1, 10}. Second, we vary the hyperparameters of

the Adam optimizer. We test two popular settings (β1, β2):
(0.5, 0.999) and (0, 0.9). Previous studies find that multiple

discriminator steps per generator step help training [1, 2], so

we try both 1 and 2 discriminator steps per generator step.

Table 2 compares the mean FID scores of the uncondi-

tional models across penalties and optimization hyperpa-

rameters. We observe that the proposed approach yields

consistent performance improvements. We observe that in

settings where the unconditional GAN collapses (yielding

FIDs larger than 100) the self-supervised model does not

exhibit such a collapse.

4.3. Large Scale Self­Supervised GAN

We scale up training the SS-GAN to attain the best pos-

sible FID for unconditional IMAGENET generation. To do

this, we increase the model’s capacity to match the model
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Figure 4: FID learning curves on CIFAR10 and IMAGENET. The curves show the mean performance across three random

seeds. The unconditional GAN (Uncond-GAN) attains significantly poorer performance than the conditional GAN (Cond-

GAN). The unconditional GAN is unstable on IMAGENET and the runs often diverge after 500k training iterations. The

addition of self-supervision (SS-GAN) stabilizes Uncond-GAN and boosts performance. Finally, when we add the additional

self-modulated Batch Norm (sBN) [7] to SS-GAN, which mimics generator conditioning in the unconditional setting, this

unconditional model attains the same mean performance as the conditional GAN.

in [22].3 We train the model on 128 cores of Google TPU

v3 Pod for 500k steps using batch size of 2048. For com-

parison, we also train the same model without the auxiliary

self-supervised loss (Uncond-GAN). We report the FID at

50k to be comparable other literature reporting results on

IMAGENET. We repeat each run three times with different

random seeds.

For SS-GAN we obtain the FID of 23.6 ± 0.1 and

71.6 ± 66.3 for Uncond-GAN. Self-supervision stabilizes

training; the mean and variance across random seeds is

greatly reduced because, unlike for the regular unconditional

GAN, SS-GAN never collapsed. We observe improvement

in the best model across random seeds, and the best SS-GAN

attains an FID of 23.4. To our knowledge, this is the best

results attained training unconditionally on IMAGENET.

4.4. Representation Quality

We test empirically whether self-supervision encourages

the discriminator to learn meaningful representations. For

this, we compare the quality of the representations extracted

from the intermediate layers of the discriminator’s ResNet

architecture. We apply a common evaluation method for

representation learning, proposed in Zhang et al. [25]. In

particular, we train a logistic regression classifier on the

feature maps from each ResNet block to perform the 1000-

way classification task on IMAGENET or 10-way on CIFAR10

and report top-1 classification accuracy.

We report results using the Cond-GAN, Uncond-GAN,

3The details can be found at https://github.com/google/

compare_gan.

Figure 5: A random sample of unconditionally generated

images from the self-supervised model. To our knowledge,

this is the best results attained training unconditionally on

IMAGENET.

and SS-GAN models. We also ablate the adversarial loss

from our SS-GAN which results in a purely rotation-based

self-supervised model (Rot-only) which uses the same ar-

chitecture and hyperparameters as the SS-GAN discrimi-

nator. We report the mean accuracy and standard deviation
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across three independent models with different random seeds.

Training details for the logistic classifier are in the appendix.

Results Table 4 shows the quality of representation at after

1M training steps on IMAGENET. Figure 6 shows the learning

curves for representation quality of the final ResNet block

on IMAGENET. The curves for the other blocks are provided

in appendix. Note that “training steps” refers to the training

iterations of the original GAN, and not to the linear classifier

which is always trained to convergence. Overall, the SS-

GAN yields the best representations across all blocks and

training iterations. We observe similar results on CIFAR10

provided in Table 3.

In detail, the IMAGENET ResNet contains six blocks.

For Uncond-GAN and Rot-only, Block 3 performs best,

for Cond-GAN and SS-GAN, the final Block 5 performs

best. The representation quality for Uncond-GAN drops at

500k steps, which is consistent with the FID drop in Fig-

ure 4. Overall, the SS-GAN and Cond-GAN representations

are better than Uncond-GAN, which correlates with their

improved sample quality. Surprisingly, the the SS-GAN

overtakes Cond-GAN after training for 300k steps. One pos-

sibility is that the Cond-GAN is overfitting the training data.

We inspect the representation performance of Cond-GAN

on the training set and indeed see a very large generalization

Uncond. Cond. Rot-only SS-GAN (sBN)

Block0 0.719 0.719 0.710 0.721

Block1 0.762 0.759 0.749 0.774

Block2 0.778 0.776 0.762 0.796

Block3 0.776 0.780 0.752 0.799

Best 0.778 0.780 0.762 0.799

Table 3: Top-1 accuracy on CIFAR10. Mean score across

three training runs of the original model. All standard devia-

tions are smaller than 0.01 and are reported in the appendix.

Method Uncond. Cond. Rot-only SS-GAN (sBN)

Block0 0.074 0.156 0.147 0.158

Block1 0.063 0.187 0.134 0.222

Block2 0.073 0.217 0.158 0.250

Block3 0.083 0.272 0.202 0.327

Block4 0.077 0.253 0.196 0.358

Block5 0.074 0.337 0.195 0.383

Best 0.083 0.337 0.202 0.383

Table 4: Top-1 accuracy on IMAGENET. Mean score across

three training runs of the original model. All standard devia-

tions are smaller than 0.01, except for Uncond-GAN whose

results exhibit high variance due to training instability. All

standard deviations are reported in the appendix.
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Figure 6: IMAGENET Top 1 accuracy (mean across three

seeds) to predict labels from discriminator representations.

X-axis gives the number of GAN training iterations.

gap, which indicates overfitting.

When we ablate the GAN loss, leaving just the rotation

loss, the representation quality substantially decreases. It

seems that the adversarial and rotation losses complement

each other both in terms of FID and representation qual-

ity. We emphasize that our discriminator architecture is

optimized for image generation, not representation quality.

Rot-only, therefore, is an ablation method, and is not a state-

of-the-art self-supervised learning algorithm. We discuss

these next.

Table 5 compares the representation quality of SS-GAN

to state-of-the-art published self-supervised learning algo-

rithms. Despite the architecture and hyperparameters being

optimized for image quality, the SS-GAN model achieves

competitive results on IMAGENET. Among those methods,

only BiGAN [34] also uses a GAN to learn representations;

but SS-GAN performs substantially (0.073 accuracy points)

better. BiGAN learns the representation with an additional

encoder network, while SS-GAN is arguably simpler because

it extracts the representation directly from the discriminator.

The best performing method is the recent DeepClustering

algorithm [35]. This method is just 0.027 accuracy points

ahead of SS-GAN and requires expensive offline clustering

after every training epoch.

In summary, the representation quality evaluation high-

lights the correlation between representation quality and

image quality. It also confirms that the SS-GAN does learn

relatively powerful image representations.

5. Related Work

GAN forgetting Catastrophic forgetting was previously

considered as a major cause for GAN training instability.

The main remedy suggested in the literature is to introduce
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Method Accuracy

Context [24] 0.317

BiGAN [34, 36] 0.310

Colorization [25] 0.326

RotNet [26] 0.387

DeepClustering [35] 0.410

SS-GAN (sBN) 0.383

Table 5: Comparison with other self-supervised representa-

tion learning methods by top-1 accuracy on IMAGENET. For

SS-GAN, the mean performance is presented.

temporal memory into the training algorithm in various ways.

For example, Grnarova et al. [19] induce discriminator mem-

ory by replaying previously generated images. An alternative

is to instead reuse previous models: Salimans et al. [2] intro-

duce checkpoint averaging, where a running average of the

parameters of each player is kept, and Grnarova et al. [19]

maintain a queue of models that are used at each training

iteration. Kim et al. [18] add memory to retain information

about previous samples. Other papers frame GAN training

as a continual learning task. Thanh-Tung et al. [14] study

catastrophic forgetting in the discriminator and mode col-

lapse, relating these to training instability. Liang et al. [15]

counter discriminator forgetting by leveraging techniques

from continual learning directly (Elastic Weight Sharing [11]

and Intelligent Synapses [37]).

Conditional GANs Conditional GANs are currently the

best approach for generative modeling of complex data sets,

such as ImageNet. The AC-GAN was the first model to

introduce an auxiliary classification loss for the discrimina-

tor [20]. The main difference between AC-GAN and the

proposed approach is that self-supervised GAN requires

no labels. Furthermore, the AC-GAN generator generates

images conditioned on the class, whereas our generator is

unconditional and the images are subsequently rotated to pro-

duce the artificial label. Finally, the self-supervision loss for

the discriminator is applied only over real images, whereas

the AC-GAN uses both real and fake.

More recently, the P-cGAN model proposed by Miyato

and Koyama [21] includes one real/fake head per class [21].

This architecture improves performance over AC-GAN. The

best performing GANs trained on GPUs [9] and TPUs [22]

use P-cGAN style conditioning in the discriminator. We

note that conditional GANs also use labels in the generator,

either by concatenating with the latent vector, or via FiLM

modulation [38].

Self-supervised learning Self-supervised learning is a

family of methods that learn the high level semantic repre-

sentation by solving a surrogate task. It has been widely used

in the video domain [39, 40], the robotics domain [41, 42]

and the image domain [24, 35]. We focused on the image

domain in this paper. Gidaris et al. [26] proposed to rotate

the image and predict the rotation angle. This conceptually

simple task yields useful representations for downstream

image classification tasks. Apart form trying to predict the

rotation, one can also make edits to the given image and

ask the network to predict the edited part. For example, the

network can be trained to solve the context prediction prob-

lem, like the relative location of disjoint patches [24, 43] or

the patch permutation of a jigsaw puzzle [44]. Other surro-

gate tasks include image inpainting [45], predicting the color

channels from a grayscale image [25], and predicting the

unsupervised clustering classes [35]. Recently, Kolesnikov

et al. [46] conducted a study on self-supervised learning with

modern neural architectures.

6. Conclusions and Future Work

Motivated by the desire to counter discriminator forget-

ting, we propose a deep generative model that combines

adversarial and self-supervised learning. The resulting novel

model, namely self-supervised GAN when combined with

the recently introduced self-modulation, can match equiva-

lent conditional GANs on the task of image synthesis, with-

out having access to labeled data. We then show that this

model can be scaled to attain an FID of 23.4 on unconditional

ImageNet generation which is an extremely challenging task.

This line of work opens several avenues for future re-

search. First, it would be interesting to use a state-of-the-art

self-supervised architecture for the discriminator, and op-

timize for best possible representations. Second, the self-

supervised GAN could be used in a semi-supervised setting

where a small number of labels could be used to fine-tune the

model. Finally, one may exploit several recently introduced

techniques, such as self-attention, orthogonal normalization

and regularization, and sampling truncation [9, 22], to yield

even better performance in unconditional image synthesis.

We hope that this approach, combining collaborative self-

supervision with adversarial training, can pave the way to-

wards high quality, fully unsupervised, generative modeling

of complex data.
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