
Semantic Component Decomposition for Face Attribute Manipulation

Ying-Cong Chen1 Xiaohui Shen4 Zhe Lin3 Xin Lu3 I-Ming Pao3 Jiaya Jia1,2

1The Chinese University of Hong Kong 2Tencent Youtu Lab 3Adobe Research 4ByteDance AI Lab

{ycchen,leojia}@cse.cuhk.edu.hk shenxiaohui@gmail.com {zlin, xinl, pao}@adobe.com

Abstract

Deep neural network-based methods were proposed for

face attribute manipulation. There still exist, however, two

major issues, i.e., insufficient visual quality (or resolution)

of the results and lack of user control. They limit the appli-

cability of existing methods since users may have different

editing preference on facial attributes. In this paper, we

address these issues by proposing a semantic component

model. The model decomposes a facial attribute into mul-

tiple semantic components, each corresponds to a specific

face region. This not only allows for user control of edit

strength on different parts based on their preference, but

also makes it effective to remove unwanted edit effect. Fur-

ther, each semantic component is composed of two funda-

mental elements, which determine the edit effect and region

respectively. This property provides fine interactive control.

As shown in experiments, our model not only produces high-

quality results, but also allows effective user interaction.

1. Introduction

The popularity of sharing selfies and portrait photos on-

line motivates the rapid development of face edit tools.

Facial attribute manipulation is especially attractive with

the functions of adding/removing face accessories, such as

facial hair and eyeglasses, and/or changing intrinsic face

properties, such as age and gender.

Facial attribute manipulation has attracted great interest

[10, 2, 4, 3, 30, 26, 22], because of the great chance it brings

to research and real-world application. Early work focuses

on specific attributes of facial hair generation [1], expres-

sion change [31, 22, 30], beautification/de-beautification

[14, 6], aging [10], etc. These approaches are designed for

specific tasks, and require prior knowledge that is not appli-

cable to new editing tasks.

Recently, with the development of deep neural networks,

especially generative adversarial networks, several gen-

eral face attribute manipulation frameworks were proposed

[20, 19, 12, 16, 17, 32, 13, 8]. These approaches take fa-

cial attribute edit as an unpaired learning task, and thus are

capable of handling different attributes by only changing

the data. Our method can be categorized into this group,

which aims to provide a general solution for different facial

attributes.

Limitation of Existing Solutions Since most facial at-

tributes of a person are immutable within a short period

of time, collecting paired images with only desired change

seems difficult and costly. Most frameworks resort to the

Generative Adversarial Network (GAN) [8, 32, 29, 17, 27,

16, 11, 13, 20, 24, 35, 25, 7, 19, 35, 34], which is popular

for unsupervised learning. However, despite recent progress

[9, 25], training a suitable GAN is still difficult.

In addition, there is no effective indicator to monitor the

training process, which makes it hard to choose the “best”

model during training. These difficulties could cause non-

optimal training and produce unsatisfying results. Note that

when the result is not as expected, there is few options to

guide the system to fix the problem.

Our Solution Inspired by CapsuleNet [18] that divides the

final prediction to smaller parts, we seek for an approach

that divides a high-level attribute edit into multiple seman-

tic components, where each works on one semantic region

of a human face. With this scheme, our model allows

component-level user control, which is more flexible than

existing solutions.

Moreover, we decompose each component into two fac-

tors, i.e., the attention map and the semantic painter. The

attention map highlights altered region of the correspond-

ing component, and the semantic painter corresponds to the

kind of effect applied to that region. These two factors en-

able us to manipulate each component by changing either

the edit region or the semantic painter. This further allows

interactive manipulation.

It is notable that our system conceptually mimics the way

image-editing software works: different semantic compo-

nents can be viewed as “layers” in Photoshop, and all layers

jointly compose the final edit result. During testing, our

model generates an initial high-quality result for the target

attribute. If users have other requirements, they can further

adjust it in different levels of our system output.

Despite the simple and natural work-flow, decomposing

9859

a high-level face attribute into different components is not

trivial. For example, changing the age of a person may

need to edit his/her eyes, nose, mouth, skin, etc, which are

too complicated and tedious for people to label respectively.

Our model instead learns such decomposition in an end-to-

end manner using unpaired data.

Specifically, our model is composed of three parts, i.e.,

AttentionNet, PainterNet, and FusionNet. AttentionNet

produces attention maps that figure out the edit region.

PainterNet produces a vector that controls the edit effect on

the corresponding region, while FusionNet combines each

pair of edit region and semantic painter to produce the fi-

nal result. Compared with GAN, this training strategy is

more robust and works generally on different resolutions

and styles. Our main contributions are the following.

• We propose a semantic-component-based framework

for face attribute manipulation. It is the first attempt to

learn semantic components from high-level attributes.

• Our model improves edit quality. It benefits from com-

ponent decomposition that partitions an edit into rele-

vant and irrelevant parts, where the latter can be re-

moved for more dedicated focus on important regions.

• Our model also allows adjusting edit strength of differ-

ent components and manipulating edit effect on each

component. Thus it shows an effective way for inter-

active editing.

2. Related Work

Early Solutions Face edit has been studied for years [10,

2, 4, 3, 30, 26, 22]. Most early work is for specific tasks,

such as face aging [10], relighting [26, 2], and expression

editing [30]. Our method is contrarily a general framework

for face attribute manipulation and is by nature different.

Generative Adversarial Network Several recent methods

utilize GAN to build general face attribute manipulation

frameworks. Face attribute disentangling [8, 32, 29, 17, 27,

16, 11, 13, 20, 24, 28] decomposes human faces in a deep

space where part of the features serve as attribute tags. By

altering these tags, the original face can be manipulated ac-

cordingly. However, disentangling is not easy to achieve,

and reconstructing face images based on the altered tags

may not be correct.

A simpler way to edit face attributes is to take it as a

set-to-set image transformation task. Cycle-GAN [34] and

its variants [35, 25, 7, 19, 35] are typical methods. This

line avoids face disentangling and thus simplifies the prob-

lem. Nevertheless, the systems are hard to train and the

results may contain visual artifacts. SaGAN [33] used spa-

tial attention to avoid problems of irrelevant regions. It

focuses on local attributes like facial hairs or eyeglasses,

while our method can handle both local and global at-

tributes like face aging. Further, our method discovers sub-

properties for global attributes, allowing controlling each

local region conveniently. HDGAN [25] and Progressive

GAN [9] achieved much better results than previous GANs.

But HDGAN does not edit images based on high-level at-

tributes, while progressive GAN is designed for image gen-

eration, which handles tasks different from ours.

Deep Feature Interpolation In addition to the GAN based

frameworks, deep feature interpolation (DFI) [23] was em-

ployed for face attribute manipulation. By shifting deep fea-

tures of the query image with certain attribute tensor, the

semantic facial attributes can be updated accordingly. The

drawback is that estimation of shifting tensors may be noisy

[5], which cause undesired changes. Also, the computa-

tional burden is high. In [5], these problems were alleviated

by using a three-layer CNN to learn the attribute shifting

tensor.

Our work is related to [5], and yet is fundamentally dif-

ferent in two aspects. First, in [5], a shallow CNN was

used to avoid fitting noise. This also prevents the model

from learning target attributes precisely. In contrast, our

approach decomposes the attribute shifting tensor into sev-

eral components, so that the noisy components can be sup-

pressed individually. This advantage allows our model to

use more powerful structures. Second, our model supports

more user interaction while [5] only allows changing the

overall edit strength. Thus our model can better meet dif-

ferent users’ preference.

3. Our Method

Since face manipulation with traditional image process-

ing tools only considers pixel-level information, we propose

a model working in semantic level, which is more user-

friendly.

Suppose there are two face domains that differ on certain

semantic attribute S . We denote the negative samples as

S− and the positive ones as S+. Our goal is to transfer

image properties from S− to S+. Note that the training

images are collected from daily photos, which might vary

in background, illumination, viewpoint, etc. We expect the

model not to alter any region and property irrelevant to S .

3.1. The Baseline Model

Generally speaking, face attribute edit can be represented

as IS+ = O(IS− ,VS), where IS− , IS+ ∈ R
H×W×3 are

images with attribute S− and S+, H and W are the height

and width, VS denotes an “attribute tensor” that carries in-

formation about the attribute S,O(·) denotes a function that

transforms IS− to IS+ based on VS . By changing different

VS , corresponding attributes can be manipulated accord-

ingly.

9860

It is found that O(IS− ,VS) can be simplified to linear

interpolation in proper deep space [23], i.e.,

φ(IS+) = φ(IS−) + λVS , (1)

where φ(IS−), φ(IS+) ∈ R
h×w×c are deep feature maps

of IS− and IS+ respectively. h, w and c are the height,

width and channel numbers of the feature map respectively.

VS ∈ R
h×w×c controls the shift direction in the deep space.

λ ∈ (0,∞) controls the edit strength. According to [23],

φ(·) can be defined by a pretrained VGG [21] network. Af-

ter computing Eq. (1), IS+ is obtained by inverting φ(IS+)
through back-propagation [23] or training an inversion net-

work [5].

As different IS− could appear quite differently, VS
should be adaptive to IS− . DFI [23] used K neighbors of

IS− to compute VS . Specifically, it is calculated as

VS =
1

K

∑

i∈NS+

K

φ(Ii)−
1

K

∑

i∈NS−

K

φ(Ii), (2)

where NS
+

K /NS
−

K refer to K positive/negative nearest

neighbors of the query sample respectively. This averaging

operation in Eq. (2) aims at suppressing irrelevant changes

apart from the target attribute S [23, 5].

In spite of the insightful architecture and several decent

results, this model has two drawbacks as follows.

1. Simply using averaging in Eq. (2) does not suppress all

undesired changes (as discussed in Section 4.1). Al-

though learning VS with a shallow CNN alleviates this

problem [5], quality of attribute is sacrificed.

2. It does not allow altering edit strength of each part,

which hinders friendly edit interaction by users, espe-

cially considering individual users may have their re-

spective preference in face edit.

To address these issues, we propose a component-based

model, which decomposes VS into different components

VSi
, 1 ≤ i ≤ k. Each component corresponds to one kind

of change. Thus users can control the edit strength sep-

arately. With this design, the undesirable changes can be

removed by simply setting the edit strength to 0 regarding

these components. Our model also supports fine-grained

component edit, where users can finely adjust edit style and

region for each component VSi
.

3.2. Key Components of Our Model

Generally, interactive digital image edit requires users

to select a “painter”, then applies it to certain regions of

the image. This natural interaction philosophy prompts us

to consider VS in Eq. (2) as the result of applying one or

several different “painters” on distinct regions of face image

IS− . Specifically, we assume that

VS = F(P1,P2, · · · ,Pk,M1,M2, · · · ,Mk), (3)

where Pi denotes the i-th “Painter”. Mi ∈ R
h×w×c is the

mask that defines the region where Pi acts on. F(·) denotes

the network that predicts VS based on P andM.

Recall that VS should be adaptive to the input image

φ(IS−) [23, 5], we further let

Pi = FPi
(φ(IS−)), Mi = FMi

(φ(IS−)), (4)

where FPi
(·) and FMi

(·) are neural networks that predict

Pi andMi based on φ(IS−) respectively. In practice, VS
can be estimated with Eq. (2). This process makes the pa-

rameters of F , FPi
and FMi

be learned in an end-to-end

manner – that is, we learn to predict VS based on φ(IS−).
Since different pairs of Pi and Mi are expected to be

unrelated, Eq. (3) is further simplified to

VS =

k∑

i=1

VSi
, (5)

where VSi
= Fi(FPi

(φ(IS−)),FMi
(φ(IS−))). The Fi(·)

is a Fusion Network that predicts VSi
based on the estimated

Pi andMi. Here, a high-level attribute tensor VS is viewed

as a linear combination of different components VSi
, 1 ≤

i ≤ k. Each component VSi
handles only one specific kind

of effect (determined by Pi) on the corresponding region

(determined byMi).

Spatial/Channel Information Concentration Note that

in our model, Pi and Mi have precise physical meaning.

As Pi plays the role of “painter”, it should carry only in-

formation about the “effect” instead of the spatial region.

On the contrary,Mi denotes the location where Pi acts on.

Thus it should contain only spatial information instead of

the effect data. Hence, we design the shape of Pi andMi

as Eq. (6) to remove redundant information.

Pi ∈ R
1×1×c, Mi ∈ R

h×w×1. (6)

In the Fusion Network Fi(·), Pi is spatially repeated to

R
h×w×c and concatenated with Mi. Vi is predicted with

this concatenated feature. Since Pi andMi together deter-

mine VSi
∈ R

h×w×c, this setting forces them to consider

spatial and channel data respectively. As a result, Pi and

Mi encode different types of information as expected.

Also, note that one component is conditioned on one

painter vector Pi. This enforces each component to handle

only one effect, and makes corresponding regions located

correctly rather than spread arbitrarily to unrelated regions.

This simplifies and clarifies the semantic meaning of VSi
for

users and makes it easy to adjust the corresponding compo-

nent later if needed.

9861

Region Net !

Painter Net !
Fusion Net !

Fusion Net !

(a) VGG Encoder (b) ! and ! (c) Painter ! and Region ! (d) Fusion Net (e) VGG Decoder

 ! "

#! #"

$%&

$%'

Sum

 (!"#)

$" (!"%)

Figure 1. Pipeline illustration. (a) is a pretrained VGG to encode the input image in the deep space φ(IS−) where weights are fixed. (b)

is our proposed Painter Network FP and FM. (c) illustrates the painter vectors Pi and region maps Mi. Pi and Mi are paired before

fed into the Fusion Network. (d) is the Fusion Network F that fuses Pi and Mi to produce semantic component VSi
. All semantic

components are finally summed to form VS . After that, φ(IS+) is computed by Eq. (1). (e) is the VGG decoder trained to invert φ(IS+)
to IS+ . The architecture and training of the decoder follow [5].

Towards Non-overlapping Regions In addition to re-

stricting each semantic component to only encode one ef-

fect, another key issue is to ensure that each facial region

is only affected by one dominant component. Otherwise,

users could be confused if one edit alters many compo-

nents in following interactive manipulation. This isolation

requires to keep all region masksMi, k = 1, 2, · · · , k non-

overlapping.

Specifically, let M(m,n) = [M1(m,n), M2(m,n),
· · · ,Mi(m,n)], where (m,n) is the location. The non-

overlapping constraint is formulated as ||M(m,n)||0 = 1,

which indicates that for each location, M(m,n) is encoded

as a one-hot vector.

Intuitively, it is achieved by setting the maximum ele-

ment of M(m,n) to 1 and all others to 0. But unfortu-

nately, this scheme is not differentiable. So we seek for

a soft version to approximate it, so that back-propagation

gradients exist to train the network. Our approximation is

expressed as

Mi(m,n)←
eβMi(m,n)

∑k

j=1 e
βMj(m,n)

, (7)

where β is a positive scalar that controls the degree of sharp-

ness. A large β exaggerates the difference of elements in

M(m,n). In extreme cases, the maximum element be-

comes 1 while the others are 0, making M(m,n) a nearly

one-hot vector. It is noted that a very large β may cause the

network difficult to train. In this paper, we set β = 2.

The softly encoded region masks are also leveraged as

attention maps to highlight the dominant components and

suppress all others. This can be formulated as

VSi
(m,n)←Mi(m,n)VSi

(m,n), (8)

where VSi
(m,n) ∈ R

1×1×c refers to the (m,n) location of

VSi
. With these strategies, for each location, the dominant

component is highlighted while the others are suppressed.

3.3. Network Architecture

Our network architecture is based on the key components

discussed in Section 3.2. Specifically, we use a Painter Net-

work FP(φ(IS−)) to produce k vectors that control the ef-

fect of semantic components. We also propose a Attention

Network FM(φ(IS−)) to produce corresponding attention

maps. Finally, we use k Fusion Networks to fuse the k pairs

of painter vectors and attention maps. Each pair outputs one

component VSi
. These k components are then summed to

VS . The pipeline is visualized in Fig 1.

3.4. Interactive Editing

The proposed architecture is highly flexible and thus al-

lows users to adjust results in different levels. The coarsest

level is to change the global effect like [23, 5], which is to

update λ in Eq. (1). In addition, our network linearly de-

composes VS to different semantic components VSi
as indi-

cated in Eq. (5). This allows us to control the edit strength

of different components separately. Unwanted edit can be

totally removed by setting the edit strength to zero.

Further, because each component VSi
is determined by

Pi and Mi, they can also be edited by changing Pi and

Mi. Note that Mi is a one-channel attention map, which

contains large values on updated regions and small ones oth-

erwise. It is thus intuitive for users to directly “draw” on

Mi. Pi, contrarily, is a spatial-invariant vector related to

the type of effect. With it, we can easily alter styles of VSi

by replacing Pi.

4. Experiments

We use the face attribute dataset CelebA [15] to train and

test our model. The large and diverse face dataset contains

202,599 images of 10,177 identities. In addition, there are

40 types of attribute annotation. They can be used to di-

vide the dataset into two domains to estimate VS in Eq. (2).

Three attribute-altering tasks are tested in this paper, includ-

9862

(a) (b) (c) (d) (e) (f)
Figure 2. Illustration of visual effect of different components of attribute “younger”. (a) is the input. (b-f) shows gradual visual change

by incorporating different semantic components. The upper line shows the visual changes, and the lower line shows the edited region Mi

(Best view in original resolutions).

ing adding facial hair, turning older, and getting younger.

These attributes include various semantic components and

thus are suitable to evaluate the effectiveness of our net-

work. We unify the image resolution to 448 × 448, and

train our model with its training set. Since the resolution of

original CelebA is limited, we use its high-quality version

[9] during testing.

4.1. Evaluating Our Model

One key benefit of our approach stems from the ability to

decompose an integrated attribute into several components

so that users can manipulate each of them separately. In this

section, we provide an extensive analysis of the component

decomposition property. We set k in Eq. (5) to 9, which is

large enough for most attributes. Although this may cause

some network branches to learn insignificant components,

our experiments show that it does not affect results because

insignificant components can be disabled during testing.

Visual Effect of Different Components Intuitively, a

high-level facial attribute boils down to appearance change

of different face regions. For example, a young man/woman

usually has brighter eyes, fewer wrinkles, smoother skin

than a more senior person. So to make a face look younger,

these properties should be changed accordingly.

Our model captures these properties by components.

Fig. 2 shows different semantic components of attributes. It

reveals that our model decomposes attribute “younger” into

five components. The first two components are in accor-

dance with our intuition that a younger person has brighter

eyes and smoother skin. Interestingly, the 3rd-5th com-

ponents indicate that “younger” means thicker eyebrow,

brighter lip color, and tighter face contour. These compo-

nents work subtly and jointly to make the result look more

(a) Skin

(b) Eyes

(c) Nose

Figure 3. Illustration of changing edit strength of the “older” at-

tribute. For each row, the first image indicates the edit region Mi

of the corresponding component. The second image is the input

image. The 3rd and 4th images are results of setting different

edit strength of the corresponding components respectively. When

changing the strength of one component, we fix weights of others

(Best view in original resolutions).

realistic.

Changing Component Strength Note that Eq. (5) can be

extended to

VS =
k∑

i=1

λiVSi
, (9)

where λi ≥ 0 is the weight of the i-th component. This

9863

(a) Input (b) All Components (c) Unwanted Removed

(d) Input (e) All Components (f) Unwanted Removed

Figure 4. Examples of component-level manipulation. (a) Original

image. (b) Result of the “facial hair” attribute using all compo-

nents. (c) improves (b) using only the significant components. (d)

Original image. (e) Result of attribute “femininity”. (f) Result of

“remove facial hair”. Note that (f) is obtained by only keeping the

component with edit on mouth and removing all others (Best view

in original resolutions).

allows us to control the weight of each component during

testing. Fig. 3 shows the result of changing the strength

of semantic components of the “older” attribute. This is

more advantageous compared with existing models [34, 19]

that do not support changing edit strength or only do that

globally [23, 5].

Removing Unwanted Components One special case of

Eq. (9) is to set certain λi to 0, i.e., totally removing these

components. This is important to improve output quality.

Recall that VS is computed with Eq. (2), which is only an

approximation to the genuine attribute tensor.

In practice, there inevitably exist unwanted edit in VS ,

which may harm the final result. Our model decomposes VS
into multiple components, each controls one kind of effect.

Thus it is likely that noise is fitted by certain components

of our model. Interestingly, discarding them leads to even

better results.

Fig. 4(a)-(c) shows an example of “facial hair” attribute.

It is a simple property that should cause change only on the

mouth region. However, as shown in Fig. 4(b), noise in

VS contaminates other unrelated regions (such as eyes and

nose). By removing these noisy components, the unwanted

edits are suppressed, as shown in Fig. 4(c).

Learn One and Get More Our model also allows us

to obtain different edits from only one attribute. Note that

a complex attribute is usually composed of several sub-

attributes. Fig. 2(b)-(f) shows a few sub-attributes for the

“younger” change. In many cases, these sub-attributes are

(a) Input (b) Initial Result (c) Edited Result

Figure 5. Illustration of edit on the attention map Mi. (a) is the

input image. (b) shows the initial output automatically produced

by our model. (c) is the editing result. The bottom right images

of (b) and (c) are their corresponding Mi. (Best view in original

resolutions).

very useful for new effect generation. Taking the “feminin-

ity” attribute as an example, as shown in Fig. 4(e), we train

this attribute with the gender label and converts a male-look

towards a female-look. Interestingly, during this training

process, another semantic edit – “remove facial hair” – is

also learned as one component, as shown in Fig. 4(f).

Fine-grained Adjustment In addition to changing the

edit strength of different components, our model also allows

fine-grained control, which is to directly manipulate each

component. Note that each component VSi
is decomposed

into two factors: the painter Pi and the edited regionMi.

By manipulating Mi, the edited region can be controlled.

Contrarily, with modified Pi, the edit style is updated. We

showcase the effects in the following.

- Effect 1: Editing Mi Mi provides spatial informa-

tion of component VSi
according to Eqs. (5) and (6). As

Mi is 2-D attention map, manipulating Mi is simple and

straightforward. Fig. 5 shows an example of manipulating

the shape of facial hair by only changing the shape ofMi.

- Effect 2: Changing P i Pi serves as the complemen-

tary part of Mi to instantiate VSi
. Thus it is deemed as

controlling the type of effect on the corresponding region

Mi. Note that most high-level attributes have more than

one instantiations, which means VS in the training set con-

tains different Pi. So during testing, if the user is not satis-

fied with the initial instantiation of the attribute change, s/he

can replace Pi with others to update results, as illustrated in

Fig. (6).

Running Time We report the running time with image

size 448 × 448, and the system runs on a Titan X graph-

ics card. Our framework can be divided into 3 parts, i.e.,

the VGG encoder, the decoder, and our semantic compo-

nent model. The VGG encoder takes 0.008 second, and the

decoder takes 0.014 second. The time cost of our model

varies from 0.026 (with 1 component) to 0.048 (with 5 com-

ponents) second. The time complexity variation is due to

various types of attributes that require different numbers of

components to compute. For simple attributes, such as fa-

9864

