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Abstract

Conventional intensity cameras recover objects in the di-

rect line-of-sight of the camera, whereas occluded scene

parts are considered lost in this process. Non-line-of-sight

imaging (NLOS) aims at recovering these occluded objects

by analyzing their indirect reflections on visible scene sur-

faces. Existing NLOS methods temporally probe the indirect

light transport to unmix light paths based on their travel

time, which mandates specialized instrumentation that suf-

fers from low photon efficiency, high cost, and mechanical

scanning. We depart from temporal probing and demon-

strate steady-state NLOS imaging using conventional in-

tensity sensors and continuous illumination. Instead of as-

suming perfectly isotropic scattering, the proposed method

exploits directionality in the hidden surface reflectance,

resulting in (small) spatial variation of their indirect re-

flections for varying illumination. To tackle the shape-

dependence of these variations, we propose a trainable ar-

chitecture which learns to map diffuse indirect reflections to

scene reflectance using only synthetic training data. Rely-

ing on consumer color image sensors, with high fill factor,

high quantum efficiency and low read-out noise, we demon-

strate high-fidelity color NLOS imaging for scene configu-

rations tackled before with picosecond time resolution.

1. Introduction

Recovering objects from conventional monocular im-

agery represents a central challenge in computer vision,

with a large body of work on sensing techniques using

controlled illumination with spatial [50, 41] or temporal

coding [32, 24, 19, 39], multi-view reconstruction meth-

ods [18], sensing via coded optics [47], and recently learned

reconstruction methods using single-view monocular im-

ages [49, 11, 16]. While these sensing methods drive

applications across domains, including autonomous vehi-

cles, robotics, augmented reality, and dataset acquisition

for scene understanding [52], they only recover objects in

the direct line-of-sight of the camera. This is because ob-

*The majority of this work was done while interning at Algolux.

Figure 1: We demonstrate that it is possible to image occluded

objects outside the direct line-of-sight using continuous illumina-

tion and conventional cameras, without temporal sampling. We

sparsely scan a diffuse wall with a beam of white light and recon-

struct “hidden” objects only from spatial variations in steady-state

indirect reflections.

jects outside the line-of-sight only contribute to a measure-

ment through indirect reflections via visible diffuse object

surfaces. These reflections are extremely weak due to the

multiple scattering, and they lose (most) angular informa-

tion on the diffuse scene surface (as opposed to a mirror

surface in the scene). NLOS imaging aims at recovering

objects outside a camera’s line-of-sight from these indirect

light transport components.

To tackle the lack of angular resolution, a number of

NLOS approaches have been described that temporally

probe the light-transport in the scene, thereby unmixing

light path contributions by their optical path length [1, 30,

36, 43] and effectively trading angular with temporal res-

olution. To acquire temporally resolved images of light

transport, existing methods either directly sample the tem-

poral impulse response of the scene by recording the tem-

poral echoes of laser pulses [54, 43, 17, 7, 53, 3, 42], or

they use amplitude-coded illumination and time-of-flight

sensors [21, 26, 25]. While amplitude coding approaches
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suffer from low temporal resolution due to sensor demod-

ulation bandwidth limitations [32] and the corresponding

ill-posed inverse problem [19], direct probing methods

achieve high temporal resolution already in the acquisition

phase, but in turn require ultra-short pulsed laser illumi-

nation and detectors with < 10 ps temporal resolution for

macroscopic scenes. This mandates instrumentation with

high temporal resolution, that suffers from severe practi-

cal limitations including low photon efficiency, large mea-

surement volumes, high-resolution timing electronics, ex-

cessive cost and monochromatic acquisition. Early streak-

camera setups [54] hence require hours of acquisition time,

and, while emerging single photon avalance diode (SPAD)

detectors [7, 42] are sensitive to individual photons, they

are in fact photon-inefficient (diffuse experiments in [42])

due to very low fill factors and pileup distortions at higher

pulse power. To overcome this issue without excessive

integration times, recent approaches [42, 20] restrict the

scene to retro-reflective material surfaces, which eliminates

quadratic falloff from these surfaces, but effectively also

constrains practical use to a single object class.

In this work, we demonstrate that it is possible to im-

age objects outside of the direct line-of-sight using conven-

tional intensity sensors and continuous illumination, with-

out temporal coding. In contrast to previous methods, that

assume perfectly isotropic reflectance, the proposed method

exploits directionality of the hidden object’s reflectance, re-

sulting in spatial variation of the indirect reflections for

varying illumination. To handle the shape-dependence of

these variations, we learn a deep model trained using a train-

ing corpus of simulated indirect renderings. By relying on

consumer color image sensors, with high fill factor, high

quantum efficiency and low read-out noise, we demonstrate

full-color NLOS imaging at fast imaging rates and in setup

scenarios identical to those tackled by recent pulsed systems

with picosecond resolution.

Specifically, we make the following contributions:

• We formulate an image formation model for steady-

state NLOS imaging and an efficient implementation

without ray-tracing. Based on this model, we derive

an optimization method for the special case of planar

scenes with known reflectance.

• We propose a learnable architecture for steady-state

NLOS imaging for representative object classes.

• We validate the proposed method in simulation, and

experimentally using setup and scene specifications

identical to the ones used in previous time-resolved

methods. We demonstrate that the method generalizes

across objects with different reflectance and shapes.

• We introduce a synthetic training set for steady-state

NLOS imaging. The dataset and models will be pub-

lished for full reproducibility.

2. Related Work

Transient Imaging Kirmani et al. [30] first proposed the

concept of recovering “hidden” objects outside a camera’s

direct line-of-sight using temporally resolved light trans-

port measurements in which short pulses of light are cap-

tured “in flight” before the global transport reaches a steady

state. These transient measurements are the temporal im-

pulse response of light transport in the scene. Abram-

son [1] first demonstrated a holographic capture system

for transient imaging, and Velten et al. [55] showed the

first experimental NLOS imaging results using a femto-

second laser and streak camera system. Since these seminal

works, a growing body of work has been exploring transient

imaging with a focus on enabling improved NLOS imag-

ing [43, 36, 56, 17, 21, 19, 7, 38].

Impulse Non-Line-of-Sight-Imaging A major line of re-

search [43, 54, 17, 42, 53, 3, 45, 40, 58] proposes to ac-

quire transient images directly, by sending pulses of light

into the scene and capturing the response with detectors ca-

pable of high temporal sampling. While the streak camera

setup from Velten et al. [55] allows for temporal precision

of < 10 ps, corresponding to a path length of 3 mm, the

high instrumentation cost and sensitivity has sparked work

on single photon avalanche diodes (SPADs) as a detector

alternative [7, 40]. Recently, O’Toole et al. [40] propose

scanned SPAD capture setup that allows for computational

efficiency by modeling transport as a shift-invariant con-

volution. Although SPAD detectors can offer comparable

resolution < 10 ps [37], they typically suffer from low fill

factors typically around a few percent [44] and low spatial

resolution in the kilo-pixel range [35]. Compared to ubiq-

uitous intensity image sensors with > 10 megapixel reso-

lution, current SPAD sensors are still five orders of magni-

tude more costly, and two orders of magnitude less photon-

efficient.

Modulated and Coherent Non-Line-of-Sight-Imaging

As an alternative to impulse-based acquisition, correlation

time-of-flight setups have been proposed [19, 25, 21, 26]

which encode travel-time indirectly in a sequence of phase

measurements. While correlation time-of-flight cameras are

readily available, e.g. Microsoft’s Kinect One, their ap-

plication to transient imaging is limited due to amplitude

modulation bandwidths around 100 MHz, and hence tem-

poral resolution in the nanosecond range. A further line

of work [29, 28] explores using correlations in the carrier

wave itself, instead of amplitude modulation. While this ap-

proach allows for single-shot NLOS captures, it is limited

to scenes at microsopic scales [28].

Tracking and Classification Most similar to the proposed

method are recent approaches that use conventional inten-

sity measurements for NLOS vision tasks [31, 8, 9, 5]. Al-
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though not requiring temporal resolution, these existing ap-

proaches are restricted to coarse localization and classifi-

cation to a limited extent, in contrast to full imaging and

geometry reconstruction applications.

3. Image Formation Model

Non-line-of-sight imaging methods recover object prop-

erties outside the direct line-of-sight from third-order

bounces. Typically, a diffuse wall patch in the direct line-

of-sight is illuminated, where the light then scatters and

partially reaches a hidden object outside the direct line-

of-sight. At the object surface, the scattered light is re-

flected back to the visible wall where it may be measured.

In contrast to existing methods that rely on temporally re-

solved transport, the proposed method uses stationary third-

bounce transport, i.e. without time information, to recover

reflectance and geometry of the hidden scene objects.

3.1. Stationary Light Transport

Specializing the Rendering Equation [27] to non-line-of-

sight imaging, we model the radiance L at a position w on

the wall as

L(w) =

∫

Ω

ρ (x− l,w − x) (nx· (x− l))
1

r2
xw

1

r2
xl

L(l)dx

+ δ (‖l−w‖)L(l),
(1)

with x,nx the position and corresponding normal on the

object surface Ω, l being a given beam position on the

wall, and ρ denoting the bi-directional reflectance distri-

bution function (BRDF). This image formation model as-

sumes three indirect bounces, with the distance function r

modeling intensity falloff between input positions, and one

direct bounce, when l and w are identical in the Dirac delta

function δ(·), and it ignores occlusions in the scene outside

the line-of-sight. We model the BRDF with a diffuse and

specular term as

ρ (ωi, ωo) = αd ρd (ωi, ωo) + αs ρs (ωi, ωo) . (2)

The diffuse component ρd models light scattering, re-

sulting in almost orientation-independent low-pass reflec-

tions without temporally coded illumination. In con-

trast, the specular reflectance component ρs contributes

high-frequency specular highlights, i.e. mirror-reflections

blurred by a specular lobe. These two components are

mixed with a diffuse albedo αd and specular albedo αs.

While the spatial and color distributions of these two albedo

components can vary, they are often correlated for ob-

jects composed of different materials, changing only at the

boundaries of materials on the same surface. Although the

proposed method is not restricted to a specific BRDF model,

we adopt a Phong model [46] in the following.

3.2. Sensor Model

We use a conventional color camera in this work. We

model the raw sensor readings with the Poisson-Gaussian

noise model from Foi et al. [15, 14] as samples

b ∼
1

κ
P

(
∫

T

∫

W

∫

ΩA

L(w) dω dw dt
κ

E

)

+ N (0, σ2),

(3)

where we integrate Eq. (1) over the solid angle ΩA of the

camera’s aperture, over spatial position W that the given

pixel maps to, and exposure time T , resulting in the incident

photons when divided by the photon energy E. The sensor

measurement b at the given pixel is then modeled with the

parameters κ > 0 and σ > 0 in a Poisson and Gaussian

distribution, respectively, accurately reflecting the effects of

analog gain, quantum efficiency and readout noise. For no-

tational brevity, we have not included sub-sampling on the

color filter array of the sensor.

4. Inverse Indirect Transport for Planar Scenes

In this section, we address the special case of planar ob-

jects. Assuming planar scenes in the hidden volume al-

lows us to recover reflectance and 3D geometry from in-

direct reflections. Moreover, in this case, we can formu-

late the corresponding inverse problem using efficient opti-

mization methods with analytic gradients. In the remainder

of this paper, we assume that the shape and reflectance of

the directly visible scene parts are known, i.e. the visible

wall area. The proposed hardware setup allows for high-

frequency spatially coded illumination, and hence the wall

geometry can be estimated using established structured-

light methods [50]. Illuminating a patch l on the visible

wall, a hidden planar scene surface produces a diffuse low-

frequency reflection component, encoding the projected po-

sition independently of the orientation [31], and higher-

frequency specular reflection components of the blurred

specular albedo mapped to orientation-dependent positions

on the wall. Assuming a single point light source at l on the

wall, see Fig. 2, the specular direction at a plane point p is

the mirror direction r = (p− l)− 2((p− l) · n)n with the

plane normal being n. The center of the specular lobe c on

the wall is the mirror point of l, i.e. the intersection of the

reflected ray in direction r with the wall. Conversely, if we

detect a specular lobe around c in a measurement, we can

solve for the corresponding plane point as

p(v,n) = c+ ((v−c) · n)

(

n−
v− l− ((c− l) · n)n

n · (2v − c− l)

)

,

(4)

that is a function of the planar surface represented by its

normal n and a point v on the plane. Eq. (4) follows imme-

diately from the constraint that the orthogonal projections

of the points l and c onto the plane result in equal triangles
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Figure 3: Experimental geometry and albedo reconstructions for the special case of planar objects, captured with the protoype from

Sec. 7.2 and setup geometry from [40]. We demonstrate reconstructions for three different surface materials. The first row shows an object

with diamond grade retroreflective surface coating as they are found on number plates and high-quality street signs, identical to the objects

in [40], which surprisingly contain faint specular components visible in the measurements (please zoom into the electronic version of this

document). The second and third rows show a conventionally painted road sign and an engineering-grade street sign. The proposed method

runs at around two seconds including capture and reconstruction, and achieves high resolution results without temporal sampling.

projecting light beams to different positions on the wall re-

sults in different observations which we dub indirect reflec-

tion maps, i.e. indirect component of the image on the wall

without the direct reflection. Each map contains informa-

tion about the object shape and normal information in spe-

cific direction if the BRDF is angle-dependent. Note that

this is not only the case for highly specular BRDFs, but also

for lambertian BRDFs due to foreshortening and varying

albedo. Hence, by changing the beam position we acquire

variational information about shape and reflectance.

Assuming locally smooth object surfaces, we sample the

available wall area uniformly in a 5 × 5 grid and acquire

multiple indirect reflection maps. We stack all the captured

images, forming a h × w × (5 · 5 · 3) dimension tensor

as network input. The virtual source position is a further

important information that may be provided to the network.

However, since we use uniform deterministic sampling, we

found that the model learns this structured information, in

contrast to random source sampling.

We use the orthogonal view of the scene as our ground

truth latent variable, as if the camera had been placed in the

center of the visible wall in wall normal direction and with

ambient illumination present. Given the stack of indirect

reflection maps, the proposed network is trained to estimate

the corresponding orthogonal view into the hidden scene.

Network Architecture We propose a variant of the U-Net

architecture [48] as our network backbone structure, shown

in Fig. 4. It contains a 8 layers encoder and decoder. Each

encoder layer reduces the image size by a factor of two

in each dimension and doubles the feature channel. This

scaling is repeated until we retrieve a 1024 dimension la-

tent vector. In corresponding convolution and deconvolu-

tion layer pairs with the same size, we concatenate them to

learn residual information.

Loss functions We use a multi-scale ℓ2 loss function

Vmulti−scale =
∑

k

γk‖i
k − ok‖2, (8)

where i is the predicted network output and o is the ground-

truth orthogonal image. Here, k represents different scales

and γk is the corresponding weight of that layer. With fea-

ture map at k-the layer, we adopt an extra one deconvolution

layer to convert the feature to an estimate at the target res-

olution. We predict 64 × 64, 128 × 128 and 256 × 256

ground truth images and set the weights γk as 0.6, 0.8 and

1.0. See the Supplemental Material for training details.
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