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Abstract

Monocular depth estimation is a challenging task in

scene understanding, with the goal to acquire the geomet-

ric properties of 3D space from 2D images. Due to the lack

of RGB-depth image pairs, unsupervised learning methods

aim at deriving depth information with alternative supervi-

sion such as stereo pairs. However, most existing works fail

to model the geometric structure of objects, which gener-

ally results from considering pixel-level objective functions

during training. In this paper, we propose SceneNet to over-

come this limitation with the aid of semantic understanding

from segmentation. Moreover, our proposed model is able

to perform region-aware depth estimation by enforcing se-

mantics consistency between stereo pairs. In our experi-

ments, we qualitatively and quantitatively verify the effec-

tiveness and robustness of our model, which produces fa-

vorable results against the state-of-the-art approaches do.

1. Introduction

With the development of robotics and autonomous driv-

ing, scene understanding has become a crucial yet challeng-

ing problem. One goal of scene understanding is to recog-

nize and analyze 3D geometric information from a 2D scene

image. Toward this end, several methods [5, 14, 12] attempt

to estimate depth information from a monocular image by

learning a supervised regression model with a great amount

of 2D-3D image pairs or multiple observations from dif-

ferent viewpoints. However, as most supervised learning

methods, collecting ground truth data is costly and time-

consuming. Thus, recent works attempted to learn unsuper-

vised depth estimation models based on either stereo image

pairs [8] or video sequences [27].

Most unsupervised depth estimation methods derive

∗ Indicates equal contribution.

Figure 1: Integrating depth estimation and semantic seg-

mentation towards scene understanding. With image repre-

sentation jointly learned from the above objectives preserv-

ing geometric/semantic information, unsupervised depth es-

timation can be realized.

depth information by reconstructing the geometric structure

of a scene, while in addition to the geometric cue, we human

estimate depth information according to semantic informa-

tion of a scene. For example, we know that pixels labeled as

“sky” must accompany with large values of depth. Further-

more, the depth values of the pixels within a segmentation

mask (i.e., an object) should be close and relative, and sig-

nificant changes of depth between adjacent pixels implicitly

indicate the boundary of an object. Based on these proper-

ties, several works [13, 20, 4, 18] have explored to mutually

positive transfer between semantic segmentation and depth

estimation, while the requirement of pairwise depth and se-

mantic labels limits the applicability of these models.

In this paper, we first point out the current state-of-the-

arts like [8] predict the disparity maps for stereo views only

based on one monocular image. This results in unaware-

ness of structural information from the other view in the in-

ference stage and further affects the performance of dispar-

ity prediction. With the proposed SceneNet, the mismatch-

ing problem can be significantly alleviated by our training
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strategy. We will verify our design is more reasonable by

comparing the performances with the state-of-the-art unsu-

pervised depth estimation.

More importantly, our model further achieves improved

depth estimation by leveraging semantic understanding.

Fig. 1 illustrates the idea of SceneNet to learn semantic-

aware scene representation to advance our depth estimation.

SceneNet is an encoder-decoder based network that takes

scene images and encodes them into representations. The

decoder acts as a multi-task yet shared classifier that trans-

forms scene representation into the prediction of depth or

segmentation. This is accomplished by a unique task iden-

tity mechanism, which allows the shared decoder to switch

the outputs between semantic segmentation and depth es-

timation. Base on the conditioned task identity infor-

mation, SceneNet thus can be viewed as a cross-modal

network model, bonding depth and segmentation modali-

ties together. To further strengthen the bonding between

geometric and semantic understanding, we introduce left-

right semantic consistency and semantics-guided disparity

smoothness, two self-supervised objective functions that re-

fine depth estimation with semantic prediction.

In our experiments, we demonstrate that SceneNet not

only produces satisfactory results on depth estimation, its

integration of geometric and semantic information also re-

alizes general scene understanding. With a small amount of

data with annotated semantic ground truth labels, our model

gains significant improvement over depth estimation.

We highlight the contributions of our work as follow:

• We point out possible mismatch problems in recent un-

supervised monocular depth estimation methods utiliz-

ing left-right consistency.

• Our proposed SceneNet work towards scene under-

standing by integrating both geometric and seman-

tic information, with our proposed modules preserv-

ing task identity, left-right semantic consistency and

semantics-guided disparity smoothness.

• The end-to-end learning procedure allows our model

to learn from disjoint cross-modal datasets of stereo

images and semantically labeled images.

• In our experiments, we qualitatively and quantitatively

verify the effectiveness and robustness of our model

over state-of-the-art methods on benchmark datasets.

2. Related Work

Depth Estimation

Generally, depth information can be represented in an ab-

solute depth value or a disparity value (the former is in-

versely proportional to the latter). Traditional methods re-

lied on additional observations such as multi-view from sev-

eral cameras [21] and motion cue from video frames [9]

to derive the corresponding depth of a scene. With only a

single monocular image during the inference stage, Liu et

al. [14] used a deep convolution neural network and con-

tinuous condition random field as patch-wise depth predic-

tor to estimate the depth information. Eigen et al. [5] in-

corporated the coarse and fine cues to predict the depth

map. With sparse ground-truth depth map, Kuznietsovet et

al. [12] learned to predict the dense depth map in a semi-

supervised manner. Although promising results were re-

ported, their requirement of a large amount of pixel-level

annotation and lack to ability in handling noisy depth sen-

sory data would be concerns.

On the other hand, unsupervised depth estimation meth-

ods rely on the supervision from either stereo image

pairs [6, 8, 25] or video sequences [27, 19, 16, 23, 25]. With

the stereo images in the training stage, Garg et al. [6] ap-

plied the inverse warping loss to learn a monocular depth

estimation CNN. Godard et al. [8] inferred the disparities

by warping the left-viewpoint image to match the right-

viewpoint one (and vice versa) with a left-right consistency

objective function. As noted previously, the derived dispari-

ties map could later be converted into the depth map. On the

other hand, some works [27, 19] explored image sequences

and proposed the temporal temporal photometric warp loss

between the adjacent frames to derive the depth informa-

tion. Mahjourian et al. [16] similarly used temporal consis-

tency and further imposed more 3D geometric constraints.

Yin et al. [23] learned depth information together with opti-

cal flow and camera pose by taking advantage of the nature

of 3D scene geometry. Zhan et al. [25] further proposed

spatial and temporal warp objective function for learning

the depth map using both temporal and stereo views.

Leveraging Semantic Segmentation

Since monocular depth estimation methods rely heav-

ily on the property of perspective geometry or annotated

ground truth, seeking assistance from semantic segmenta-

tion of image has been an inevitable direction of research.

Prior works [13, 20, 4, 18] explored the possibility to com-

bine supervised depth estimation and semantic segmen-

tation with multi-task learning. Either through a hierar-

chical network, multi-stage training or sharing latent fea-

ture, they all found the two tasks are indeed strongly cor-

related and mutually beneficial. Jiao et al. [10] studied

the long tail property of the distribution of depth and im-

proved supervised depth estimation with attention and se-

mantic segmentation. Zhang et al. [26] proposed a joint

task-recursive learning framework to recursively refine the

results of both semantic segmentation and supervised depth

estimation through serialized task-level interactions. Chen

et al. [2] proposed a self-supervised proxy task predicting
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Figure 2: Architecture of our proposed SceneNet. SceneNet takes an image I as input and encodes it into a scene represen-

tation z. This representation can be decode into the output Ỹ along with the introduced task identity layer t. Based on the

conditioned t, Ỹ can later be transformed into pixel-wise prediction of semantic segmentation output s or depth estimation

output d, while these two outputs would be properly aligned based on the corresponding semantic information.

relative depth for urban scenes, which can then be adapted

to semantic segmentation or depth estimation through fine-

tuning model (with ground truth provided).

While these prior works were closely related to ours in

terms of pursuing a more general scene understanding for

cross depth estimation and segmentation, we state the dif-

ference between our work and the previous works as follow-

ing: First, unlike the aforementioned works, we choose to

build a unified model to jointly exploit both tasks. Second,

our method does not require paired training data to learn

shared scene representation for depth estimation and seman-

tic segmentation (i.e., training data of these two tasks can be

completely disjoint). Third, depth estimation remains unsu-

pervised with our proposed model, we do not use any given

disparity map or sparse ground truth. Last, while learning

shared representations for different downstream tasks, our

approach remains end-to-end trainable. Neither pre-training

nor fine-tuning model is required.

3. Proposed Method

The goal of our proposed model, SceneNet, is to pre-

dict a dense depth map directly from a monocular image.

During training, our model is trained on stereo pairs and

RGB-segmentation pairs. Unlike existing multi-task learn-

ing models like [13, 20, 4, 18], our model does not re-

quire the stereo images and semantic-annotated images to

be paired.

As illustrated in Fig. 2, the encoder of our model first

converts a scene image I into a scene representation z. Our

decoder further takes both the scene representation z and

a task identity t (detailed in Sect. 3.1) as input, and out-

puts the cross-modal prediction Ỹ . To train SceneNet, we

apply the objective functions for unsupervised depth pre-

diction and supervised semantic segmentation in Sect. 3.2.

Later in Sect. 3.3, we refine the cross-modal prediction by

introducing two self-supervised objective functions – left-

right semantic consistency and semantic grounded disparity

smoothness. In Sect. 3.4, we summarize the learning objec-

tive and detail the inference procedure of SceneNet.

3.1. Task Identity for Cross­modal Prediction

Most existing works that jointly learn disparity estima-

tion and semantic segmentation use task-specific classifica-

tion/regression sub-networks to obtain disparity maps and

segmentation masks. However, hyper-parameters such as

the number of sharing/non-sharing layers across different

branches are required to be tuned and decided according to

the task shift. This restricts the practicality of the model,

especially when adapting to different datasets.

To address the limitation, we merge cross-modal predic-

tions by utilizing a unified decoder conditioned on a task

identity t (as shown in Fig. 2). In practice, we set the task of

disparity estimation as t = 1 and task of semantic segmen-

tation as t = 0. Our decoder further generates the cross-

modal prediction Ỹ from the scene representation z and the

task identity t:

Ỹ = D(δ(z, t)), (1)

where δ is a operation of concatenation and D is our cross-

modal decoder with no activation function in last layer.

Specifically, the semantic segmentation prediction s (red
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lines in Fig. 2) is computed as:

s = σc(Ỹs), (2)

where Ỹs = D(δ(z, t = 1)) and σc is a softmax function.

The disparity map prediction d (green lines in Fig 2) is de-

rived as:

d = σb(fµ(Ỹd)), (3)

where Ỹd = D(δ(z, t = 0)), fµ refers to pixel-wise average

pooing and σb is the sigmoid function.

Note that since Ỹ is conditioned on the task identity t,

our model is able to arbitrarily switch the output between

different tasks by assigning a different value to t. We note

that the use of a unified decoder allows sharing geometric

and semantic information across different modalities and

contributes positive transfer for both tasks. We would later

verify the effectiveness of this unified decoder in our exper-

iments.

3.2. Depth Estimation & Semantic Segmentation

Unsupervised Depth Estimation Inspired by existing un-

supervised models on depth estimation [6, 8], we utilize the

stereo image pairs I l, Ir as supervision during training in

order to derive a disparity map from a monocular image in

inference stage.

Given an RGB monocular image, our model predicts a

pixel-wise disparity map, which is used to warp an image

from one viewpoint to another. To be more specific, we

input left-view image I l and predicts its corresponding dis-

parity map dl, which is applied to warp the right-view image

Ir and reconstruct the left-view image Ir→l.

To learn our disparity prediction model, we compute the

image reconstruction loss Lre with element-wise L1 loss:

Lre =
∥

∥I l − Ir→l
∥

∥+
∥

∥Ir − I l→r
∥

∥ . (4)

where Ir→l is obtained from warping the right image Ir

based on the left-view disparity dl.

To further match the consistency between right and left

disparities and maintain the smoothness of predicted dis-

parity maps, we apply the left-right disparity consistency

loss and disparity smoothness loss introduced by Godard

et al. [8]. Thus, our entire objective function for learning

depth estimation can be defined as:

Ldepth = Lre + αlr

(
∥

∥dl − dr→l
∥

∥+
∥

∥dr − dl→r
∥

∥

)

+ αds

(

‖∂xd‖ e
−‖∂xd‖ + ‖∂yd‖ e

−‖∂yd‖
)

,
(5)

where αlr and αds are the weights for the associated terms.

Note that dr→l can be obtained by warping right-view

disparity dr according to left-view disparity dl (similar

remarks can be applied to dl→r).

Figure 3: Model design differences between [8] and ours.

Note that [8] predicts both disparity maps dl and dr given

only the input left-view image I l, causing dr to align with I l

instead of Ir, the mismatching problem therefore arises. We

predict a disparity map given the input image, and advance

the same warping techniques to preserve left-right predic-

tion consistency via image flipping. This not only avoids

possible mismatch but also simplifies the learning process.

The Mismatching Problem It is worth noting that Godard

et al. [8] predicts both disparity maps dl and dr from one

input image I l as shown in Fig. 3. We show that this might

not properly maintain the structural alignment between the

right-view RGB image Ir and the right-view disparity map

dr. This is because that, without the structural and textural

information of right-view image Ir, it would be difficult to

accurately estimate the right-view disparity dr from a single

left-view image I l.

Instead of predicting both disparity maps from a single

view, we choose to output only one disparity map which

aligns with the input image. To obtain the right disparity

map dr, we horizontally flip the right-view image Ir.

Supervised Semantic Segmentation Existing depth esti-

mation methods generally focus on pixel-wise disparity es-

timation [6, 8, 25] and regard all pixels within an image as

spatial homogeneity, which would lead to unfavorable dis-

parity estimation along object boundaries. To overcome the

limitation, we perform disparity estimation by leveraging

semantics information from segmentation-image pairs. We

thus define the semantic segmentation loss Lseg as:

Lseg = H(sgt, s), (6)

where H indicates the cross-entropy loss and sgt denotes

the ground truth labels from additional disjoint dataset.
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3.3. Self­supervised Learning of SceneNet

To reinforce the semantic awareness when estimat-

ing disparity, we further introduce two self-supervised

regularization losses, left-right semantic consistency and

semantics-guided disparity smoothness.

Left-Right Semantic Consistency In Sect. 3.2, we con-

sider the left-right consistency loss between RGB stereo im-

age pairs. However, such consistency over the color value

of each pixel is likely to be affected by optical changes be-

tween left-right views. For instance, specular reflection on

a glass would vary across different viewpoints. To mitigate

the problem, we further observe such left-right consistency

at the semantic level, since semantic segmentation is less

sensitive to optical changes.

By replacing stereo image Ir and I l in (4) into their se-

mantic segmentation sr and sl, the left-right semantic con-

sistency can be defined as:

Llrsc =
∥

∥sl − sr→l
∥

∥+
∥

∥sr − sl→r
∥

∥ , (7)

where sr→l can be obtained by warping sr according to dl

and we follow the same rule to obtain sl→r.

Semantics-Guided Disparity Smoothness In addition to

left-right semantic consistency, we also regularize the

smoothness of disparity values within each segmentation

mask. This semantics-guided disparity smoothness is de-

fined as:

Lsmooth = ‖d− f 7→(d)‖⊗(1−‖ψ(s)− f 7→(ψ(s))‖), (8)

where ψ is the operation which sets the maximize value

along each channel as 1 and sets the remaining values as

0, ⊗ denotes element-wise multiplication, and f 7→ is the

operation of shifting input one pixel along the horizontal

axis. The second term is similar to applying an edge detec-

tor to identify edges of segmentation masks. Note that the

smoothness loss is also calculated along the vertical axis,

but here we omit it in (8) for simplicity.

3.4. Learning of SceneNet

During training, SceneNet takes either single view image

with semantic label or stereo view image as input. The full

objective of SceneNet can be defined as

L = Ldepth + αsegLseg + αlrscLlrsc + αsmoothLsmooth,

(9)

where αseg , αlrsc and αsmooth are the weights for each loss.

During the inference stage, SceneNet takes a monocular im-

age to produce both semantic segmentation and disparity

map (which can then be transformed into depth as specified

in [8]) by manipulating the task identity.

4. Experiments

In order to quantitatively and qualitatively evaluate our

model and to fairly compare with recent works, we train

our SceneNet on the stereo image pairs from the KITTI

dataset [7]. As for learning semantic segmentation abil-

ity, we use the fully annotated images of the Cityscapes

dataset [3]. Note that we do not require any images to have

both stereo image pairs and the ground truth semantic seg-

mentation map. The detail of datasets used in our experi-

ments are given as follow:

Eigen Split Eigen et al. [5] selected 697 images from the

KITTI dataset [7] as test set for single view depth estima-

tion. To fairly compare with the prior works, we followed

their setting to use 22,600 images for training and the rest

for evaluation.

KITTI Split To further recognize the scene understanding

ability of SceneNet, we also evaluate our method on the

KITTI split of KITTI dataset following the work of Godard

et al. [8]. The training set of KITTI split contains 29,000

image pairs from various scenes and 200 images for the test

set. Moreover, the test set not only provides ground truth

disparities, but also comes along with ground truth semantic

segmentation labels, which are consistent with the annota-

tions used in the Cityscapes Dataset. Although no semantic

annotation from KITTI split is utilized during training, it

allows us to evaluate both depth prediction and semantic

segmentation abilities of our model on the test set.

Cityscapes Dataset The Cityscapes Dataset [3] provides

images of urban street scenes that is paired with pixel-

wise segmentation masks. This dataset is used as our only

segmentation data for training SceneNet. The provided

training set contains 2,975 images and the corresponding

ground truth semantic labels. Note that the amount of

training data we used to train SceneNet for semantic seg-

mentation is about 10 times less than the amount used for

depth. As for evaluation, the testing set contains 500 anno-

tated images. To understand the scene as much as possible,

SceneNet uses up to 19 semantic classes, which are com-

monly shared among segmentation works.

4.1. Implementation Details

Network Architecture Our proposed SceneNet is com-

posed of a pair of encoder and decoder modified from

DispNet [17]. As dilated residual networks (DRNs) [24]

has shown promising results, our encoder utilizes dilated

Resnet layers to obtain better scene understanding features.

With the encoder extracts scene representations from the

input image, the task identity t will be appended to these

features. Depending on which task is performed, the values

of the layer are either all 1s or 0s. These features will later

be decoded by our decoder, which is inspired by Godard et

al. [8]. Our decoder uses four skip connections [15] from

the encoder to enhance the resolution of our predictions.
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Table 1: Quantitative results of depth estimation on the Eigen split of KITTI dataset. Following previous works, we

conduct experiments capped at 80/50 meters in depth.

(Lower is better) (Higher is better)

Method cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [27]

80m

0.208 1.768 6.856 0.283 0.678 0.885 0.957

Yang et al. [22] 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Mahjourian et al. [16] 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Yin et al. [23] 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Garg et al. [6] 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Zou et al. [28] 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Godard et al. [8] 0.141 1.186 5.677 0.238 0.809 0.928 0.969

Zhan et al. [25] 0.135 1.132 5.585 0.229 0.820 0.933 0.971

Ours (w/o seg) 0.128 0.996 5.444 0.226 0.820 0.936 0.972

Ours 0.118 0.905 5.096 0.211 0.839 0.945 0.977

Zhou et al. [27]

50m

0.201 1.391 5.181 0.264 0.696 0.900 0.966

Garg et al. [6] 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Yin et al. [23] 0.147 0.936 4.348 0.218 0.810 0.941 0.977

Godard et al. [8] 50m 0.134 0.872 4.305 0.224 0.824 0.937 0.973

Zhan et al. [25] 0.128 0.815 4.204 0.216 0.835 0.941 0.975

Ours (w/o seg) 0.122 0.742 4.103 0.212 0.835 0.944 0.977

Ours 0.112 0.673 3.871 0.198 0.852 0.951 0.980

Also, the outputs of our model are in four different scales

(1, 1

2
, 1

4
, 1

8
) of the input image size. The outputs with

lower resolution are only used for loss calculation. We

also adopt the exponential linear units (ELU) interlaced

with the convolutional layers within our model except

for the prediction layers. At last, the predicted outputs

will be sent through either pixel-wise average pooling or

softmax depending on the task identity t. As a reference,

the proposed SceneNet contains about 15 million trainable

parameters. A more detailed description of our model is

available in the supplementary material.

Training Details We implement the proposed model using

the TensorFlow framework [1]. During training, we resize

the input images to a resolution of 256×512. Data augmen-

tation is also performed to avoid overfitting. To be more

specific, we perform the augmentation (with a fifty percent

chance) by sampling three numbers from uniform distribu-

tions in ranges of [0.8, 1.2], [0.5, 2.0] and [0.8, 1.2] respec-

tively. The sampled numbers will be used to shift gammas,

brightness and three channels of RGB colors respectively.

Our SceneNet is optimized by Adam [11], with the initial

learning rate λ = 1e-4, β1 = 0.9, β2 = 0.999, and ǫ = 1e-

5. The weights for different terms in the objective function

are set as αlr = 0.2, αds = 0.02, αseg = 0.1, αsmooth =

0.2 and αsmooth = 2.0. Since our self-supervising losses

rely on the quality of both depth estimation and semantic

segmentation, we only apply them after both Ldepth and

Lseg start converging. The training procedure requires 32

hours on a single GTX 1080 GPU to train on a total of 22

thousand paired images and 2,975 annotated images for 20

epochs with batch size set as 4. At the inference stage, we

input image I and obtain both d and s by changing the val-

ues in the task identity t. We also input the horizontally

flipped I ′ and obtain the flipped outputs d′, s′. By flipping

back the outputs we obtain d′′, s′′ that aligns with the orig-

inal predictions d, s. For disparity maps, we follow similar

post-processing technique of Godard et al. [8]. As for seg-

mentation maps, we simply take the average of s and s′′ as

our final results.

4.2. Quantitative Results

We first evaluate our model on the testing set of Eigen

split as shown in Table 1. Notice that even without seman-

tic segmentation data, our SceneNet surpasses the state-of-

the-art unsupervised depth estimation. Later in our ablation

study, we verify that this is achieved by addressing the mis-

matching problem as noted in Sect. 3.2.

With the auxiliary semantic annotated data (2,975 im-

ages from Cityscapes), a significant improvement made by

SceneNet can be observed. For more detailed studies on

varying the volume of training data and evaluation over dif-

ferent semantic classes, please refer to the appendix.

4.3. Ablation Study

To verify the impact of each idea we proposed and each

decision we made, we perform ablation studies and list the

results in Table 2, with examples shown in Figures 4 and 5.
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Table 2: Ablation study of our model on the KITTI dataset. The baseline model is SceneNet with separate decoders for

each task. Note that K denotes stereo images from KITTI, and CS denotes semantically annotated images from Cityscapes.

We have HF indicate the use of the proposed horizontally flipping technique to address the mismatching problem, U for the

use of unified classifier, t as task identity, Lsc for left-right semantic consistency, and Lss for semantics-guided disparity

smoothness. In addition to depth estimation, semantic segmentation results in terms of mean Intersection-Over-Union

(mIOU) on both KITTI and Cityscapes are presented.

Method

Depth Segmentation

Data Improvement (Lower is better) (Higher is better) (Higher is better)

K CS HF U t Lsc Lss

Rel RMSE δ < mIOU

Abs / Sq raw / log 1.25 / 1.252 / 1.253 K CS

Godard X 0.117 / 1.177 5.804 / 0.206 0.848 / 0.943 / 0.977 - -

et al.† [8] X X 0.114 / 1.086 5.776 / 0.204 0.849 / 0.944 / 0.977 - -

Baseline

X 0.116 / 1.145 5.762 / 0.208 0.843 / 0.941 / 0.977 - -

X X 0.112 / 1.111 5.812 / 0.204 0.848 / 0.941 / 0.977 - -

X - - - 33.83% 41.36%

X X X 0.112 / 0.999 5.564 / 0.197 0.854 / 0.944 / 0.979 5.45% 47.44%

Ours

X X X X 0.111 / 1.216 5.585 / 0.197 0.855 / 0.945 / 0.979 14.93% 46.81%

X X X X X 0.104 / 0.913 5.286 / 0.185 0.862 / 0.953 / 0.983 39.13% 48.39%

X X X X X X 0.104 / 0.940 5.340 / 0.187 0.863 / 0.952 / 0.982 38.49% 47.81%

X X X X X X 0.104 / 0.913 5.276 / 0.187 0.861 / 0.953 / 0.983 38.95% 48.23%

X X X X X X X 0.102 / 0.890 5.203 / 0.183 0.863 / 0.955 / 0.984 37.69% 47.87%

† Results are better than those reported in the cited paper since we applied the post-processing method [8] for the sake of fairness.

(a) Input Image (b) Baseline Disparity Map

(c) SceneNet Semantic Map (d) SceneNet Disparity Map

Figure 4: Ablation study on depth estimation, the baseline

model is SceneNet trained w/o semantic segmentation. For

the same input image, we can observe that SceneNet is able

produces better depth map ((b)v.s.(d)) with the aid of its

semantic understanding (as demonstrated in (c)), especially

for the traffic light in the figure.

The study is performed on the KITTI split, this allows us to

evaluate the performance of SceneNet on semantic segmen-

tation. The baseline model shares the encoder architecture

with SceneNet but uses a separate decoder for each task.

We first evaluate the contribution and effectiveness of

addressing the mismatching problem with the horizontally

flipping (HF) technique (as noted in Sect. 3.2 and Fig. 3).

(a) Input Image (b) Baseline Semantic Map

(c) SceneNet Disparity Map (d) SceneNet Semantic Map

Figure 5: Ablation study on semantic segmentation, the

baseline model is SceneNet trained w/o depth estimation.

Even though SceneNet targeted on depth estimation, im-

provement over semantic segmentation can still be observed

((b)v.s.(d)) with the aid of geometric understanding, espe-

cially for the vehicles in the figure.

More specifically, we apply the exact network architecture

of Godard et al. [8] with and without using our proposed

HF technique; we also additionally evaluate our architec-

ture without HF (and without segmentation either). We see

that HF successfully addressed the mismatching problem

with satisfactory performances, making our method state-

of-the-art on monocular depth estimation.
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Figure 6: Example results of SceneNet on KITTI split. Leveraging semantic understanding, our model is able to provide clear

and disparity map on smaller objects such as traffic signs and trunk. As the results showed, SceneNet successfully derived a

robust scene representation for depth estimation and semantic segmentation.

Next, it is clear that employing the unified classifier with

task identity not only improves the performance of depth

estimation, but also enables our model to predict satisfying

semantic segmentation on the stereo dataset. This verified

our assumption that using separate classifier limits the ca-

pacity to jointly learn from both tasks. Note that with the

separately trained classifier for each task, the semantic clas-

sifier failed to produce acceptable results on images from

stereo datasets, indicating that it may be overfitting the seg-

mentation dataset without learning robust scene represen-

tation. It is also worth noting that, although our goal is to

advance unsupervised depth estimation with semantic seg-

mentation, results show the fact that segmentation perfor-

mance also benefits from depth estimation by sharing in-

formation through SceneNet. Finally, with each component

of loss functions being gradually added to our architecture,

the full version of our SceneNet is obtained and compared

to others in Table 1.

4.4. Visualization

Examples of the depth and semantic prediction are pro-

vided in Fig. 6, along with the corresponding input and

ground truth from KITTI Split test set. It is apparent that our

SceneNet not only performs favorable results of disparity

prediction, but also provides satisfying quality of semantic

masks in complicated scenes. At last, it is worth mentioning

that we do not require any ground truths of KITTI dataset.

Due to the space limit, please refer to the appendix for more

qualitative results and comparison against prior works.

5. Conclusion

In this paper, we propose SceneNet to address the mis-

matching problem of existing unsupervised depth estima-

tion models. Our model advances depth estimation by lever-

aging semantic segmentation, with our proposed task iden-

tity enables SceneNet to perform both semantic segmenta-

tion and depth estimation with a unified structure. In ad-

dition, our self-supervised regularization (left-right seman-

tic consistency and semantics-guided disparity smoothness)

further allows performance improvements via semantic un-

derstanding. Our SceneNet can be trained in an end-to-

end manner without ground truth depths map and any pre-

trained models; moreover, it can be learned from disjoint

stereo pairs and segmentation datasets without the require-

ment of paired training instances. In our experiments, our

model performed favorably against state-of-the-art methods

on unsupervised depth estimation.
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