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Abstract

We present an unsupervised learning approach to re-

cover 3D human pose from 2D skeletal joints extracted from

a single image. Our method does not require any multi-

view image data, 3D skeletons, correspondences between

2D-3D points, or use previously learned 3D priors during

training. A lifting network accepts 2D landmarks as inputs

and generates a corresponding 3D skeleton estimate. Dur-

ing training, the recovered 3D skeleton is reprojected on

random camera viewpoints to generate new ‘synthetic’ 2D

poses. By lifting the synthetic 2D poses back to 3D and

re-projecting them in the original camera view, we can de-

fine self-consistency loss both in 3D and in 2D. The training

can thus be self supervised by exploiting the geometric self-

consistency of the lift-reproject-lift process. We show that

self-consistency alone is not sufficient to generate realistic

skeletons, however adding a 2D pose discriminator enables

the lifter to output valid 3D poses. Additionally, to learn

from 2D poses ‘in the wild’, we train an unsupervised 2D

domain adapter network to allow for an expansion of 2D

data. This improves results and demonstrates the useful-

ness of 2D pose data for unsupervised 3D lifting. Results on

Human3.6M dataset for 3D human pose estimation demon-

strate that our approach improves upon the previous un-

supervised methods by 30% and outperforms many weakly

supervised approaches that explicitly use 3D data.

1. Introduction

Estimation of 3D human pose from images and videos

is a classical ill-posed inverse problem in computer vision

with numerous applications [12, 17, 28, 31] in human track-

ing, action understanding, human-robot interaction, aug-

mented reality, video gaming, etc. Current deep learning-

based systems attempt to learn a mapping from RGB images

or 2D keypoints to 3D skeleton joints via some form of su-

pervision requiring datasets with known 3D pose. However,

obtaining 3D motion capture data is time-consuming, diffi-

cult, and expensive, and as a result, only a limited amount of

3D data is currently available. On the other hand, 2D image

and video data of humans is available in abundance. How-

ever, unsupervised learning of 3D joint locations from 2D

pose alone remains a holy grail in the field. In this paper, we

take a first step towards achieving this goal and present an

unsupervised learning algorithm to estimate 3D human pose

from 2D pose landmarks/keypoints. Our approach does not

use 3D inputs in any form and does not require 2D-3D cor-

respondences or explicit 3D priors.

Due to perspective projection ambiguity, there exists an

infinite number of 3D skeletons corresponding to a given

2D pose. However, all of these solutions are not physically

plausible given the anthropomorphic constraints and joint

angle limits of a human body articulation. Typically, super-

vised learning with 2D pose and corresponding 3D skele-

tons is used to restrict the solution space. In addition, the

3D structure can also be regularized in a weakly-supervised

manner by using priors such as symmetry, ratio of length of

various skeleton elements, and kinematic constraints, which

are learned from 3D data. In contrast, this paper addresses

the fundamental problem of lifting 2D image coordinates

to 3D space without the use of any additional cues such as

video [43, 54], multi-view cameras [1, 16], or depth im-

ages [35, 40, 52].

We posit that the following properties of the 2D-3D pose

mapping render unsupervised lifting possible: 1) Closure:

If a 2D skeleton is lifted to 3D accurately, and then ran-

domly rotated and reprojected, the resulting 2D skeleton

will lie within the distribution of valid 2D poses. Con-

versely, a lifted 3D skeleton whose random re-projection

falls outside this distribution is likely to be inaccurate. 2)

Invariance: 2D projections of the same 3D skeleton from

different viewpoints, when lifted, should produce the same

3D output. In other words, lifting should be invariant to

change in the viewpoint.

We employ the above properties in designing a deep neu-

ral network, referred to as the lifting network, which is il-

lustrated in Figure 1. We introduce a novel geometrical

consistency loss term that allows the network to learn in

a self-supervised mode. This self-consistency loss relies on

the property of invariance: any 2D projection of the gen-

15714



5715



lying on 2D-3D correspondences. Wang et al. [46] use the

3D ground truth to train an intermediate ranking network to

extract the depth ordering of pairwise human joints from a

single RGB image. Sun et al. [41] use a 3D regression based

on bone segments derived from joint locations as opposed

to directly using joint locations. Since these methods model

2D to 3D mappings from a given dataset, they implicitly

incorporate dataset-specific parameters such as camera pro-

jection matrices, distance of skeleton from the camera, and

scale of skeletons. This enables these models to predict met-

ric position of joints in 3D on similar datasets, but requires

paired 2D-3D correspondences which are difficult to obtain.

Weakly Supervised: Approaches such as [3, 10, 44, 53,

54, 55] do not explicitly use paired 2D-3D correspondences,

but use unpaired 3D data to learn priors on shape (3D ba-

sis) or pose (articulation priors). For example, Zhou et

al. [54] use a 3D pose dictionary to learn pose priors and

Brau et al. [3] employ an independently trained network

that learns a prior distribution over 3D poses (kinematic and

self-intersection priors). Tome et al. [44], Wu et al. [48]

and Tung et al. [11] pre-train low-dimensional representa-

tions from 3D annotations to obtain priors for plausible 3D

poses. Another form of weak supervision is employed by

Ronchi et al. [39], where they train a network using relative

depth ordering of joints to predict 3D pose from images.

Dabral et al. [8] uses supervision of 3D skeletons in con-

junction with anatomical losses based on joint angle limits

and limb symmetry. Rhodin et al. [37] train via 2D data,

using multiple images of a single pose in addition to su-

pervision in using 3D data when available. An adversarial

training paradigm was used by Yang et al. [50] to improve

an existing 3D pose estimation framework, lifting in-the-

wild images with no 3D ground truth and comparing them

to existing 3D skeletons.

Similar to our work, the weakly supervised approach of

Drover et al. [9] also makes use of 2D projections to learn a

3D prior on human pose. However, Drover et al. utilize the

ground-truth 3D points to generate a large amount (12M) of

synthetic 2D joints for training, thus augmenting the orig-

inal 1.5M 2D poses in Human3.6M by almost 10 times.

This allows them to synthetically over-sample the space of

camera variations/angles to learn the 3D priors from those

poses. In contrast, we do not use any ground truth 3D pro-

jection or 3D data in any form. The fact that we can uti-

lize multiple 2D datasets without any 3D supervision sets

us apart from these previous approaches, and enables our

method to exploit the large amount of available 2D pose

data.

Unsupervised: Recently, Rhodin et al. [36] proposed an

unsupervised method to learn a geometry-aware body rep-

resentation. Their approach maps one view of the human to

another view from a set of given multi-view images. It re-

lies on synchronized multi-view images of subjects to learn

an encoding of scene geometry and pose. It also uses video

sequences to observe the same subject at multiple time in-

stants to learn appearance. In contrast, we do not require

multi-view images or the ability to capture the same pose at

multiple time instants. We learn 3D pose from 2D projec-

tions alone. Kudo et al. [23] present 3D error results (130.9

mm) that are comparable to the trivial baseline reported in

[9] (127.3 mm).

Learning Using Adversarial Loss: Generative adver-

sarial learning has emerged as a powerful framework for

modeling complex data distributions, some use it to learn

generative models [13, 15, 56], and [45] leverages it to

synthesize hard examples, etc. Previous approaches have

used adversarial loss for human pose estimation by using

a discriminator to differentiate real/fake 2D poses [6] and

real/fake 3D poses [11, 21]. To estimate 3D, these tech-

niques still require 3D data or use a prior 3D pose models.

In contrast, our approach applies an adversarial loss over

randomly projected 2D poses of the generated 3D skele-

tons. Previous works on image-to-image translation such as

CycleGAN [56] or CyCADA [15] also rely on a cycle con-

sistency loss in the image domain to enable unsupervised

training. However, we use geometric self-consistency and

utilize consistency loss in 3D and 2D joint locations, result-

ing in a novel method for lifting.

3. Unsupervised 2D-3D Lifting

In this section, we describe our unsupervised learning

approach to lift 2D pose to a 3D skeleton. Let xi =
(xi, yi), i = 1 . . . N, denote N 2D pose landmarks of a

skeleton with the root joint (midpoint between hip joints)

located at the origin. Let Xi denote the corresponding 3D

joint for each 2D joint. We assume a camera with unit fo-

cal length centered at the origin (0, 0, 0). Note that because

of the fundamental perspective ambiguity, absolute metric

depths cannot be obtained from a single view. Therefore,

we fix the distance of the skeleton to the camera to a con-

stant c units. In addition, we normalize the 2D skeletons

such that the mean distance from the head joint to the root

joint is 1
c

units in 2D. This ensures that 3D skeleton will

be generated with a scale of ≈ 1 unit (head to root joint

distance).

3.1. Lifting Network

The lifting network G(x) is a neural network that outputs

the 3D joint for each 2D joint.

GθG(x) = X, (1)

where θG are the parameters of the lifter learned during

training. Internally, the lifter estimates the depth offset di
of each joint relative to the fixed plane at c units. The 3D
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joint is computed as Xi = (xizi, yizi, zi), where

zi = max (1, c+ di) . (2)

3.2. Random Projections

The generated 3D skeletons are projected to 2D using

random camera orientations and these 2D poses are sent to

the lifter and discriminator. Let R be a random rotation ma-

trix, created by uniformly sampling an azimuth angle be-

tween [-π, π] and an elevation angle between [-π/9, π/9],

and Xr be the location of the root joint of the generated

skeleton. The rotated 3D skeleton Yi is obtained as

Yi = Q(Xi) = R ∗ (Xi − Xr) + T, (3)

where T = [0, 0, c]. Q represents the rigid transformation

between Y and X. The rotated 3D skeleton Yi is then pro-

jected to create a 2D skeleton yi = P (Yi), where P denotes

perspective projection.

3.3. Self­Supervision via Loop Closure

We now describe the symmetrical lifting and projection

step performed on the synthesized 2D pose, yi. As shown

in Figure 2, we lift the randomly projected pose yi to obtain

Ỹi

Ỹi = GθG(yi). (4)

Ỹi is transformed to X̃i by applying the inverse of rigid

transformation Q that was used while generating the ran-

dom projection yi from Xi. The 3D skeleton X̃i is finally

projected to the 2D skeleton x̃i.

Note that the lifting network G(·) remains the same in

both the forward and backward part of the cycle as illus-

trated in Figure 2. If the lifting network accurately recon-

structs the 3D pose from 2D inputs, then the 3D skele-

tons Yi and Ỹi and the corresponding 2D projections xi
and x̃i should be similar. The cycle described herein pro-

vides a strong signal for self-supervision for the lifting

network, whose loss term can be updated by adding two

additional components, namely, L3D =
∥

∥Y − Ỹ
∥

∥

2
and

L2D = ‖x − x̃‖
2
.

3.4. Discriminator for 2D Poses

The 2D pose discriminator D is a neural network (with

parameters θD) that takes as input a 2D pose and outputs a

probability between 0 and 1. It classifies between real 2D

pose r (target probability of 1) and fake (projected) 2D pose

y (target probability of 0). Note that for any training sample

x for lifter, we do not require r to be same as x or any of it’s

multi-view correspondences. During learning we utilize a

standard GAN loss [13] defined as

min
θG

max
θD

Ladv = E(log(D(r)))+E(log(1−D(y))). (5)

x X Y y real/fake

x̃ X̃ Ỹ

G(x) Q(X) P(Y) D(y)

G(y)P(X̃) Q−1(Ỹ)

Figure 2. Self-supervision achieved by closing the loop between

the generated skeleton Y, its random projection y. The recovered

3D skeleton Ỹ is obtained by lifting y. Upon reversing the geomet-

ric transformations, training can be self-supervised by comparing

x with x̃, and Y with Ỹ.

The discriminator provides feedback to the lifter allowing

it to learn priors on 3D skeletons such as the ratio of limb

lengths and joint angles using only random 2D projections,

thus allowing it to avoid inadequacies as shown in Sect. 4.3.

3.5. Temporal Consistency

Note that our approach does not require video data for

training. However, when available, temporal 2D pose se-

quences (e.g. video sequence of actions) can improve the

accuracy of the single frame lifting network. We exploit

the temporal smoothness via an additional loss function to

refine the lifting network G(·) as shown in Figure 3. We

train an additional discriminator, T (·) that takes as input the

difference of 2D poses adjacent in time. The real data for

this discriminator comes from a sequence of real 2D poses

available during training, rt − rt+1. The discriminator T (·)
is updated to optimize the loss that can distinguish the dis-

tribution of real 2D pose differences from those of the fake

2D (sequential) projections yt − yt+1. Specifically,

max
θT

LT =E(log(T (rt − rt+1)))+

E(log(1− T
(

yt − yt+1)
)

).
(6)

3.6. Learning from 2D Poses in the Wild

To improve the 3D lifting accuracy in the target domain

of interest (e.g. Human 3.6M, xt), we wish to augment 2D

training data from in the wild (e.g. OpenPose joint estimates

on Kinetics dataset, xs). Depending on the choice of 2D

pose extraction algorithms [4, 30, 47], the position and se-

mantics of 2D keypoints can vary greatly from the represen-

tation adopted by the target domain (e.g. center of face vs.

top of the head or side of the hips vs. pelvis).

We train a 2D domain adapter neural network C to map

the source domain 2D joints to target domain 2D joints (see

Figure 4). Let xsc denote the corrected source domain 2D

joints, such that xsc = xs + C(xs). Note that we do not

assume any correspondences between the 2D joints in the

source and target domains. Thus, we cannot train C using

any form of supervised loss. In absence of any supervision,
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4.1. Dataset and Metrics

Human3.6M Dataset: Human3.6M is one of the largest

3D human pose datasets, consisting of 3.6 million 3D hu-

man poses. The dataset contains video and motion capture

(MoCap) data from 5 female and 6 male subjects. Data is

captured from 4 different viewpoints, while subjects per-

form typical activities such as talking on phone, walking,

eating, etc.

MPI-INF-3DHP: The MPI-INF-3DHP [27] is a large hu-

man pose dataset containing >1.3M frames taken from di-

verse viewpoints. The dataset has 4 male and 4 female ac-

tors performing an array of actions similar to but more di-

verse than the Human3.6M dataset.

Kinetics dataset: The Kinetics dataset contains 400 video

clips each for 400 activities involving one or more persons.

The video clips are sourced from Youtube and each clip

is approximately 10 seconds in duration. We did not use

any of the class annotations from the dataset for our train-

ing. Instead, we extracted 2D pose landmarks using Open-

Pose [4] on sampled frames from this dataset. We retained

only those frames in which all the landmarks on a person

were estimated with sufficient confidence. After this filter-

ing, approximately 9 million 2D skeletons were obtained.

Evaluation Metric: We report the Mean Per Joint Posi-

tion Error (MPJPE) in millimeters after scaling and rigid

alignment to the ground truth skeleton. Similar to previ-

ous works [9, 11, 24, 26, 36, 43, 54], we report results on

subjects S9 and S11. Also, following the convention as

in [26, 36], we only use data from subjects S1, S5, S6, S7,

and S8 for training. We do not train class specific mod-

els or leverage any motion information during inference to

improve the results. The reported metrics are taken from

the respective papers for comparisons. We also compare

our method to [27, 53] which uses the adapted Percentage

of Correct Keypoints (PCK) and corresponding Area Under

Curve (AUC) metrics.

4.2. Quantitative Results

We summarize our results for Human3.6M and MPI-

INF-3DHP in Table 1 and Table 2, respectively. In ad-

dition to comparing with the state-of-the-art unsupervised

3D pose estimation method of Rhodin et al. [36], we also

show results from top fully supervised and weakly super-

vised methods. Results from [36] uses images as input and

are hence comparable to Ours(SH) results which use 2D

joints extracted from the same input images using SH de-

tector [30]. Our method reduces error by 30% compared

to [36] (68mm vs. 98.2mm).

Table 3 shows the results of an ablation study on lifter

with various algorithmic components using ground truth

2D points. SS denotes self-consistency (Sect. 3.3), Adv

adds the 2D pose discriminator (Sect. 3.4), DA augments

the training data by adapting 2D poses from Kinetics

Supervision Algorithm Error (mm)

GT IMG

Full Chen et al. [5] 57.5 82.7

Martinez et al. [26] 37.1 52.1

Weak 3DInterpreter [48] 88.6 98.4

AIGN [11] 79.0 97.2

Drover et al. [9] 38.2 64.6

Unsupervised Rhodin et al. [36] - 98.2

Ours 51 68

Table 1. Comparison to the state-of-the-art unsupervised method

of Rhodin et al. [36] on Human3.6M. Comparable metrics for

fully/weakly supervised methods are included for reference. Our

approach outperforms [36] and several weakly supervised ap-

proaches [11, 48] by a significant margin. GT and IMG denote

results using ground truth 2D pose and estimated 2D pose by

SH/CPM [30, 47], respectively.

Supervision Algorithm Trainset PCK AUC

Full Mehta [27] MPI 72.5 36.9

Mehta [27] H36M 64.7 31.7

Weak Zhou [53] H36M 69.2 32.5

Unsupervised Ours MPI 71.1 36.3

Ours H36M 64.3 31.6

Table 2. Our results (14-joint) on MPI-INF-3DHP with metrics

as in Mehta et al. [27]. The proposed unsupervised approach

achieves similar performance as [27] and [53].

Type Ablation Error (mm)

Architecture/ SS 162

Loss Variations SS + Symm 168

Adv 61

Adv+DA 59

Adv+SS 58

Adv+SS+DA 55

Adv+SS+DA+TD 51

Supervised Fine-Tuning 0% 55

with 3D Data 5% 37

Table 3. Ablation studies.The architecture/loss ablations show the

effect of various components on the unsupervised training. Su-

pervised fine-tuning with only 5% of randomly sampled Hu-

man3.6M 3D data gives similar performance as compared to fully-

supervised results of [26].

(Sect. 3.6), and TD leverages temporal cues during training

(Sect. 3.5), when available. As further analyzed in Sect. 4.3,

just using self consistency loss can lead to unrealistic skele-

tons without the additional discriminator. Augmenting our

approach with additional 2D poses obtained from the Ki-

netics dataset (Ours: Adv + SS + DA) further reduces the

error down to 55mm. Lastly, we exploit temporal informa-
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tion during training (Ours: Adv + SS + DA + TD), when

available, to obtain an error of 51mm on Human3.6M. It

should be noted that the inference for the TD experiment

is still done on single frames and the results can be further

improved by applying temporal smoothness techniques on

video sequences.

4.3. Inadequacy of Geometric Self­Supervision

At first glance, it may appear that self supervision is suf-

ficient to learn a good lifter, without the need for a discrim-

inator. However, we found that in absence of the 2D pose

discriminator, network can produce outputs which are ge-

ometrically self-consistent, but not realistic (see Figure 7).

We present an analysis of the 3D outputs that the lifting net-

work can generate with only self-supervision. Specifically,

we examine the ratios of upper to lower arm and leg, both

for the left and right side of human body (4 ratios).

Figure 6 (Left) shows the distribution of the 4 ratios, for

a lifter trained using self-consistency loss alone. Note that

the lifter produces different limb length ratios for the left

and right side of the body. Thus self-consistency loss alone

may not produce symmetric (realistic) skeletons without

any 3D priors. Figure 6 (Middle) shows that after impos-

ing symmetry constraints, the distributions of the left and

right limbs are better aligned. However, the distributions

are flatter since enforcing the same ratios for left and right

sides does not ensure that these ratios are realistic (con-

forming to a human body). In other words, the lifter may

choose different ratios for different training examples. Fig-

ure 6 (Right) shows the distributions when a discriminator

that gives feedback to the lifter using real 2D poses is used.

Notice that the ratio distributions become sharper and closer

to distributions of real ratios in the training set. This is the

reason that using self-supervision loss (SS) alone performs

worse in our ablation studies as shown in Table 1. How-

ever, the self-consistency further improves the performance

in conjunction with 2D pose discriminator (Adv+SS).

Note that we do not use symmetry ratios in our frame-

work when the discriminator is present. Our lifting network

can learn higher order 3D skeleton statistics (beyond sym-

metry) based on the feedback from geometric self consis-

tency and the 2D pose discriminator.

4.4. Semi­supervised 3D Pose Estimation

Other methods have shown improvement in accuracy

when a small amount of 3D data is used for supervised

fine-tuning. We fine tuned our baseline model (from unsu-

pervised training) using 5% of randomly sampled 3D data

available in Human3.6M dataset. With this, our method

could achieve performance comparable to fully supervised

method (37mm) as shown in Table 3.

4.5. Qualitative Results

Figure 8 shows some of the 3D pose reconstruction re-

sults on Human3.6M dataset using our lifting network. The

ground truth 3D skeleton is depicted in gray. Some of the

failures are shown in Figure 9. Most of these can be at-

tributed to self-occlusions or flip ambiguities in viewing di-

rection (for more details see Suppl. materials).

To demonstrate generalization, we show some examples

of 3D skeletons estimated on MPII [2] and the Leeds Sports

Pose (LSP) [20] datasets, in Figures 10 and 11 respectively.

MPII has images extracted from short Youtube videos. LSP

dataset consists of images of sport activities sampled from

Flickr. Our unsupervised method successfully recovers 3D

poses on these datasets without being trained on them.

4.6. Discussion

Previous unsupervised and weakly supervised methods

use additional constraints on training data in lieu of 3D an-

notations. For example, [9, 51] leverage synthetic 2D poses

obtained from known 3D skeletons to improve results. Sim-

ilarly, Rhodin et al. [36] derive an appearance and geo-

metric model by choosing different frames from temporal

sequences and multi-view images involving the same per-

son. However, in theory, if multi-view images from syn-

chronized cameras are available, one could triangulate the

detected 2D joints to get 3D joints and train a supervised

network. In contrast, our method treats each 2D skeleton

as an individual training example, without requiring any

multi-view correspondence. Hence, there is no restriction

on where the 2D input pose originates; it could be obtained

from a single image, video, or multi-view sequences. Our

work explores the innate geometry of human pose itself,

whereas [36] exploits the consistency in camera geome-

try and appearance of specific individuals. As shown in

Sect. 4.2, our approach is able to augment the training data

from other datasets (e.g. Kinetics) with 2D skeletons cap-

tured in the wild.

Our current approach cannot handle occluded/missing

joints during training or testing phases. This limits the

amount of external domain data that can be used for train-

ing. For example, using OpenPose on Kinetics dataset re-

sults in 17M skeletons with at least 10 joints, but only 9M

complete skeletons (14 joints). Though not the main focus

of the paper, we did a small experiment to fill-in missing

joints to further augment our training data. We trained a

two-layer fully connected neural network which takes in-

complete OpenPose 2D pose estimates on Human3.6M im-

ages as input and outputs completed 14 joints. The network

was trained using the corresponding 2D ground-truth joints

from Human3.6M in a supervised manner. Using the com-

pleted poses (17M skeletons) from the Kinetic dataset, our

method achieved a MPJPE of 48mm on Human3.6M test

data. This experiment further underscores the importance
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