
A Bayesian Perspective on the Deep Image Prior

Zezhou Cheng Matheus Gadelha Subhransu Maji Daniel Sheldon

University of Massachusetts, Amherst

{zezhoucheng, mgadelha, smaji, sheldon}@cs.umass.edu

Abstract

The deep image prior [26] was recently introduced as a

prior for natural images. It represents images as the output

of a convolutional network with random inputs. For “in-

ference”, gradient descent is performed to adjust network

parameters to make the output match observations. This

approach yields good performance on a range of image re-

construction tasks. We show that the deep image prior is

asymptotically equivalent to a stationary Gaussian process

prior in the limit as the number of channels in each layer of

the network goes to infinity, and derive the corresponding

kernel. This informs a Bayesian approach to inference. We

show that by conducting posterior inference using stochas-

tic gradient Langevin dynamics we avoid the need for early

stopping, which is a drawback of the current approach, and

improve results for denoising and impainting tasks. We il-

lustrate these intuitions on a number of 1D and 2D signal

reconstruction tasks.

1. Introduction

It is well known that deep convolutional networks trained

on large datasets provide a rich hierarchical representa-

tion of images. Surprisingly, several works have shown

that convolutional networks with random parameters can

also encode non-trivial image properties. For example,

second-order statistics of filter responses of random convo-

lutional networks are effective for style transfer and synthe-

sis tasks [27]. On small datasets, features extracted from

random convolutional networks can work just as well as

trained networks [24]. Along these lines, the “deep im-

age prior” proposed by Ulyanov et al. [26] showed that the

output of a suitably designed convolutional network on ran-

dom inputs tends to be smooth and induces a natural image

prior, so that the search over natural images can be replaced

by gradient descent to find network parameters and inputs

to minimize a reconstruction error of the network output.

Code and supplementary materials are available at https://

people.cs.umass.edu/˜zezhoucheng/gp-dip

Remarkably, no prior training is needed and the method op-

erates by initializing the parameters randomly.

Our work provides a novel Bayesian view of the deep

image prior. We prove that a convolutional network with

random parameters operating on a stationary input, e.g.,

white noise, approaches a two-dimensional Gaussian pro-

cess (GP) with a stationary kernel in the limit as the num-

ber of channels in each layer goes to infinity (Theorem 1).

While prior work [19, 31, 18, 3, 20] has investigated the

GP behavior of infinitely wide networks and convolutional

networks, our work is the first to analyze the spatial covari-

ance structure induced by a convolutional network on sta-

tionary inputs. We analytically derive the kernel as a func-

tion of the network architecture and input distribution by

characterizing the effects of convolutions, non-linearities,

up-sampling, down-sampling, and skip connections on the

spatial covariance. These insights could inform choices of

network architecture for designing 1D or 2D priors.

We then use a Bayesian perspective to address draw-

backs of current estimation techniques for the deep image

prior. Estimating parameters in a deep network from a sin-

gle image poses a huge risk of overfitting. In prior work

the authors relied on early stopping to avoid this. Bayesian

inference provides a principled way to avoid overfitting by

adding suitable priors over the parameters and then using

posterior distributions to quantify uncertainty. However,

posterior inference with deep networks is challenging. One

option is to compute the posterior of the limiting GP. For

small networks with enough channels, we show this closely

matches the deep image prior, but is computationally ex-

pensive. Instead, we conduct posterior sampling based on

stochastic gradient Langevin dynamics (SGLD) [28], which

is both theoretically well founded and computationally ef-

ficient, since it is based on standard gradient descent. We

show that posterior sampling using SGLD avoids the need

for early stopping and performs better than vanilla gradient

descent on image denoising and inpainting tasks (see Fig-

ure 1). It also allows us to systematically compute variances

of estimates as a measure of uncertainty. We illustrate these

ideas on a number of 1D and 2D reconstruction tasks.

5443

101 102 103 104 105
Iteration (log scale)

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

SGD, 2 = 0
SGLD, 2 = 0
SGD, 2 = 0.01
SGLD, 2 = 0.01

0.000 0.005 0.010
2

0.000

0.002

0.004

0.006

0.008

M
SE

SGLD
SGD

(a) MSE vs. Iteration (b) Final MSE vs. σ2 (c) Inferred mean (d) Inferred variance
Figure 1. (Best viewed magnified.) Denoising and inpainiting results with the deep image prior. (a) Mean Squared Error (MSE) of the

inferred image with respect to the noisy input image as a function of iteration for two different noise levels. SGD converges to zero MSE

resulting in overfitting while SGLD roughly converges to the noise level in the image. This is also illustrated in panel (b) where we plot

the MSE of SGD and SGLD as a function of the noise level σ2 after convergence. See Section 5.2.1 for implementation details. (c) An

inpainting result where parts of the image inside the blue boundaries are masked out and inferred using SGLD with the deep image prior.

(d) An estimate of the variance obtained from posterior samples visualized as a heat map. Notice that the missing regions near the top left

have lower variance as the area is uniform.

2. Related work

Image priors. Our work analyzes the deep image prior [26]

that represents an image as a convolutional network f with

parameters θ on input x. Given a noisy target y the de-

noised image is obtained by minimizing the reconstruction

error ‖y − f(x; θ)‖ over x and θ. The approach starts from

an initial value of x and θ drawn i.i.d. from a zero mean

Gaussian distribution and optimizes the objective through

gradient descent, relying on early stopping to avoid overfit-

ting (see Figure 1). Their approach showed that the prior is

competitive with state-of-the-art learning-free approaches,

such as BM3D [6], for image denoising, super resolution,

and inpainting tasks. The prior encodes hierarchical self-

similarities that dictionary-based approaches [21] and non-

local techniques such as BM3D and non-local means [4] ex-

ploit. The architecture of the network plays a crucial role:

several layer networks were used for inpainting tasks, while

those with skip connections were used for denoising. Our

work shows that these networks induce priors that corre-

spond to different smoothing “scales”.

Gaussian processes (GPs). A Gaussian processes is an in-

finite collection of random variables for which any finite

subset are jointly Gaussian distributed [23]. A GP is com-

monly viewed as a prior over functions. Let T be an in-

dex set (e.g., T = R or T = R
d) and let µ(t) be a real-

valued mean function and K(t, t′) be a non-negative defi-

nite kernel or covariance function on T . If f ∼ GP (µ,K),
then, for any finite number of indices t1, . . . , tn ∈ T , the

vector (f(ti))
n
i=1

is Gaussian distributed with mean vec-

tor (µ(ti))
n
i=1

and covariance matrix (K(ti, tj))
n
i,j=1

. GPs

have a long history in spatial statistics and geostatistics [17].

In ML, interest in GPs was motivated by their connec-

tions to neural networks (see below). GPs can be used

for general-purpose Bayesian regression [31, 22], classifi-

cation [30], and many other applications [23].

Deep networks and GPs. Neal [19] showed that a two-

layer network converges to a Gaussian process as its width

goes to infinity. Williams [29] provided expressions for the

covariance function of networks with sigmoid and Gaussian

transfer functions. Cho and Saul [5] presented kernels for

the ReLU and the Heaviside step non-linearities and inves-

tigated their effectiveness with kernel machines. Recently,

several works [13, 18] have extended these results to deep

networks and derived covariance functions for the resulting

GPs. Similar analyses have also been applied to convolu-

tional networks. Garriaga-Alonso et al. [9] investigated the

GP behavior of convolutional networks with residual lay-

ers, while Borovykh [3] analyzed the covariance functions

in the limit when the filter width goes to infinity. Novak et

al. [20] evaluated the effect of pooling layers in the result-

ing GP. Much of this work has been applied to prediction

tasks, where given a dataset D = {(xi, yi)}ni=1
, a covari-

ance function induced by a deep network is used to esti-

mate the posterior p(y|x,D) using standard GP machinery.

In contrast, we view a convolutional network as a spatial

random process over the image coordinate space and study

the induced covariance structure.

Bayesian inference with deep networks. It has long

been recognized that Bayesian learning of neural networks

weights would be desirable [15, 19], e.g., to prevent overfit-

ting and quantify uncertainty. Indeed, this was a motivation

in the original work connecting neural networks and GPs.

Performing MAP estimation with respect to a prior on the

weights is computationally straightforward and corresponds

to regularization. However, the computational challenges

of full posterior inference are significant. Early works used

MCMC [19] or the Laplace approximation [7, 15] but were

much slower than basic learning by backpropagation. Sev-

eral variational inference (VI) approaches have been pro-

posed over the years [12, 1, 10, 2]. Recently, dropout

was shown to be a form of approximate Bayesian infer-

ence [8]. The approach we will use is based on stochas-

tic gradient Langevin dynamics (SGLD) [28], a general-

purpose method to convert SGD into an MCMC sampler

by adding noise to the iterates. Li et al. [14] describe a pre-

5444

conditioned SGLD method for deep networks.

3. Limiting GP for Convolutional Networks

Previous work focused on the covariance of (scalar-

valued) network outputs for two different inputs (i.e., im-

ages). For the deep image prior, we are interested in the

spatial covariance structure within each layer of a convo-

lutional network. As a basic building block, we consider

a multi-channel input image X transformed through a con-

volutional layer, an elementwise non-linearity, and then a

second convolution to yield a new multi-channel “image”

Z, and derive the limiting distribution of a representative

channel z as the number of input channels and filters go to

infinity. First, we derive the limiting distribution when X
is fixed, which mimics derivations from previous work. We

then let X be a stationary random process, and show how

the spatial covariance structure propagates to z, which is our

main result. We then apply this argument inductively to an-

alyze multi-layer networks, and also analyze other network

operations such as upsampling, downsampling, etc.

3.1. Limiting Distribution for Fixed X

For simplicity, consider an image X ∈ R
c×T with c

channels and only one spatial dimension. The derivations

are essentially identical for two or more spatial dimensions.

The first layer of the network has H filters denoted by

U = (u1, u2, . . . uH) where uk ∈ R
c×d and the second

layer has one filter v ∈ R
H (corresponding to a single chan-

nel of the output of this layer). The output of this network

is:

z = v ∗ h(X ∗ U) =
H
∑

k=1

vkh(X ∗ uk).

The output z = (z(1), z(2), . . . , z(T ′)) also has one spatial

dimension. Following [19, 29] we derive the distribution of

z when U ∼ N(0, σ2
uI) and v ∼ N(0, σ2

vI). The mean is

E[z(t)] = E

[

H
∑

k=1

vkh ((X ∗ uk)(t))

]

= E





H
∑

k=1

vkh





c,d
∑

i=1,j=1

x(i, t+ 1− j)uk(i, j)







 .

By linearity of expectation and independence of u and v,

E[z(t)] =

H
∑

k=1

E[vk]E [h ((X ∗ uk)(t))] = 0,

since v has a mean of zero. The central limit theorem (CLT)

can be applied when h is bounded to show that z(t) ap-

proaches in distribution to a Gaussian as H → ∞ and σ2
v is

scaled as 1/H . Note that u and v don’t need to be Gaussian

for the CLT to apply, but we will use this property to derive

the covariance. This is given by

Kz(t1, t2) = E[z(t1)z(t2)]

= E

[

H
∑

k=1

v2kh
(

(X ∗ uk)(t1)
)

h
(

(X ∗ uk)(t2)
)

]

= Hσ2

vE
[

h
(

(X ∗ u1)(t1)
)

h
(

(X ∗ u1)(t2)
)]

.

The last two steps follow from the independence of u and

v and that v is drawn from a zero mean Gaussian. Let

x̄(t) = vec ([X(:, t), X(:, t− 1), . . . , X(:, t− d+ 1)]) be

the flattened tensor with elements within the window of size

d at position t of X . Similarly denote ū = vec(u). Then

the expectation can be written as

Kz(t1, t2) = Hσ2

vEu

[

h(x̄(t1)
T ū)h(x̄(t2)

T ū)
]

. (1)

Williams [29] showed V (x, y) = Eu

[

h(xTu)h(yTu)
]

can

be computed analytically for various transfer functions. For

example, when h(x) = erf(x) = 2/
√
π
∫ x

0
e−s2ds, then

Verf(x, y) =
2

π
sin−1

xTΣy
√

(xTΣx) (yTΣy)
. (2)

Here Σ = σ2
I is the covariance of u. Williams also de-

rived kernels for the Gaussian transfer function h(x, u) =
exp{−(x−u)T (x−u)/2σ2}. For the ReLU non-linearity,

i.e., h(t) = max(0, t), Cho and Saul [5] derived the expec-

tation as:

Vrelu(x, y) =
1

2π
‖x‖‖y‖

(

sin θ + (π − θ) cos θ
)

, (3)

where θ = cos−1

(

xT y
‖x‖‖y‖

)

. We refer the reader to [5, 29]

for expressions corresponding to other transfer functions.

Thus, letting σ2
v scale as 1/H and H → ∞ and for any

input X , the output z of our basic convolution-nonlinearity-

convolution building block converges to a Gaussian distri-

bution with zero mean and covariance

Kz(t1, t2) = V (x̄(t1), x̄(t2)) . (4)

3.2. Limiting Distribution for Stationary X

We now consider the case when channels of X are drawn

i.i.d. from a stationary distribution. A signal x is stationary

(in the weak- or wide-sense) if the mean is position invariant

and the covariance is shift invariant, i.e.,

mx = E[x(t)] = E[x(t+ τ)], ∀τ (5)

and

Kx(t1, t2) = E[(x(t1)−mx)(x(t2)−mx)]

= Kx(t1 − t2), ∀t1, t2.
(6)

An example of a stationary distribution is white noise

where x(i) is i.i.d. from a zero mean Gaussian distribu-

tion N(0, σ2) resulting in a mean mx = 0 and covariance

Kx(t1, t2) = σ2
1[t1 = t2]. Note that the input for the deep

image prior is drawn from this distribution.

5445

Theorem 1. Let each channel of X be drawn independently

from a zero mean stationary distribution with covariance

function Kx. Then the output of a two-layer convolutional

network with the sigmoid non-linearity, i.e., h(t) = erf(t),
converges to a zero mean stationary Gaussian process as

the number of input channels c and filters H go to infinity

sequentially. The stationary covariance Kz is given by

Kerf

z (t1, t2) = Kz(r) =
2

π
sin−1

Kx(r)

Kx(0)
.

where r = t2 − t1.

The full proof is included in the supplementary mate-

rial and is obtained by applying the continious mapping

thorem [16] on the formula for the sigmoid non-linearity.

The theorem implies that the limiting distribution of Z is a

stationary GP if the input X is stationary.

Lemma 1. Assume the same conditions as Theorem 1 ex-

cept the non-linearity is replaced by ReLU. Then the output

converges to a zero mean stationary Gaussian process with

covariance Kz

Krelu

z (t1, t2) =
Kx(0)

2π

(

sin θxt1,t2+(π−θxt1,t2) cos θ
x
t1,t2

)

,

(7)

where θxt1,t2 = cos−1 (Kx(t1, t2)/Kx(0)). In terms of the

angles we get the following:

cos θzt1,t2 =
1

π

(

sin θxt1,t2 + (π − θxt1,t2) cos θ
x
t1,t2

)

.

This can be proved by applying the recursive formula for

ReLU non-linearity [5]. One interesting observation is that,

for both non-linearities, the output covariance Kz(r) at a

given offset r only depends on the input covariance Kx(r)
at the same offset, and on Kx(0).

Two or more dimensions. The results of this section hold

without modification and essentially the same proofs for in-

puts with c channels and two or more spatial dimensions by

letting t1, t2, and r = t2 − t1 be vectors of indices.

3.3. Beyond Two Layers

So far we have shown that the output of our basic two-

layer building block converges to a zero mean stationary

Gaussian process as c → ∞ and then H → ∞. Below we

discuss the effect of adding more layers to the network.

Convolutional layers. A proof of GP convergence for deep

networks was presented in [18], including the case for trans-

fer functions that can be bounded by a linear envelope, such

as ReLU. In the convolutional setting, this implies that the

output converges to GP as the number of filters in each

layer simultaneously goes to infinity. The covariance func-

tion can be obtained by recursively applying Theorem 1 and

Lemma 1; stationarity is preserved at each layer.

Bias term. Our analysis holds when a bias term b sampled

from a zero-mean Gaussian is added, i.e., zbias = z + b. In

this case the GP is still zero-mean but the covariance func-

tion becomes: Kbias
z (t1, t2) = σ2

b + Kz(t1, t2), which is

still stationary.

Upsampling and downsampling layers. Convolutional

networks have upsampling and downsampling layers to in-

duce hierarchical representations. It is easy to see that

downsampling (decimating) the signal preserves stationar-

ity since K↓
x(t1, t2) = Kx(τt1, τ t2) where τ is the down-

sampling factor. Downsampling by average pooling also

preserves stationarity. The resulting kernel can be obtained

by applying a uniform filter corresponding to the size of the

pooling window, which results in a stationary signal, fol-

lowed by downsampling. However, upsampling in general

does not preserve stationarity. Therrien [25] describes the

conditions under which upsampling a signal with a linear

filter maintains stationarity. In particular, the upsampling

filter must be band limited, such as the sinc filter: sinc(x) =
sin(x)/x. If stationarity is preserved the covariance in the

next layer is given by K↑
x(t1, t2) = Kx(t1/τ, t2/τ).

Skip connections. Modern convolutional networks have

skip connections where outputs from two layers are added

Z = X+Y or concatenated Z = [X;Y]. In both cases if X
and Y are stationary GPs so is Z. See [9] for a discussion.

4. Bayesian Inference for Deep Image Prior

Let’s revisit the deep image prior for a denoising task.

Given an noisy image ŷ the deep image prior solves

min
θ,x

||ŷ − f(x, θ)||22,

where x is the input and θ are the parameters of an appro-

priately chosen convolutional network. Both x and θ are

initialized randomly from a prior distribution. Optimization

is performed using stochastic gradient descent (SGD) over

x and θ (optionally x is kept fixed) and relying on early

stopping to avoid overfitting (see Figures 1 and 2). The de-

noised image is obtained as y∗ = f(x∗, θ∗).

The inference procedure can be interpreted as a max-

imum likelihood estimate (MLE) under a Gaussian noise

model: ŷ = y+ǫ, where ǫ = N(0, σ2
nI). Bayesian inference

suggests we add a suitable prior p(x, θ) over the parameters

and reconstruct the image by integrating the posterior, to

get y∗ =
∫

p(x, θ | ŷ)f(x, θ)dxdθ, The obvious compu-

tational challenge is computing this posterior average. An

intermediate option is maximum a posteriori (MAP) infer-

ence where the argmax of the posterior is used. However

both MLE and MAP do not capture parameter uncertainty

and can overfit to the data.

In standard MCMC the integral is replaced by a sam-

ple average of a Markov chain that converges to the true

posterior. However convergence with MCMC techniques is

generally slower than backpropagation for deep networks.

Stochastic gradient Langevin dyanamics (SGLD) [28] pro-

5446

0 5K 10K 15K 20K
Iteration

20

22

24

26

28

30

PS
NR

 (d
B)

SGD
SGD+Avg

SGD+WD
SGD+Input

SGD+Input+Avg
SGLD

SGLD Avg w.r.t. Iters
SGLD Avg

Figure 2. The PSNR curve for different learning methods on the

“peppers” image of Figure 1. The SGD and its variants use early

stopping to avoid overfitting. MAP inference by adding a prior

term (WD: weight decay) shown as the black curve doesn’t avoid

overfitting. Moving averages (dashed lines) and adding noise to

the input improves performance. By contrast, samples from SGLD

after “burn-in” remains stable and the posterior mean improves

over the highest PSNR of the other approaches.

vides a general framework to derive an MCMC sampler

from SGD by injecting Gaussian noise to the gradient up-

dates. Let w = (x, θ). The SGLD update is:

∆w =
ǫ

2

(

∇w log p(ŷ | w) +∇w log p(w)
)

+ ηt

ηt ∼ N(0, ǫ).
(8)

where ǫ is the step size. Under suitable conditions, e.g.,
∑

ǫt = ∞ and
∑

ǫ2t < ∞ and others, it can be shown

that w1, w2, . . . converges to the posterior distribution. The

log-prior term is implemented as weight decay.

Our strategy for posterior inference with the deep image

prior thus adds Gaussian noise to the gradients at each step

to estimate the posterior sample averages after a “burn in”

phase. As seen in Figure 1(a), due to the Gaussian noise

in the gradients, the MSE with respect to the noisy image

does not go to zero, and converges to a value that is close

to the noise level as seen in Figure 1(b). It is also important

to note that MAP inference alone doesn’t avoid overfitting.

Figure 2 shows a version where weight decay is used to reg-

ularize parameters, which also overfits to the noise. Further

experiments with inference procedures for denoising are de-

scribed in Section 5.2.

5. Experiments

5.1. Toy examples

We first study the effect of the architecture and input dis-

tribution on the covariance function of the stationary GP

using 1D convolutional networks. We consider two archi-

tectures: (1) AutoEncoder: where d conv + downsampling

blocks are followed by d conv + upsampling blocks, and (2)

Conv: where convolutional blocks without any upsampling

or downsampling. We use ReLU non-linearity after each

conv layer in both cases. We also vary the input covariance

Kx. Each channel of X is first sampled iid from a zero-

mean Gaussian with a variance σ2. A simple way to obtain

inputs with a spatial covariance Kx equal to a Gaussian with

standard deviation σ is to then spatially filter channels of X
with a Gaussian filter with standard deviation

√
2σ.

Figure 3 shows the covariance function cos θt1,t2 =
Kz(t1 − t2)/Kz(0), induced by varying the σ and depth d
of the two architectures (Figure 3a-b). We empirically esti-

mated the covariance function by sampling many networks

and inputs from the prior distribution. The covariance func-

tion for the convolutional-only architecture is also calcu-

lated using the recursion in Equation 7. For both architec-

tures increasing σ and d introduce longer-range spatial co-

variances. For the auto-encoder upsampling induces longer-

range interactions even when σ is zero shedding some light

on the role of upsampling in the deep image prior. Our net-

work architectures have 128 filters, even so, the match be-

tween the empirical covariance and the analytic one is quite

good as seen in Figure 3(b).

Figure 3(c) shows samples drawn from the prior of the

convolutional-only architecture. Figure 3(d) shows the

posterior mean and variance with SGLD inference where

we randomly dropped 90% of the data from a 1D signal.

Changing the covariance influences the mean and variance

which is qualitatively similar to choosing the scale of sta-

tionary kernel in the GP: larger scales (bigger input σ or

depth) lead to smoother interpolations.

5.2. Natural images

Throughout our experiments we adopt the network archi-

tecture reported in [26] for image denoising and inpainting

tasks for a direct comparison with their results. These ar-

chitectures are 5-layer auto-encoders with skip-connections

and each layer contains 128 channels. We consider images

from the standard image reconstruction datasets [6, 11]. For

inference we use a learning rate of 0.01 for image denoising

and 0.001 for image inpainting. We compare the following

inference schemes:

1. SGD+Early: Vanilla SGD with early stopping.

2. SGD+Early+Avg: Averaging the predictions with ex-

ponential sliding window of the vanilla SGD.

3. SGD+Input+Early: Perturbing the input x with an

additive Gaussian noise with mean zero and standard

deviation σp at each learning step of SGD.

4. SGD+Input+Early+Avg: Averaging the predictions

of the earlier approach with a exponential window.

5. SGLD: Averaging after burn-in iterations of posterior

samples with SGLD inference.

5447

100 0 100
t1 t2 (d= 3)

0.90

0.95

1.00

co
s

t 1
,t

2
=0 =20 =60 =120

100 0 100
t1 t2 (d= 4)

0.70

0.85

1.00

co
s

t 1
,t

2

= 0 = 10 = 15 = 60

0 50 100
input, x

0.4

0.2

0.0

0.2

0.4

ou
tp

ut
, f

(x
)

 = 2, d = 1

0 50 100
input, x

1.0

0.5

0.0

0.5

1.0

ou
tp

ut
, f

(x
)

=2, d=1

100 0 100
t1 t2 (= 0)

0.96

0.97

0.98

0.99

1.00

co
s

t 1
,t

2

d=3 d=4 d=5 d=6

100 0 100
t1 t2 (= 2)

0.3

0.6

0.9
co

s
t 1

,t
2

d= 1 d= 2 d= 3 d= 4

0 50 100
input, x

0.4

0.2

0.0

0.2

0.4

ou
tp

ut
, f

(x
)

 = 15, d = 4

0 50 100
input, x

1.0

0.5

0.0

0.5

1.0

ou
tp

ut
, f

(x
)

=15, d=4

(a) cos θt1,t2 (AE) (b) cos θt1,t2 (Conv) (c) Prior (d) Posterior

Figure 3. Priors and posterior with 1D convolutional networks. The covariance function cos θt1,t2 = K(t1 − t2)/K(0) for the (a)

AutoEncoder and (b) Conv architectures estimated empirically for different values of depth and input covariance. For the Conv architecture

we also compute the covariance function analytically using recursion in Equation 7 shown as dashed lines in panel (b). The empirical

estimates were obtained with networks with 256 filters. The agreement is quite good for small values of sigma. For larger offsets the

convergence towards a Gaussian is approximate. Panel (c) shows samples from the prior of the Conv architecture with two different

configurations, and panel (d) shows the posterior means and variances estimated using SGLD.

We manually set the stopping iteration in the first four

schemes to one with essentially the best reconstruction error

— note that this is an oracle scheme and cannot be imple-

mented in real reconstruction settings. For image denois-

ing task, the stopping iteration is set as 500 for the first two

schemes, and 1800 for the third and fourth methods. For im-

age inpainting task, this parameter is set as 5000 and 11000

respectively.

The third and fourth variants were described in the sup-

plementary material of [26] and in the released codebase.

We found that injecting noise to the input during inference

consistently improves results. However, as observed in [26],

regardless of the noise variance σp, the network is able to

drive the objective to zero, i.e., it overfits to the noise. This

is also illustrated in Figure 1 (a-b).

Since the input x can be considered as part of the pa-

rameters, adding noise to the input during inference can be

thought of as approximate SGLD. It is also not beneficial

to optimize x in the objective and is kept constant (though

adding noise still helps). SGLD inference includes adding

noise to all parameters, x and θ, sampled from a Gaus-

sian distribution with variance scaled as the learning rate

η, as described in Equation 4. We used 7K burn-in itera-

tions and 20K training iterations for image denoising task,

20K and 30K for image inpainting tasks. Running SGLD

longer doesn’t improve results further. The weight-decay

hyper-parameter for SGLD is set inversely proportional to

the number of pixels in the image and equal to 5e-8 for a

1024×1024 image. For the baseline methods, we did not

use weight decay, which, as seen in Figure 2, doesn’t influ-

ence results for SGD.

5.2.1 Image denoising

We first consider the image denoising task using various in-

ference schemes. Each method is evaluated on a standard

dataset for image denoising [6], which consists of 9 colored

images corrupted with noise of σ = 25 .

Figure 2 presents the peak signal-to-noise ratio (PSNR)

values with respect to the clean image over the optimiza-

tion iterations. This experiment is on the “peppers” image

from the dataset as seen in Figure 1. The performance of

SGD variants (red, black and yellow curves) reaches a peak

but gradually degrades. By contrast, samples using SGLD

(blue curves) are stable with respect to PSNR, alleviating

the need for early stopping. SGD variants benefit from ex-

ponential window averaging (dashed red and yellow lines),

which also eventually overfits. Taking the posterior mean

after burn in with SGLD (dashed blue line) consistently

achieves better performance. The posterior mean at 20K

iteration (dashed blue line with markers) achieves the best

performance among the various inference methods.

Figure 4 shows a qualitative comparison of SGD with

early stopping to the posterior mean of SGLD, which con-

tains fewer artifacts. More examples are available in the

supplementary material. Table 1 shows the quantitative

comparisons between the SGLD and the baselines. We

run each method 10 times and report the mean and stan-

dard deviations. SGD consistently benefits from perturbing

the input signal with noise-based regularization, and from

moving averaging. However, as noted, these methods still

have to rely on early stopping, which is hard to set in prac-

tice. By contrast, SGLD outperforms the baseline methods

across all images. Our reported numbers (SGD + Input +

5448

Input SGD (28.38) SGLD (30.82)
Figure 4. Image denoising results. Denoising the input noisy im-

age with SGD and SGLD inference.

Early + Avg) are similar to the single-run results reported in

prior work (30.44 PSNR compared to ours of 30.33±0.03

PSNR.) SGLD improves the average PNSR to 30.81. As a

reference, BM3D [6] obtains an average PSNR of 31.68.

5.2.2 Image inpainting

For image inpainting we experiment on the same task

as [26] where 50% of the pixels are randomly dropped. We

evaluate various inference schemes on the standard image

inpainting dataset [11] consisting of 11 grayscale images.

Table 2 presents a comparison between SGLD and the

baseline methods. Similar to the image denoising task, the

performance of SGD is improved by perturbing the input

signal and additionally by averaging the intermediate sam-

ples during optimization. SGLD inference provides addi-

tional improvements; it outperforms the baselines and im-

proves over the results reported in [26] from 33.48 to 34.51

PSNR. Figure 5 shows qualitative comparisons between

SGLD and SGD. The posterior mean of SGLD has fewer

artifacts than the best result generated by SGD variants.

Besides gains in performance, SGLD provides estimates

of uncertainty. This is visualized in Figure 1(d). Ob-

serve that uncertainty is low in missing regions that are sur-

rounded by areas of relatively uniform appearance such as

the window and floor, and higher in non-uniform areas such

as those near the boundaries of different object in the image.

5.3. Equivalence between GP and DIP

We compare the deep image prior (DIP) and its Gaussian

process (GP) counterpart, both as prior and for posterior in-

ference, and as a function of the number of filters in the

network. For efficiency we used a U-Net architecture with

two downsampling and upsampling layers for the DIP.

(a) DIP prior samples (b) GP prior samples

The above figure shows two samples each drawn from

the DIP (with 256 channels per layer) and GP with the

equivalent kernel. The samples are nearly identical sug-

gesting that the characterization of the DIP as a stationary

GP also holds for 2D signals. Next, we compare the DIP

and GP on an inpainting task shown in Figure 6. The im-

age size here is 64×64. Figure 6 top (a) shows the RBF

and DIP kernels as a function of the offset. The DIP kernels

are heavy tailed in comparison to Gaussian with support at

larger length scales. Figure 6 bottom (a) shows the per-

formance (PSNR) of the DIP as a function of the number

of channels from 16 to 512 in each layer of the U-Net, as

well as of a GP with the limiting DIP kernel. The PSNR of

the DIP approaches the GP as the number of channels in-

creases suggesting that for networks of this size 256 filters

are enough for the asymptotic GP behavior. Figure 6 (d-e)

show that a GP with the DIP kernel is more effective than

one with the RBF kernel, suggesting that the long-tail DIP

kernel is better suited for modeling natural images.

While DIPs are asymptotically GPs, the SGD optimiza-

tion may be preferable because GP inference is expensive

for high-resolution images. The memory usage is O(n2)
and running time is O(n3) for exact inference where n is

the number of pixels (e.g., a 500×500 image requires 233

GB memory). The DIP’s memory footprint, on the other

hand, scales linearly with the number of pixels, and infer-

ence with SGD is practical and efficient. This emphasizes

the importance of SGLD, which addresses the drawbacks

of vanilla SGD and makes the DIP more robust and effec-

tive. Finally, while we showed that the prior distribution

induced by the DIP is asymptotically a GP and the posterior

estimated by SGD or SGLD matches the GP posterior for

small networks, it remains an open question if the posterior

matches the GP posterior for deeper networks.

6. Conclusion

We presented a novel Bayesian view of the deep image

prior, which parameterizes a natural image as the output of

a convolutional network with random parameters and a ran-

dom input. First, we showed that the output of a random

convolutional network converges to a stationary zero-mean

GP as the number of channels in each layer goes to infin-

ity, and showed how to calculate the realized covariance.

This characterized the deep image prior as approximately

a stationary GP. Our work differs from prior work relating

GPs and neural networks by analyzing the spatial covari-

ance of network activations on a single input image. We

then use SGLD to conduct fully Bayesian posterior infer-

ence in the deep image prior, which improves performance

and prevents the need for early stopping. Future work can

further investigate the types of kernel implied by convolu-

tional networks to better understand the deep image prior

and the inductive bias of deep convolutional networks in

learning applications.

Acknowledgement This research was supported in part

by NSF grants #1749833, #1749854, and #1661259, and

the MassTech Collaborative for funding the UMass GPU

cluster.

5449

Table 1. Image denoising task. Comparison of various inference schemes with the deep image prior for image denoising (σ=25). Bayesian

inference with SGLD avoids the need for early stopping while consistently improves results. Details are described in Section 5.2.1.

House Peppers Lena Baboon F16 Kodak1 Kodak2 Kodak3 Kodak12 Average

SGD + Early 26.74 28.42 29.17 23.50 29.76 26.61 28.68 30.07 29.78 28.08
±0.41 ±0.22 ±0.25 ±0.27 ±0.49 ±0.19 ±0.18 ±0.33 ±0.17 ±0.09

SGD + Early + Avg 28.78 29.20 30.26 23.82 31.17 27.14 29.88 31.00 30.64 29.10
±0.35 ±0.08 ±0.12 ±0.11 ±0.1 ±0.07 ±0.12 ±0.11 ±0.12 ±0.05

SGD + Input + Early 28.18 29.21 30.17 22.65 30.57 26.22 30.29 31.31 30.66 28.81
±0.32 ±0.11 ±0.07 ±0.08 ±0.09 ±0.14 ±0.13 ±0.08 ±0.12 ±0.04

SGD + Input + Early + Avg 30.61 30.46 31.81 23.69 32.66 27.32 31.70 32.86 31.87 30.33
±0.3 ±0.03 ±0.03 ±0.09 ±0.06 ±0.06 ±0.03 ±0.08 ±0.1 ±0.03

SGLD 30.86 30.82 32.05 24.54 32.90 27.96 32.05 33.29 32.79 30.81
±0.61 ±0.01 ±0.03 ±0.04 ±0.08 ±0.06 ±0.05 ±0.17 ±0.06 ±0.08

CMB3D [6] 33.03 31.20 32.27 25.95 32.78 29.13 32.44 34.54 33.76 31.68

Table 2. Image inpainting task. Comparison of various inference schemes with the deep image prior for image inpainting. SGLD

estimates are more accurate while also providing a sensible estimate of the variance. Details are described in Section 5.2.2.

Method Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage Average

SGD + Early 28.48 31.54 35.34 35.00 30.40 27.05 30.55 32.24 31.37 31.32 30.21 31.23
±0.99 ±0.23 ±0.45 ±0.25 ±0.59 ±0.35 ±0.19 ±0.16 ±0.35 ±0.29 ±0.82 ±0.11

SGD + Early + Avg 28.71 31.64 35.45 35.15 30.48 27.12 30.63 32.39 31.44 31.50 30.25 31.34
±0.7 ±0.28 ±0.46 ±0.18 ±0.6 ±0.39 ±0.18 ±0.12 ±0.31 ±0.39 ±0.82 ±0.08

SGD + Input + Early 32.48 32.71 36.16 36.91 33.22 29.66 32.40 32.79 33.27 32.59 33.15 33.21
±0.48 ±1.12 ±2.14 ±0.19 ±0.24 ±0.25 ±2.07 ±0.94 ±0.07 ±0.14 ±0.46 ±0.36

SGD + Input + Early + Avg 33.18 33.61 37.00 37.39 33.53 29.96 33.30 33.17 33.58 32.95 33.80 33.77
±0.45 ±0.3 ±2.01 ±0.14 ±0.31 ±0.3 ±0.15 ±0.77 ±0.19 ±0.16 ±0.6 ±0.23

SGLD 33.82 34.26 40.13 37.73 33.97 30.33 33.72 33.41 34.03 33.54 34.65 34.51
±0.19 ±0.12 ±0.16 ±0.05 ±0.15 ±0.15 ±0.1 ±0.04 ±0.03 ±0.06 ±0.72 ±0.08

Ulyanov et al. [26] 32.22 33.06 39.16 36.16 33.05 29.80 32.52 32.84 32.77 32.2 34.54 33.48

Papyan et al. [21] 28.44 31.44 34.58 35.04 31.11 27.90 31.18 31.34 32.35 31.92 28.05 31.19

(a) Input (b) SGD (19.23 dB) (c) SGD + Input (19.59 dB) (d) SGLD mean (21.86 dB)
Figure 5. (Best viewed magnified.) Image inpainting using the deep image prior. The posterior mean using SGLD (Panel (d)) achieves

higher PSNR values and has fewer artifacts than SGD variants. See the supplementary material for more comprisons.

2 1 21 23 25

|t1 t2|

0.00

0.05

Co
va

ria
nc

e

GP-DIP
GP-RBF

24 25 26 27 28

#Channels

24

26

PS
NR

 (d
B)

GP-DIP
DIP

(a) (b) GT (c) Corrupted (d) GP RBF (25.78) (e) GP DIP (26.34) (f) DIP (26.43)

Figure 6. Inpainting with a Gaussian process (GP) and deep image prior (DIP). Top (a) Comparison of the Radial basis function

(RBF) kernel with the length scale learned on observed pixels in (c) and the stationary DIP kernel. Bottom (a) PSNR of the GP posterior

with the DIP kernel and DIP as a function of the number of channels. DIP approaches the GP performance as the number of channels

increases from 16 to 512. (d - f) Inpainting results (with the PSNR values) from GP with the RBF (GP RBF) and DIP (GP DIP) kernel, as

well as the deep image prior. The DIP kernel is more effective than the RBF.

5450

References

[1] David Barber and Christopher Bishop. Ensemble Learning

in Bayesian Neural Networks. In Generalization in Neural

Networks and Machine Learning, pages 215–237. Springer

Verlag, January 1998.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,

and Daan Wierstra. Weight Uncertainty in Neural Network.

In International Conference on Machine Learning, pages

1613–1622, 2015.

[3] Anastasia Borovykh. A Gaussian Process Perspective on

Convolutional Neural Networks. arXiv:1810.10798, 2018.

[4] Antoni Buades, Bartomeu Coll, and J-M Morel. A Non-

local Algorithm for Image Denoising. In IEEE Conference

on Computer Vision and Pattern Recognition, 2005.

[5] Youngmin Cho and Lawrence K Saul. Kernel Methods for

Deep Learning. In Advances in Neural Information Process-

ing Systems, pages 342–350, 2009.

[6] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik,

and Karen Egiazarian. Image Denoising by Sparse 3-D

Transform-domain Collaborative Filtering. IEEE Transac-

tions on image processing, 16(8):2080–2095, 2007.

[7] John S Denker and Yann LeCun. Transforming Neural-

net Output Levels to Probability Distributions. In Advances

in Neural Information Processing Systems, pages 853–859,

1991.

[8] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian

Approximation: Representing Model Uncertainty in Deep

Learning. In International Conference on Machine Learn-

ing, pages 1050–1059, 2016.

[9] Adrià Garriga-Alonso, Laurence Aitchison, and Carl Edward

Rasmussen. Deep Convolutional Networks as Shallow Gaus-

sian Processes. arXiv:1808.05587, 2018.

[10] Alex Graves. Practical Variational Inference for Neural Net-

works. In Advances in Neural Information Processing Sys-

tems, pages 2348–2356, 2011.

[11] Felix Heide, Wolfgang Heidrich, and Gordon Wetzstein. Fast

and Flexible Convolutional Sparse Coding. In Computer Vi-

sion and Pattern Recognition (CVPR), 2015.

[12] Geoffrey E Hinton and Drew Van Camp. Keeping the Neu-

ral Networks Simple by Minimizing the Description Length

of the Weights. In Conference on Computational Learning

Theory, pages 5–13. ACM, 1993.

[13] Jaehoon Lee, Yasaman Bahri, Roman Novak, Sam Schoen-

holz, Jeffrey Pennington, and Jascha Sohl-dickstein. Deep

Neural Networks as Gaussian Processes. International Con-

ference on Learning Representations, 2018.

[14] Chunyuan Li, Changyou Chen, David E Carlson, and

Lawrence Carin. Preconditioned Stochastic Gradient

Langevin Dynamics for Deep Neural Networks. In AAAI,

volume 2, page 4, 2016.

[15] David JC MacKay. A Practical Bayesian Framework for

Backpropagation Networks. Neural computation, 4(3):448–

472, 1992.

[16] Henry B Mann and Abraham Wald. On Stochastic Limit and

Order Relationships. The Annals of Mathematical Statistics,

14(3):217–226, 1943.

[17] Georges Matheron. The Intrinsic Random Functions and

Their Applications. Advances in applied probability,

5(3):439–468, 1973.

[18] Alexander G de G Matthews, Mark Rowland, Jiri Hron,

Richard E Turner, and Zoubin Ghahramani. Gaus-

sian Process Behaviour in Wide Deep Neural Networks.

arXiv:1804.11271, 2018.

[19] Radford M Neal. Bayesian Learning for Neural Networks.

PhD thesis, University of Toronto, 1995.

[20] Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee,

Greg Yang, Jiri Hron, Daniel A Abolafia, Jeffrey Penning-

ton, and Jascha Sohl-Dickstein. Bayesian Deep Convo-

lutional Networks with Many Channels are Gaussian Pro-

cesses. In International Conference on Learning Represen-

tations, 2019.

[21] Vardan Papyan, Yaniv Romano, Michael Elad, and Jeremias

Sulam. Convolutional Dictionary Learning via Local Pro-

cessing. In International Conference on Computer Vision,

pages 5306–5314, 2017.

[22] Carl Edward Rasmussen. Evaluation of Gaussian Processes

and Other Methods for Non-linear Regression. University of

Toronto, 1999.

[23] Carl Edward Rasmussen. Gaussian Processes in Machine

Learning. In Advanced lectures on machine learning, pages

63–71. Springer, 2004.

[24] Andrew M. Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh

Bhand, Bipin Suresh, and Andrew Y. Ng. On Random

Weights and Unsupervised Feature Learning. In Interna-

tional Conference on Machine Learning, 2011.

[25] Charles W Therrien. Issues in Multirate Statistical Signal

Processing. In Signals, Systems and Computers, 2001. Con-

ference Record of the Thirty-Fifth Asilomar Conference on,

volume 1, pages 573–576. IEEE, 2001.

[26] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep Image Prior. In Computer Vision and Pattern Recogni-

tion (CVPR), 2018.

[27] Ivan Ustyuzhaninov, Wieland Brendel, Leon A Gatys, and

Matthias Bethge. Texture Synthesis using Shallow Convo-

lutional Networks with Random Filters. arXiv:1606.00021,

2016.

[28] Max Welling and Yee W Teh. Bayesian Learning via

Stochastic Gradient Langevin Dynamics. In International

Conference on Machine Learning, 2011.

[29] Christopher KI Williams. Computing with Infinite Net-

works. In Advances in Neural Information Processing Sys-

tems, 1997.

[30] Christopher KI Williams and David Barber. Bayesian Classi-

fication with Gaussian Processes. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 20(12):1342–1351,

1998.

[31] Christopher K. I. Williams and Carl Edward Rasmussen.

Gaussian Processes for Regression. In Advances in Neural

Information Processing Systems, pages 514–520, 1996.

5451

