
Noise-Aware Unsupervised Deep Lidar-Stereo Fusion

∗Xuelian Cheng1,2, ∗Yiran Zhong2,4,5, Yuchao Dai1, Pan Ji3, Hongdong Li2,4

1Northwestern Polytechnical University 2Australian National University
3NEC Laboratories America, 4ACRV, 5Data61 CSIRO

Abstract

In this paper, we present LidarStereoNet, the first unsu-

pervised Lidar-stereo fusion network, which can be trained

in an end-to-end manner without the need of ground truth

depth maps. By introducing a novel “Feedback Loop”

to connect the network input with output, LidarStereoNet

could tackle both noisy Lidar points and misalignment be-

tween sensors that have been ignored in existing Lidar-

stereo fusion studies. Besides, we propose to incorporate

a piecewise planar model into network learning to further

constrain depths to conform to the underlying 3D geome-

try. Extensive quantitative and qualitative evaluations on

both real and synthetic datasets demonstrate the superior-

ity of our method, which outperforms state-of-the-art stereo

matching, depth completion and Lidar-Stereo fusion ap-

proaches significantly.

1. Introduction

Accurately perceiving surrounding 3D information from

passive and active sensors is crucial for numerous applica-

tions such as localization and mapping [15], autonomous

driving [18], obstacle detection and avoidance [25], and

3D reconstruction [10, 33]. However, each kind of sen-

sors alone suffers from its inherent drawbacks. Stereo cam-

eras are well-known for suffering from computational com-

plexities and their incompetence in dealing with texture-

less/repetitive areas and occlusion regions [28], while Lidar

sensors often provide accurate but relatively sparse depth

measurements [5].

Therefore, it is highly desired to fuse measurements from

Lidar and stereo cameras to achieve high-precision depth

perception by exploiting their complementary properties.

However, it is a non-trivial task as accurate Stereo-Lidar fu-

sion requires a proper registration between Lidar and stereo

images and noise-free Lidar points. Existing methods are

not satisfactory due to the following drawbacks:

• Existing deep neural network based Lidar-Stereo fu-
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Figure 1. Results on KITTI 2015. We highlight the displacement

error of Lidar points with bounding boxes. Lidar points are dilated

for better visualization and we overlay our disparity maps to the

colour images for illustration. Note the Lidar points for the fore-

ground car and utility pole have been aligned to the background.

Our method successfully recovers accurate disparities on tiny and

moving objects while the other methods are misled by drifted and

noisy Lidar points.

sion studies [2, 20, 26] strongly depend on the avail-

ability of large-scale ground truth depth maps, and thus

their performance is fundamentally limited by their

generalization ability to real-world applications.

• Due to rolling-shutter effects of Lidar and other cali-

bration imperfections, a direct registration will intro-

duce significant alignment errors between Lidar and

stereo depth. Furthermore, existing methods tend to

assume the Lidar measurements are noise-free [19,
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30]. However, as illustrated in Fig. 1, the misalign-

ment and noisy Lidar measurements cause significant

defects in Stereo-Lidar fusion.

In this paper, we tackle the above challenges and propose

a novel framework “LidarStereoNet” for accurate Stereo-

Lidar fusion, which can be trained in an end-to-end unsu-

pervised learning manner. Our framework is noise-aware in

the sense that it explicitly handles misalignment and noise

in Lidar measurements.

Firstly, we propose to exploit photometric consistency

between stereo images, and depth consistency between

stereo cameras and Lidar to build an unsupervised training

loss, thus removing the need of ground truth depth/disparity

maps. It enables a strong generalization ability of our

framework to various real-world applications.

Secondly, to alleviate noisy Lidar measurements and

slight misalignment between stereo cameras and Lidar, we

present a novel training strategy that gradually removes

these noisy points during the training process automatically.

Furthermore, we have also presented a novel structural loss

(named plane fitting loss) to handle the inaccurate Lidar

measurements and stereo matching.

Under our problem setting, we make no assumption on

the inputs such as the pattern/number of Lidar measure-

ments, the probability distribution of Lidar points or stereo

disparities. Our network allows the sparsity of input Lidar

points to be varied, and can even handle an extreme case

when the Lidar sensor is completely unavailable.

Experimental results on different datasets demonstrate

that our method is able to recover highly accurate depth

maps through Lidar-Stereo fusion. It outperforms existing

stereo matching methods, depth completion methods and

Lidar-Stereo fusion methods with a large margin (at least

twice better than previous ones). To the best of our knowl-

edge, there is no deep learning based method available that

can achieve this goal under our problem setting.

2. Related Work

Stereo Matching Deep convolutional neural networks

(CNNs) based stereo matching methods have recently

achieved great success. Existing supervised deep methods

either formulate the task as depth regression [21] or multi-

label class classifications [31]. Recently, unsupervised deep

stereo matching methods have also been introduced to relief

from a large amount of labeled training data. Godard et al.

[11] proposed to exploit the photometric consistency loss

between left images and the warped version of right images,

thus forming an unsupervised stereo matching framework.

Zhong et al. [36] presented a stereo matching network for

estimating depths from continuous video input. Very re-

cently, Zhang et al. [34] extended the self-supervised stereo

network [35] from passive stereo cameras to active stereo

scenarios. Even though stereo matching has been greatly

advanced, it still suffers from challenging scenarios such as

texture-less and low-lighting conditions.

Depth Completion/Interpolation Lidar scanners can

provide accurate but sparse and incomplete 3D measure-

ments. Therefore, there is a highly desired requirement in

increasing the density of Lidar scans, which is crucial for

applications such as self-driving cars. Uhrig et al. [30] pro-

posed a masked sparse convolution layer to handle sparse

and irregular Lidar inputs. Chodosh et al. [4] utilized

compressed sensing to approach the sparsity problem for

scene depth completion. With the guidance of correspond-

ing color images, Ma et al. [19] extended the up-projection

blocks proposed by [17] as decoding layers to achieve full

depth reconstruction. Jaritz et al. [14] handled sparse inputs

of various densities without any additional mask input.

Lidar-Stereo Fusion Existing studies mainly focus on

fusing stereo and time-of-flight (ToF) cameras for indoor

scenarios [7, 23, 24, 12, 8], while Lidar-Stereo fusion for

outdoor scenes has been seldom approached in the litera-

ture. Badino et al. [2] used Lidar measurements to reduce

the searching space for stereo matching and provided pre-

defined paths for dynamic programming. Later on, Mad-

dern et al. [20] proposed a probabilistic model to fuse Lidar

and disparities by combining prior from each sensor. How-

ever, their performance degrades significantly when the Li-

dar information is missing. To tackle this issue, instead of

using a manually selected probabilistic model, Park et al.

[26] utilized CNNs to learn such a model, which takes two

disparities as input: one from the interpolated Lidar and

the other from semi-global matching [13]. Compared with

those supervised approaches, our unsupervised method can

be end-to-end trained using stereo pairs and sparse Lidar

points without using external stereo matching algorithms.

3. Lidar-Stereo Fusion

In this section, we formulate Lidar-Stereo fusion as an

unsupervised learning problem and present our main ideas

in dealing with the inherent challenges encountered by ex-

isting methods, i.e., noise in Lidar measurements.

3.1. Problem Statement

Lidar-Stereo fusion aims at recovering a dense and accu-

rate depth/disparity map from sparse Lidar measurements

S ∈ R
n×3 and a pair of stereo images Il, Ir. We assume

the Lidar and stereo camera have been calibrated with ex-

trinsic matrix T and the stereo camera itself is calibrated

with intrinsic matrices Kl, Kr and projection matrices Pl,

Pr. We can then project sparse Lidar points S onto the im-

age plane of Il by dsl = PlTS. Since disparity is used in the

stereo matching task, we convert the projected depth dsl to

disparity Ds
l using D = Bf/d, where B is the baseline be-

tween the stereo camera pair and f is the focal length. The
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Figure 2. KITTI VO Lidar points and our cleaned Lidar points.

Erroneous Lidar points on transparent/relective areas and tiny ob-

ject surface have been successfully removed.

same process is applied to the right image as well. Mathe-

matically this problem can be defined as:

(D̂l, D̂r) = F(Il, Ir, D
s
l , D

s
r ; Θ), (1)

where F is the learned Lidar-Stereo fusion model (a deep

network in our paper) parameterized by Θ, D̂l, D̂r are the

fusion outputs defined on the left and right coordinates.

Under our problem setting, we do not make any as-

sumption on the Lidar points’ configuration (e.g., the num-

ber or the pattern) or error distribution of Lidar points and

stereo disparities. Removing all these restrictions makes our

method more generic and wider applicability.

3.2. Dealing with Noise

In Lidar-Stereo fusion, existing methods usually assume

the Lidar points are noise free and the alignment between

Lidar and stereo images is perfect. We argue that even

for dedicated systems such as the KITTI dataset, the Li-

dar points are never perfect and the alignment cannot be

consistently accurate, c.f . Fig. 1. The errors in Lidar scan-

ning are inevitable for two reasons: (1) Even for well cali-

brated Lidar-stereo systems, e.g., KITTI, and after eliminat-

ing the rolling shutter effect in Lidar scans by compensating

the ego-motion, Lidar errors still persist even for stationary

scenes, as shown in Fig. 2. According to the readme file

in the KITTI VO dataset, the rolling shutter effect has al-

ready been removed in Lidar scans. However, we still find

Lidar errors on transparent (white box) and reflective (red

box) surfaces. Also, due to the displacement between Li-

dar and cameras, the Lidar can see through tiny objects as

shown in the yellow box. (2) It is hard to perform motion-

compensation on dynamic scenes, thus the rolling shutter

effect will persist for moving objects.

It is possible to eliminate these errors by manually insert-

ing 3D models and other post-processing steps [22]. How-

ever, lots of human efforts will be involved. Our method

can automatically deal with these Lidar errors without the

need of human power. Hence the problem we are tack-

Figure 3. The feedback loop. For each iteration, the input stereo

pair first computes initial disparities to filter errors in sparse Lidar

points. At this stage, no backprob is taken place. So we call it

the Verify phase. Then in the Update phase, the Core Architecture

takes stereo pairs and cleaned sparse Lidar points as inputs to gen-

erate the final disparities. The parameters of the Core Architecture

will be updated through backprob this time.

ling (“Noise-Aware Lidar-Stereo Fusion”) is not a simple

“system-level” problem that can be solved through “engi-

neering registration”.

It is known that the ability of deep CNNs to overfit or

memorize the corrupted labels can lead to poor generaliza-

tion performance. Therefore, we aim to deal with the noise

in Lidar measurements properly to train deep CNNs.

Robust functions such the ℓ1 norm, Huber function or the

truncated ℓ2 norm are natural choices in dealing with noisy

measurements. However, these functions will not eliminate

the effects caused by noises but only suppress them. Fur-

ther, these errors also exist in the input. Automatically cor-

rect/ignore these erroneous points creates an extra difficulty

for the network. To this end, we introduce a feedback loop

in our network to allow the input also to depend on the out-

put of the network. In this way, the input Lidar points can

be cleaned before being fed into the network.

The Feedback Loop We propose a novel framework to

progressively detect and remove erroneous Lidar points dur-

ing the training process and generate a highly accurate

Lidar-Stereo fusion. Fig. 3 illustrates an unfolded struc-

ture of our network design, namely the feedback loop. It

consists of two phases: “Verify” phase and “Update” phase.

Each phase shares the same network structure of Core Ar-

chitecture, and the details will be illustrated in Section 4.1.

In the Verify phase, the network takes stereo image

pairs (Il,Ir) and noisy Lidar disparities (Ds
l , Ds

r) as in-

put, and generates two disparity maps (Dv
l ,Dv

r ). No back-

propagation takes place in this phase. We then compare

(Dv
l ,Dv

r ) and (Ds
l ,Ds

r) and retain the sparse Lidar points

(Dsc
l ,Dsc

r ) that are consistent in both stereo matching and

Lidar measurements. In the Update phase, the network

takes both stereo pairs (Il,Ir) and cleaned sparse Lidar

points (Dsc
l ,Dsc

r ) as the inputs to recover dense disparity

maps (Df
l ,Df

r ). All loss functions are evaluated on the fi-

nal disparity outputs (Df
l ,Df

r ) only. Once the network is
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Figure 4. Core Architecture of our LidarStereoNet. It consists of a feature extraction and fusion block, a stack-hourglass type feature

matching block and a disparity computing layer. Given a stereo pair Il, Ir and corresponding projected Lidar points Ds
l , D

s
r , the feature

extraction block produces feature maps separately for images and Lidar points. The feature maps are then concatenated to form final input

features which are aggregated to form a feature volume. The feature matching block learns the cost of feature-volume. Then we use the

disparity computing layer to obtain disparity estimation. Details of the feature extraction and fusion block is illustrated on the right.

trained, we empirically find that there is no performance

drop if we directly feed the Core Architecture with noisy Li-

dar points. Therefore, we remove the feedback loop module

and only use the Core Architecture in testing.

Our feedback loop detects erroneous Lidar points by

measuring the consistency between Lidar points and stereo

matching. Lidar and stereo matching are active and pas-

sive depth acquisition techniques. Hence, it is less likely

that they would make the same errors. It may also filter out

some correct Lidar points at the first place but we have im-

age warping loss and other regularization losses to keep the

network training on the right track.

4. Our Network Design

In this section, we present our “LidarStereoNet” for

Lidar-Stereo fusion, which can be learned in an unsuper-

vised end-to-end manner. To remove the need of large-

scale training data with ground truth, we propose to exploit

the photometric consistency between stereo images, and

the depth consistency between stereo cameras and Lidar.

This novel network design enables the following benefits:

1) A wide generalization ability of our framework in vari-

ous real-world scenarios; 2) Our network design allows the

sparsity of input Lidar points to be varied, and can even han-

dle the extreme case when the Lidar sensor is completely

unavailable. Furthermore, to alleviate noisy Lidar measure-

ments and the misalignment between Lidar and stereo cam-

eras, we incorporate the “Feedback Loop” into the network

design to connect the output with the input, which enables

the Lidar points to be cleaned before fed into the network.

4.1. Core Architecture

We illustrate the detailed structure of the Core architec-

ture of our LidarStereoNet in Fig. 4. LidarStereoNet con-

sists of the following blocks: 1) Feature extraction and fu-

sion; 2) Feature matching and 3) Disparity computing. The

general information flow of our network is similar to [35]

but has some crucial modifications in the feature extrac-

tion and fusion block. In view of different characteristics

between dense colour images and sparse disparity maps,

we leverage different convolution layers to extract features

from each of them. For colour images, we use the same

feature extraction block from [3] while for sparse Lidar in-

puts, the sparse invariant convolution layer [30] is used. The

final feature maps are produced by concatenating stereo im-

age features and Lidar features. Feature maps from left and

right branches are concatenated to form a 4D feature vol-

ume with a maximum disparity range of 192. Then fea-

ture matching is processed through an hourglass structure of

3D convolutions to compute matching cost at each disparity

level. Similar to [16], we use the soft-argmin operation to

produce a 2D disparity map from the cost volume.

Dealing with dense and sparse inputs To extract fea-

tures from sparse Lidar points, Uhrig et al. [30] proposed

a sparsity invariant CNN after observing the failure of con-

ventional convolutions. However, Ma et al. [19] and Jaritz

et al. [14] argued that using a standard CNN with spe-

cial training strategies can achieve better performance and

also handle varying input densities. We compared both

approaches and realized that standard CNNs can handle

sparse inputs and even get better performance but they re-

quest much deeper network (ResNet38 encoded VS 5 Con-

volutional layers) with 500 times more trainable parameters

(13675.25K VS 25.87K). Using such a “deep” network as

a feature extractor will make our network not feasible for

end-to-end training and hard to converge.

In our network, we choose sparsity invariant convolu-

tional layers [30] to assemble our Lidar feature extrac-

tor which can handle varying Lidar points distribution el-

egantly. It consists of 5 sparse convolutional layers with a

stride of 1. Each convolution has an output channel of 16

and is followed by a ReLU activation function. We attached
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a plain convolution with a stride of 4 to generate the final

16 channels Lidar features in order to make sure the Lidar

features compatible with the image features.

4.2. Loss Function

Our loss function consists of two data terms and two reg-

ularization terms. For data terms, we directly choose the im-

age warping error Lw as a dense supervision for every pixel

and discrepancy on filtered sparse Lidar points Ll. For reg-

ularization terms, we use colour weighted smoothness term

Lp and our novel slanted plane fitting loss Lp. Our overall

loss function is a weighted sum of the above loss terms:

L = Ll + µ1Lw + µ2Ls + µ3Lp, (2)

we empirically set µ1 = 1, µ2 = 0.001, µ3 = 0.01.

4.2.1 Image Warping Loss

We assume photometric consistency between stereo pairs

such that corresponding points between each pair should

have similar appearance. However, in some cases, this as-

sumption does not hold. Hence, we also compare the dif-

ference between small patches’ Census transform as it is

robust for photometric changes. Our image warping loss is

defined as follow:

Lw = Li + λ1Lc + λ2Lg, (3)

where Li stands for photometric loss, Lc represents Cen-

sus loss and Lg is the image gradient loss. We set λ1 =
0.1, λ2 = 1 to balance different terms.

The photometric loss is defined as the difference between

the observed left (right) image and the warped left (right)

image, where we have weighted each term with the ob-

served pixels to account for the occlusion:

Li =

[

∑

i,j

ϕ
(

Î(i, j)− I(i, j)
)

·O(i, j)

]

/
∑

i,j

O(i, j), (4)

where ϕ(s) =
√
s2 + 0.0012 and the occlusion mask O is

computed through left-right consistency check.

To further improve the robustness in evaluating the im-

age warping error, we used the Census transformation to

measure the difference:

Lc =

[

∑

i,j

ϕ
(

Ĉ(i, j)− C(i, j)
)

·O(i, j)

]

/
∑

i,j

O(i, j). (5)

Lastly, we have also used the difference between image

gradients as an error metric:

Lg =

[

∑

i,j

ϕ
(

∇Î(i, j)−∇I(i, j)
)

·O(i, j)

]

/
∑

i,j

O(i, j).

(6)

4.2.2 Lidar Loss

The cleaned sparse Lidar points after our feedback verifica-

tion can also be used as a sparse supervision for generating

disparities. We leverage the truncated ℓ2 function to handle

noises and errors in these sparse Lidar measurements,

Ll = ||M(D̂ −Dsc)||τ , (7)

where M is the mask computed in the Verify phase. The

truncated ℓ2 fuction is defined as:

|| · ||τ =

{
0.5x2, |x| < ǫ
0.5ǫ2, otherwise.

(8)

4.2.3 Smoothness Loss

The smoothness term in the loss function is defined as:

Ls =
∑(

e−α1|∇I| |∇d|+ e−α2|∇2I| ∣∣∇2d
∣∣
)
/N, (9)

where α1 = 0.5 and α2 = 0.5. Note that previous studies

[11, 35] often neglect the weights α1, α2, which actually

play a crucial role in colour weighted smoothness term.

4.2.4 Plane Fitting Loss

We also introduce a slanted plane model into deep learn-

ing frameworks to enforce structural constraint. This model

has been commonly used in conventional Conditional Ran-

dom Field (CRF) based stereo matching/optical flow algo-

rithms. It assumes that all pixels within a superpixel lie

on a 3D plane. By leveraging this piecewise plane fitting

loss, we could enforce strong regularization on 3D struc-

ture. Although our slanted plane model is defined on dispar-

ity space, it has been proved that a plane in disparity space is

still a plane in 3D space [29]. Mathematically, the disparity

dp of each pixel p is parameterized by a local plane,

dp = apu+ bpv + cp, (10)

where (u, v) is the image coordinate, the triplet (ap, bp, cp)
denotes the parameters of a local disparity plane.

Define P as the matrix representation of pixel’s homo-

geneous coordinates within a SLIC superpixel [1] with a

dimension of N × 3 where N is number of pixels within a

segment, and denote a as the planar parameters. Given the

current disparity predictions d̂, we can estimate the plane

parameter in closed-form via a
∗ = (PTP )−1PT

d̂. With

the estimated plane parameter, the fitted planar disparities

d̃ ∈ R
N can be computed as d̃ = Pa

∗ = P (PTP )−1PT
d̂.

Our plane fitting loss then can be defined as

Lp = ‖d̂− d̃‖ = ‖[I − P (PTP )−1PT ]d̂‖. (11)
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Table 1. Quantitative results on the selected KITTI 141 subset. We compare our LidarStereoNet with various state-of-the-art Lidar-

Stereo fusion methods, where our proposed method outperforms all the competing methods with a wide margin.

Methods Input Supervised Abs Rel > 2 px > 3 px > 5 px δ < 1.25 Density

Input Lidar Lidar - - 0.0572 0.0457 0.0375 - 7.27%

S2D [19] Lidar Yes 0.0665 0.0849 0.0659 0.0430 0.9626 100.00%

SINet [30] Lidar Yes 0.0659 0.0908 0.0660 0.0456 0.9576 100.00%

Probabilistic fusion [20] Stereo + Lidar No - - 0.0591 - - 99.6%

CNN Fusion [26] Stereo + Lidar Yes - - 0.0484 - - 99.8%

Our method Stereo No 0.0572 0.0540 0.0345 0.0220 0.9731 100.00%

Our method Stereo + Lidar No 0.0350 0.0287 0.0198 0.0126 0.9872 100.00%

(a) Input image (b) Input lidar disparity (c) Ground truth (d) Ours

(e)S2D [19] (f) SINet [30] (g) Probabilistic fusion [20] (h) CNN fusion [26]
Figure 5. Qualitative results of the methods from Tab. 1. Our method is trained on KITTI VO dataset and tested on the selected unseen

KITTI 141 subset without any finetuning.

5. Experiments

We implemented our LidarStereoNet in Pytorch. All in-

put images were randomly cropped to 256 × 512 during

training phases while we used their original size in infer-

ence. The typical processing time of our net was about 0.5

fps on Titan XP. We used the Adam optimizer with a con-

stant learning rate of 0.001 and a batch size of 1. We per-

formed a series of experiments to evaluate our LidarStere-

oNet on both real-world and synthetic datasets. In addition

to analyzing the accuracy of depth prediction in compari-

son to previous work, we also conducted a series of ablation

studies on different sensor fusing architectures and investi-

gate how each component of the proposed losses contributes

to the performance.

5.1. KITTI Dataset

The KITTI dataset [9] is created to set a benchmark for

autonomous driving visual systems. It captures depth infor-

mation from a Velodyne HDL-64E Lidar and corresponding

stereo images from a moving platform. They use a highly

accurate inertial measurement unit to accumulate 20 frames

of raw Lidar depth data in a reference frame and serves as

ground truth for the stereo matching benchmark. In KITTI

2015 [22], they also take moving objects into consideration.

The dynamic objects are first removed and then re-inserted

by fitting CAD models to the point clouds, resulting in a

clean and dense ground truth for depth evaluation.

Dataset Preparation After these processes, the raw Li-

dar points and the ground truth differ significantly in terms

of outliers and density as shown in Fig. 1. In raw data, due

to the large displacement between the Lidar and the stereo

cameras [29], boundaries of objects may not perfectly align

when projecting Lidar points onto image planes. Also, since

Lidar system scans depth in a line by line order, it will cre-

ate a rolling shutter effect on the reference image, especially

for a moving platform. Instead of heuristically removing

measurements, our method is able to omit these outliers au-

tomatically which is evidently shown in Fig. 1 and Fig. 2.

We used the KITTI VO dataset [9] as our training set.

We sorted all 22 KITTI VO sequences and found 7 frames

from sequence 17 and 20 having corresponding frames in

the KITTI 2015 training set. Therefore we excluded these

two sequences and used the remaining 20 stereo sequences

as our training dataset. Our training dataset contains 42104

images with a typical image resolution of 1241 × 376. To

obtain sparse disparities inputs, we projected raw Lidar

points onto left and right images using provided extrinsic

and intrinsic parameters and converted the raw Lidar depths

to disparities. Maddern et al. [20] also traced 141 frames

from KITTI raw dataset that have corresponding frames in

the KITTI 2015 dataset and reported their results on this

subset. For consistency, we used the same subset to eval-

uate our performance and utilize the 6 frames from KITTI

VO dataset as our validation set (we excluded 1 frame that

overlaps the KITTI 141 subset from our validation).
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Figure 6. Test results of our network on the selected KITTI 141

subset with varying levels of input Lidar points sparsity. Left

column: lower is better; right column: higher is better.

Comparisons with State-of-the-Art We compared our

results with depth completion methods and Lidar-stereo fu-

sion methods using depth metrics from [6] and bad pixel

ratio disparity error from KITTI [22]. We also provide a

comparison of our method and stereo matching methods in

the supplemental material.

For depth completion, we compared with S2D [19] and

SINet [30]. In our implementation of S2D and SINet,

we trained them on KITTI depth completion dataset [30].

From 151 training sequences, we excluded 28 sequences

that overlaps with KITTI 141 dataset and used the remain-

ing 123 sequences to train these networks from scratch in a

supervised manner. As a reference, we computed the error

rate of the input Lidar. It is worth noting that our method

increases the disparity density from less than 7.3% to 100%

while reducing the error rate by a half.

We also compared our method with two existing Lidar-

Stereo fusion methods: Probabilistic fusion [20] and CNN

fusion [26] and outperforms them with a large margin.

Quantitative comparison between our method and the com-

peting state-of-the-art methods is reported in Tab. 1. We can

clearly see that our self-supervised LidarStereoNet achieves

the best performance throughout all the metrics evaluated.

Note that, our method even outperforms recent supervised

CNN based fusion method [26] with a large margin. More

qualitative evaluations of our method in challenging scenes

are provided in Fig. 5. These results demonstrate the supe-

riority of our method that can effectively leverage the com-

plementary information between Lidar and stereo images.

On Input Sparsity Thanks to the nature of deep network

and sparsity invariant convolution, our LidarStereoNet can

handle Lidar input of varying density, ranging from no Lidar

input to 64 lines input. To see this trend, we downsampled

the vertical and horizontal resolution of the Lidar points. As

shown in Fig. 6, our method performs equally well when

using 8 or more lines of Lidar points. Note that even when

there are no Lidar points as input (in this case, the problem

becomes a pure stereo matching problem), our method still

Figure 7. Gradually cleaned input Lidar points. From top to

bottom, left column: left image, cleaned Lidar points at the 2nd

epoch, cleaned Lidar points at the 5th epoch; Right column: raw

Lidar points, error points find at the 2nd epoch, error points find at

the 5nd epoch. Note that the error measurements on the right car

have been gradually removed.

outperforms SOTA stereo matching methods.

Table 2. Ablation study on the feedback loop Type 1 and Type 2

show the performance only use the Core Architecture without and

with removing error Lidar points from the input, while Full model

means our proposed feedback loop.

Methods Abs Rel > 2 px > 3 px > 5 px

Type 1 0.0539 0.0411 0.0310 0.0229

Type 2 0.0468 0.0401 0.0302 0.0226

Full model 0.0350 0.0287 0.0198 0.0126

5.2. Ablation Study

In this section, we perform ablation studies to evaluate

the importance of our feedback loop and proposed losses.

Notably, all ablation studies on losses and fusion strategies

are evaluated on Core Architecture only in order to reduce

the randomness introduced by our feedback loop module.

Importance of the feedback loop We evaluate the impor-

tance of the feedback loop in two aspects. One is to remove

the error points from the back-end, i.e. the loss computation

part. The other is to remove them from the input. In our

baseline model (Type 1), we use raw Lidar as our input and

compute the Lidar loss on them. For Type 2 model, we also

use the raw Lidar as input but compute the Lidar loss only

on cleaned Lidar points. Our full model uses clean Lidar

points in both parts. As shown in Tab. 2, removing errors in

the back-end can improve the performance by 2.58%. How-

ever, using cleaned Lidar points as input can boost the per-

formance in 34.44% in > 3px metric, which demonstrates

the importance of our feedback loop module.

Comparing different loss functions Tab. 3 shows the

performance gain with different losses. As we can see,

when only using Lidar points as supervision, its perfor-

mance is affected by the outliers in Lidar measurements.
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Adding a warping loss can reduce the error rate from 4.71%
to 3.02%. Adding our proposed plane fitting loss can fur-

ther reduce the metric from 3.02% to 2.73%. In the supple-

mentary material, we further compare our soft slanted plane

model and a hard plane fitting model. The soft one achieves

better performance.

Table 3. Evaluation of different loss functions. Lw, Ls, Ll and

Lp represent warping loss, smoothness loss, Lidar loss and plane

fitting loss separately.

Loss Abs Rel > 2 px > 3 px > 5 px

Ll 0.0555 0.0733 0.0471 0.0296

Lw + Ls 0.0628 0.0940 0.0637 0.0405

Lw + Ls + Ll 0.0565 0.0401 0.0302 0.0226

Lw + Ls + Ll + Lp 0.0468 0.0393 0.0276 0.0201

Comparing different fusion strategies Considering the

problem of utilizing sparse depth information, one no-

fusion approach will be directly using Lidar measurements

for supervisions. As shown in Tab. 4, its performance is

affected by the misaligned Lidar points and it has a rela-

tively high error rate of 4.10%. The second method is to

leverage the depth as a fourth channel additionally to the

RGB images. We term it an early fusion strategy. As shown

in Tab. 4, it has the worst performance among the baselines.

This may be due to the incompatible characteristics between

RGB images and depth maps thus the network is unable to

handle well within a common convolution layer. Our late

fusion strategy achieves the best performance among them.

5.3. Generalizing to Other Datasets

To illustrate that our method can generalize to other

datasets, we compare our method to several methods on the

Synthia dataset [27]. Synthia contains 5 sequences under

different scenarios. And for each scenario, they capture im-

ages under different lighting and weather conditions such as

Spring, Winter, Soft-rain, Fog and Night. We show quanti-

tative results of experiments in Tab. 5 and qualitative results

are provided in the supplementary material.

For sparse disparity inputs, we randomly selected 10%

of full image resolution. As discussed before, projected Li-

dar points have misalignment with stereo images in KITTI

dataset. To simulate the similar interference, we add various

density levels of Gaussian noise to sparse disparity maps.

As shown in Fig. 8, our proposed LidarStereoNet adapts

Table 4. Comparison of different fusion strategies.

Methods Abs Rel > 2 px > 3 px > 5 px

No Fusion 0.0555 0.0733 0.0471 0.0296

Early fusion 0.0644 0.0667 0.0526 0.0398

Our method 0.0468 0.0393 0.0276 0.0201

Figure 8. Ablation study on noise resistance on Synthia dataset.

Our method has a consistent performance while the others have a

notable performance drop.

well to the noisy input disparity maps, while S2D [19] fails

to recover disparity information.

Table 5. Quantitative results on the Synthia dataset.

Methods Abs Rel > 2 px > 3 px > 5 px

SPS-ST [32] 0.0475 0.0980 0.0879 0.0713

S2D [19] 0.0864 0.5287 0.4414 0.270

SINet [30] 0.0290 0.0642 0.0472 0.0283

Our method 0.0334 0.0446 0.0373 0.0299

6. Conclusion

In this paper, we have proposed an unsupervised end-

to-end learning based Lidar-Stereo fusion network “Li-

darStereoNet” for accurate 3D perception in real world sce-

narios. To effectively handle noisy Lidar points and mis-

alignment between sensors, we presented a novel “Feed-

back Loop” to sort out clean measurements by comparing

output stereo disparities and input Lidar points. We have

also introduced a piecewise slanted plane fitting loss to en-

force strong 3D structural regularization on generated dis-

parity maps. Our LidarStereoNet does not need ground

truth disparity maps for training and has good generaliza-

tion capabilities. Extensive experiments demonstrate the su-

periority of our approach, which outperforms state-of-the-

art stereo matching and depth completion methods with a

large margin. Our approach can reliably work even when

Lidar points are completely missing. In the future, we plan

to extend our method to other depth perception and sensor

fusion scenarios.
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