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Abstract

Finding a template in a search image is one of the core

problems many computer vision, such as semantic image se-

mantic, image-to-GPS verification etc. We propose a novel

quality-aware template matching method, QATM, which is

not only used as a standalone template matching algorithm,

but also a trainable layer that can be easily embedded into

any deep neural network. Here, our quality can be inter-

preted as the distinctiveness of matching pairs. Specifically,

we assess the quality of a matching pair using soft-ranking

among all matching pairs, and thus different matching sce-

narios such as 1-to-1, 1-to-many, and many-to-many will

be all reflected to different values. Our extensive evalu-

ation on classic template matching benchmarks and deep

learning tasks demonstrate the effectiveness of QATM. It not

only outperforms state-of-the-art template matching meth-

ods when used alone, but also largely improves existing

deep network solutions.

1. Introduction and Review

Template matching is one of the most frequently used

techniques in computer vision applications, such as video

tracking[35, 36, 1, 9], image mosaicing [25, 6], object de-

tection [12, 10, 34], character recognition [29, 2, 21, 5], and

3D reconstruction [22, 23, 16]. Classic template match-

ing methods often use sum-of-squared-differences (SSD)

or normalized cross correlation (NCC) to calculate a sim-

ilarity score between the template and the underlying im-

age. These approaches work well when the transformation

between the template and the target search image is sim-

ple. However, these methods start to fail when the transfor-

mation is complex or non-rigid, which is common in real-

life. In addition, other factors, such as occlusions and color

shifts, make these methods even more fragile.

Numerous approaches have been proposed to over-

come these real-life difficulties applying standard tem-

plate matching. Dekel et al. [11] introduced the Best-

Buddies-Similarity (BBS) measure, which focuses on the

nearest-neighbor (NN) matches to exclude potential and bad

matches caused by the background pixels. Deformable Di-

versity Similarity (DDIS) was introduced in [26], which ex-

plicitly considers possible template deformation and uses

the diversity of NN feature matches between a template

and a potential matching region in the search image. Co-

occurrence based template matching (CoTM) was intro-

duced in [14] to quantify the dissimilarity between a tem-

plate and a potential matched region in the search image.

These methods indeed improve the performance of template

matching. However, these methods cannot be used in deep

neural networks (DNN) because of two limitations — (1)

using non-differentiable operations, such as thresholding,

counting, etc. and (2) using operations that are not efficient

with DNNs, such as loops and other non-batch operations.

Existing DNN-based methods use simple methods to

mimic the functionality of template matching [15, 30, 28,

27, 4], such as computing the tensor dot-product [18]1 be-

tween two batch tensors of sizes B × H × W × L and

B×H ′×W ′×L along the feature dimension (i.e., L here),

and producing a batch tensor of size B×H×W ×H ′×W ′

containing all pairwise feature dot-product results. Of

course, additional operations like max-pooling may also be

applied [30, 31, 18, 7].

In this paper, we propose the quality-aware template

matching (QATM) method, which can be used as a stan-

dalone template matching algorithm, or in a deep neural

network as a trainable layer with learnable parameters. It

takes the uniqueness of pairs into consideration rather than

simply evaluating matching score. QATM is composed of

differentiable and batch-friendly operations and, therefore,

is efficient during DNN training. More importantly, QATM

is inspired by assessing the matching quality of source and

target templates, and thus is able handle different matching

scenarios including 1-to-1, 1-to-many, many-to-many and

no-matching. Among different matching cases, only the 1-

to-1 matching is considered to be high quality due to it’s

more distinctive than 1-to-many and many-to-many cases.

The remainder of paper is organized as follows. Section

2 discusses motivations and introduces QATM . In Section

3, the performance of QATM is studied in classic template

1See numpy.tensordot and tensorflow.tensordot.
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matching setting. QATM is evaluated on both semantic im-

age alignment and image-to-GPS verification problems in

Section 4. We conclude the paper and discuss future works

in Section 5.

2. Quality-Aware Template Matching

2.1. Motivation

In computer vision, regardless of the application, many

methods implicitly attempt the solve some variant of fol-

lowing problem — given an exemplar image (or image

patch), find the most similar region(s) of interest in a target

image. Classic template matching [11, 26, 14], constrained

template matching [31], image-to-GPS matching [7], and

semantic alignment [18, 19, 8, 13] methods all include some

sort of template matching, despite differences in the details

of each algorithm. Without loss of generality, we will focus

the discussion on the fundamental template matching prob-

lem, and illustrate applicability to different problem in later

sections.

One known issue in most of existing template match-

ing methods is that typically, all pixels (or features) within

the template and a candidate window in the target image

are taken into account when measuring their similarity[11].

This is undesirable in many cases, for example when the

background behind the object of interest changes between

the template and the target image. To overcome this is-

sue, the BBS [11] method relies on nearest neighbor (NN)

matches between the template and the target, so that it could

exclude most of background pixels for matching. On top of

BBS, the DDIS [26] method uses the additional deforma-

tion information in NN field, to further improve the match-

ing performance.

Unlike previous efforts, we consider five different tem-

plate matching scenarios, as shown in Table 1, where t and

s are patches in the template T and search S images, re-

spectively. Specifically, “1-to-1 matching” indicates exact

matching, i.e. two matched objects, “1-to-N” and “M -to-1”

indicates s or t is a homogeneous or patterned patch caus-

ing multiple matches, e.g. a sky or a carpet patch, and “M -

to-N” indicates many homogeneous/patterned patches both

in S and T. It is important to note that this formulation

is completely different from the previous NN based formu-

lation, because even though t and s are nearest neighbors,

their actual relationship still can be any of the five cases con-

sidered. Among four matching cases, only 1-to-1 matching

is considered as high quality. This is due to the fact that in

other three matching cases, even though pairs may be highly

similar, that matching is less distinctive because of multiple

matched candidates. Which turned out lowering the relia-

bility of that pair.

It is clear that the “1-to-1” matching case is the most

important, while the “not-matching” is almost useless. It

Matching Cases Not

1-to-1 1-to-N M -to-1 M -to-N Matching

Quality High Medium Medium Low Very Low

QATM (s, t) 1 1/N 1/M 1/MN 1/‖T‖‖S‖ ≈ 0

Table 1: Template matching cases and ideal scores.

is therefore not difficult to come up the qualitative assess-

ment for each case in the Table 1. As a result, the optimal

matched region in S can be found as the place that maxi-

mizes the overall matching quality. We can therefore come

up with a quantitative assessment of the matching as shown

in Eq. (1)

R∗ = argmax
R

{
∑

r∈R

max
{

Quality(r, t)|t ∈ T
}

} (1)

such that the region R in S that maximizes the overall

matching quality will be the optimally matching region. R
is a fixed size candidate window and we used the size of

object as window size in the experiment.

2.2. Methodology

To make Eq. (1) applicable to template matching, we

need to define Quality(s, t), i.e. how to assess the match-

ing quality between (s, t). In the rest of section, we de-

rive the quality-aware template matching (QATM) measure,

which is a proxy function of the ideal quality assessment

Quality(s, t).
Let fs and ft be the feature representation of patch s

and t, and ρ(·) is a predefined similarity measure between

two patches, e.g. cosine similarity. Given a search patch s,

we define the likelihood function that a template patch t is

matched, as shown in Eq. 2,

L(t|s) =
exp{α · ρ(ft, fs)}

∑

t′∈T
exp{α · ρ(ft′ , fs)}

(2)

where α is a positive number and will be discussed later.

This likelihood function can be interpreted as a soft-ranking

of the current patch t compared to all other patches in the

template image in terms of matching quality. It can be alter-

natively considered as a heated-up softmax embedding [38],

which is the softmax activation layer with a learnable tem-

perature parameter, i.e. α in our context.

In this way, we can define the QATM measure as simple

as the product of likelihoods that s is matched in T and t is

matched in S as shown in Eq. (3).

QATM(s, t) = L(t|s) · L(s|t) (3)

Any reasonable similarity measure ρ(·) that gives a high

value when ft and fs are similar, a low value otherwise

could be used. When t and s truly matched, ρ(ft, fs) should
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Matching Case L(s|t) L(t|s) QATM(s, t)

1-to-1 1 1 1

1-to-N 1 1/N 1/N
M -to-1 1/M 1 1/M
M -to-N 1/M 1/N 1/MN

Not Matching 1/‖S‖ 1/‖T‖ ≈ 0

Table 2: Ideal QATM scores

be larger than those unmatched cases ρ(ft, fs′). Equiva-

lently, this means ρ(ft, fs) is the best match and thus the

maximum score. This score will ideally be 1, after lifting

by α and activating by the softmax function, when appro-

priate α parameter is selected. Similarly, when t matches

N of s patches, we should have N equally high matching

scores, indicating L(s|t) = 1/N in the ideal case. Table 2

summarizes the ideal scores of all five cases, and their val-

ues match the subjective quality assessment on individual

cases shown in Table 1. Once we have the pairwise QATM

results between S and T, the matching quality of an ROI s
can be found as shown in Eq. (4)

q(s) = max
{

QATM(s, t)|t ∈ T
}

(4)

where q(·) indicates the matching quality function. Eventu-

ally, we can find the best matched region R∗ which maxi-

mizes the overall matching quality as shown in Eq. (5).

R∗ = argmax
R

{

∑

r∈R

q(r)

}

(5)

2.3. QATM As An Algorithmic DNN Layer

Proposed QATM assesses the matching quality in a con-

tinuous way. Therefore, its gradients can be easily com-

puted via the chain rule of individual function (all of which

can be implemented through either a standard DNN layer

e.g. softmax activation, or basic mathematical operators

provided in most of DNN frameworks).

In Alg. 1, we demonstrate how to compute the matching

quality map form both T and S. One can easily implement

it into DNN in roughly 30 lines of Python code using deep

learning librarys such as Tensorflow and Pytorch.

Specifically, we use the cosine similarity as an example to

assess the raw patch-wise similarity, tf.einsum(line 4)

computes all patch-wise similarity scores in a batch way.

Once QATM(t, s) is computed, we can compute the tem-

plate matching map for the template image T and the target

search image S, respectively, as shown in lines 9 — 10. As

one can see, when the α parameter is not trainable, i.e. a

fixed value, then the proposed QATM layer degrades to a

classic template matching algorithm.

Algorithm 1 Compute QATM and matching quality be-

tween two images

1: Given: template image IT and search image IS , a fea-

ture extracting model F , a temperature parameter α.

Func(·|I) indicates doing operation along axis of I .

2: T ← F (IT )
3: S ← F (IS)
4: ρst ← Patch-wiseSimilarity(T, S) ⊲

Which can be easily obtained by off-the-shelf

functions such as tensorflow.einsum or

tensorflow.tensordot

5: ρst ← ρst × α
6: L(s|t)← Softmax(ρst|T )

7: L(t|s)← Softmax(ρst|S)

8: QATM ← L(s|t)× L(t|s)
9: Smap ←Max(QATM |T ) ⊲ Matching quality score

10: Tmap ←Max(QATM |S)

2.4. Discussions on α

In this section, we discuss how α should be picked in

a direct template matching scenario that does not involve

training a DNN. We later show that QTAM can easily be

embedded as a trainable layer in DNNs to perform tem-

plate matching without manual tuning structure according

to tasks.

When applying Eq. (2), α serves two purposes — (1)

matched patches will have ranking scores as close to 1

as possible, and (2) unmatched patches will have ranking

scores as close to 0 as possible. As one can see, as α in-

creases, L(t|s)+, the likelihood of matched cases, will also

increase, and will quickly reach its maximum of 1 after

some α. However, this does not mean we can easily pick

a large enough α, because a very large α will also push

L(t|s)−, the likelihood of unmatched cases, to deviate from

0. Therefore, a good α choice can be picked as the one

that provides the largest quality discernibility as shown in

Eq. (6)

α∗ = argmax
α>0

{

L(t|s)+ − L(t|s)−
}

. (6)

In practice, it is difficult to manually set α properly with-

out knowing details about the similarity score distributions

of both matched and unmatched pairs. If both distribu-

tions are known, however, we can simulate both L(t|s)+

and L(t|s)−. Without loss of generality, say there are N
patches in T. L(t|s), whether or not (t, s) is the matched

pair, can be obtained by simulating one ft feature and N
of fs feature, or equivalently, by simulating N number of

ρ(ft, fs) similarity scores according to its definition Eq. (2).

The major difference between the matched and unmatched

cases is that we need one score from the score distribution

of matched pairs and N − 1 scores from the distribution of
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Figure 1: The quality discernibility for varying α.

unmatched pairs for L(t|s)+, while all N scores from the

distribution of unmatched pairs for L(t|s)−.

Fig. 1 shows the difference between E[L(t|s)+] and

max{L(t|s)−} for different α values, when the genuine and

imposter scores follow the normal distributionN (µ+, 0.01)
and N (0, 0.05) for N = 2200. As one can see, the differ-

ence plot is uni-modal, and the optimal α increases as the

mean µ+ decreases. This figure is more meaningful when

the used feature is from a DNN and the used raw similarity

measure is the cosine similarity. Zhang et al. [37] provides

the theoretical cosine similarity score distribution for un-

matched pairs, whose mean is 0 and variance is 1/d, where

d is the feature dimension. Our empirical studies shows that

many DNN features attains µ+ above 0.3, e.g. the VGG19

feature. Consequently, a reasonable α for DNN features is

roughly in [12.5, 33.7] when cosine similarity is used.

3. QATM Performance in Template Matching

We start with evaluating the proposed QATM perfor-

mance on the classic template matching problem. Our code

is released in the open repository https://github.

com/cplusx/QATM.

3.1. Experimental Setup

To find the matched region in the search image S, we

compute the matching quality map on S through the pro-

posed NeuralNetQATM layer (without learning α) (see

Alg. 1), which takes a search image IS and a template im-

age IT as inputs. One can therefore find the best matched

region R∗ in S using Eq. (5).

We follow the evaluation process given in [24] and use

the standard OTB template matching dataset [32], which

contains 105 template-image pairs from 35 color videos.

We use the 320-d convoluational feature from a pretrained

ImageNet-VGG19 network. The standard intersection over

union (IoU) and the area-under-curve (AUC) methods are

used as evaluation metrics. QTAM is compared against

three state-of-the-art methods, BBS [11], DDIS [26] and

CoTM [24], plus the classic template matching using SSD

and NCC.

3.2. Performance On The Standard OTB Dataset

In this experiment, we follows all the experiment set-

tings from [14], and evaluates the proposed QATM method

on the standard OTB dataset. The α value is set to 28.4,

which is the peak of VGG’s curve (see Fig. 1). The QATM

performance as well as all baseline method performance are

shown in Fig. 2-(a). As one can see, the proposed QATM

outperforms state-of-the-art methods and lead the second

best (CoTM) by roughly 2% in terms of AUC score, which

is clearly a noticeable improvement when comparing to the

1% performance gap between BBS and its successor DDIS.

Since the proposed QATM method has the parameter α,

we evaluate the QATM performance under varying α values

as shown in Fig. 2-(b). It is clear that the overall QATM per-

formance is not very sensitive to the choice of value when

α is around optimal solution. As indicated by the horizon-

tal dash line in Fig. 2-(b), a range of α (rather than a single

value) leads to better performance than the state-of-the-art

methods. More qualitative results can be found in Fig. 3.

3.3. Performance On The Modified OTB Dataset

One issue in the standard OTB dataset is that it does

not contain any negative samples, but we have no idea

whether a template of interest exist in a search image in real-

applications. We therefore create a modified OTB (MOTB)

dataset. Specifically, for each pair search image S and tem-

plate T in OTB, we (1) reuse this pair (S,T) in MOTB as

a positive sample and (2) keep S untouched while replac-

ing T with a new template T
′, where T

′ is from a different

OTB video, and use this (S,T′) as a negative sample. The

negative template T′ is chosen to be the same size as T and

is randomly cropped from a video frame.

The overall goal of this study is to fairly evaluate the

template matching performance with the presence of nega-

tive samples. For each sample in MOTB, a pair of (template,

search image), we feed it to a template matching algorithm

and record the average response of the found region in a

search image. For the proposed QATM method, we again

use α = 28.4. These responses along with the true labels

of each pairs are then used to plot the AUC curves shown

in Fig. 2-(c). Intuitively, a good template matching method

should give much lower matching scores for a negative sam-

ple than for a positive sample, and thus attain a higher AUC

score. The proposed QATM method obviously outperform

the three state-of-the-art methods by a large margin, which

is roughly 9% in terms of AUC score. More importantly,

the proposed QATM method clearly attains much higher

true positive rate at low false positive rates. This result is

not surprising since the proposed QATM is quality aware.
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(a) (b) (c)

Figure 2: Template matching performance comparisons. (a) QATM v.s. SOTA methods on the OTB dataset. (b) QATM

performance under varying α on the OTB dataset. (c) QATM v.s. SOTA methods on the MOTB dataset.

For example, when a negative template is homogeneous, all

methods will find a homogeneous region in the search im-

age since it is the most similar region. The difference is that

our approach is quality-aware and thus the matching score

of this type will be much lower than that of a positive tem-

plate, while other methods do not have this feature.

3.4. Discussions

Fig. 3 provides more qualitative results from the pro-

posed QATM method and other state-of-the-art methods.

These results confirm the use of QATM, which gives 1-

to-1, 1-to-many, and many-to-many matching cases dif-

ferent weights, not only finds more accurate matched re-

gions in the search image, but also reduces the responses

in unmatched cases. For example, in the last row, when

a nearly homogeneous negative template is given, the pro-

posed QATM method is the only one that tends to give low

scores, while others still returns high responses.

Finally, the matching speed also matters. We thus es-

timate the processing speed (sec/sample) for each method

using the entire OTB dataset. All evaluations are based

on an Intel(R) Xeon(R) E5-4627 v2 CPU and a

GeForce GTX 1080 Ti GPU respectively. Table 3

compares the estimated time complexity of different meth-

ods. Though QATM contains relative expensive softmax

operation, its DNN compatible nature makes GPU process-

ing feasible, which clearly is the fastest method.

Methods SSD NCC BBS DDIS CoTM QATM

Backend CPU CPU GPU

Average (sec.) 1.1 1.5 15.3 2.6 47.7 27.4 0.3

StandDev (sec.) 0.47 0.53 13.10 2.29 18.50 17.80 0.12

Table 3: Time complexity comparisons. (Time for feature

extraction is excluded)

Template Search QATM BBS DDIS CoTM

Figure 3: Qualitative template matching performance.

Columns from left to right are: the template frame, the

target search frame with predicted bounding boxes over-

laid (different colors indicate different method), and the re-

sponse maps of QATM, BBS, DDIS, CoTM, respectively.

Rows from top to bottom: the top four are positive samples

from OTB, while the bottom four are negative samples from

MOTB. Best viewed in color and zoom-in mode.

4. Learable QATM Performance

In this section, we focus on use the proposed QATM as

a differentiable layer with learnable parameters in different

template matching applications.
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4.1. QATM for ImagetoGPS Verification

The image-to-GPS verification (IGV) task attempts to

verify whether a given image is taken as the claimed GPS

location through visual verification. IGV first uses the

claimed location to find a reference panorama image in a

third-party database, e.g. Google StreetView, and then take

both the given image and the reference as network inputs to

verify visual contents via template matching and produces

the verification decision. The major challenges of the IGV

task compared to the classic template matching problem are

(1) only a small unknown portion visual content in the query

image can be verified in the reference image, and (2) the ref-

erence image is a panorama, where the potential matching

ROI might be distorted.

4.1.1 Baseline and QATM Settings

To understand the QATM performance in the IGV task, we

use the baseline method [7] , and repeat its network training,

data augmentation, evaluation etc., except that we replace

its Bottom-up Pattern Matching module with the proposed

NeuralNetQATM layer (blue box in Fig. 4).

Figure 4: The baseline network architecture from [7], and

the QATM version. The dashed arrows indicate the replace-

ment relationship.

The Bottom-up Pattern Matching module first computes

the cosine similarity between two image features, and then

pools out the maximum response only. More precisely, its

matching score for a patch s given the template T relies on

Eq. (7),

R(s|T) = max{ρ(ft, fs)|t ∈ T} (7)

while the QATM version relies on Eq. (4).

4.1.2 Performance Comparison

To evaluate QATM performance, we reuse the two dataset

used by [7], namely the Shibuya and Wikimedia Common

dataset, both of which contain balanced positive and nega-

tive samples. Comparison results are listed in Table 4. The

proposed QATM solution outperforms the baseline BUMP

method on the more difficult Shibuya dataset, while slightly

Wikimedia Common Shibuya

NetVLAD [3] 0.819 / 0.847 0.634 / 0.638

DELF [17] 0.800 / 0.802 0.607 / 0.621

PlacesCNN [39] 0.656 / 0.654 0.592 / 0.592

BUPM∗ [7] 0.864 / 0.886 0.764 / 0.781

QATM 0.857 / 0.886 0.777 / 0.801

Table 4: Image-to-GPS verification performance compar-

isons. Performance scores are reported in the (ROC-AUC /

Avg. precision) format. (∗ indicates the baseline network.)

worse on the Wikimedia Common dataset. This is likely

attributed to the fact that the Verification (see Fig. 4) in the

baseline method is proposed to optimize the BUMP perfor-

mance but not the QATM performance, and thus the advan-

tage of using QATM has not fully transfer to the verification

task.

We therefore annotate the matched regions in terms

of polygon bounding boxes for the Wikimedia Common

dataset for better evaluating the matching performance.

These annotations will be released. With the help of these

ground truth masks, we are able to fairly compare the pro-

posed QATM and BUMP only on the localization task,

which is to predict the matched region in a panorama image.

These results are shown in Table 5, and the QATM improves

the BUMP localization performance by 21% relatively for

both F1 and IoU measure, respectively. The superiority of

QATM for localization can be further confirmed in qualita-

tive results shown in Fig. 5, where the QATM-improved ver-

sion produces much cleaner response maps than the base-

line BUMP method.

Wikimedia Common F1 IoU

BUPM 0.33 0.24

QATM 0.40 0.29

Table 5: Localization performance comparisons. Perfor-

mance scores are averaged over the entire dataset.

4.2. QATM for Semantic Image Alignment

The overall goal for the semantic image alignment (SIA)

task is to wrap a given image such that after wrapping it is

aligned to a reference image in terms of category-level cor-

respondence. A typical DNN solution for semantic image

alignment task takes two input images, one for wrapping

and the other for reference, and commonly output a set of

parameters for image wrapping. More detailed descriptions

about the problem can be found in [18, 19, 13].234

2https://www.di.ens.fr/willow/research/cnngeometric/
3https://www.di.ens.fr/willow/research/weakalign/
4https://www.di.ens.fr/willow/research/scnet/
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Query Search Pano. GT QATM BUPM

Figure 5: Qualitative image-to-GPS results. Columns from

left to right are: the query image, the reference panorama

image with predicted bounding boxes overlaid (GT, the pro-

posed QATM, and the baseline BUPM), and the response

maps of ground truth mask, QATM-improved, and baseline,

respectively.

4.2.1 Baseline and QATM Settings

To understand the QATM performance in the SIA task, we

select the baseline method GeoCNN [18], and mimic all the

network related settings, including to network architecture,

training dataset, loss function, learning rates, etc., except

that we replace the method’s matching module (orange box

in Fig. 6) with the NeuralNetQATM layer (yellow box in

Fig. 6).

Unlike in template matching, the SIA task relies on the

raw matching scores between all template and search im-

age patches (such that geometric information is implicitly

preserved) to regress the wrapping parameters. The match-

ing module in [18] is simply computed as the cosine sim-

ilarity between two patches, i.e. ρ(S,T) (see ρst in line

4 of Alg. 1) and use this tensor as the input for regres-

sion. As a result, instead of the matching quality maps,

we also make the corresponding change that let the pro-

posed NeuralNetQATM produce the raw QATM match-

ing scores, i.e. QATM(S,T)(see QATM in line 8 of Alg. 1).

Figure 6: The baseline network architecture from [18], and

the QATM version. The dashed arrows indicate the replace-

ment relationship.

4.2.2 Performance Comparisons

To fairly compare SIA performance, we follow the evalu-

ation protocols proposed in [13], which splits the standard

PF-PASCAL benchmark into training, validation, and test-

ing subsets with 700, 300, and 300 samples, respectively.

The system performance is reported in terms of the percent-

age of correct key points (PCK) [33, 13], which counts the

percentage of key points whose distance to ground truth is

under a threshold after being transformed. The threshold

is set to τ = 0.1 of image size in the experiment. Table 6

compares different methods on this dataset. The proposed

QATM method clearly outperforms all baseline methods,

and also is the top-ranking method for 7 out of 20 sub-

classes. Furthermore, the SCNet [13] uses much more ad-

vanced features and matching mechanisms than our base-

line GeoCNN method. And [19] used training subset of

PF-PASCAL to fine-tune on GeoCNN with a very small

learning rate. However, our results confirm that simply re-

placing the raw matching scores with those quality-aware

scores could lead an larger gain than using more a compli-

cated network without fine-tuning on PF-PASCAL subset.

A concurrent work [20] adopted a similar idea to re-rank

matching score through softmax function as QATM. They

reassigned matching score by finding soft mutual nearest

neighbour and outperformed QATM when trained on PF-

PASCAL subset. More qualitative results can be found in

Fig. 7
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Class UCN SCNet GeoCNN∗ WSup NC-Net QATM

[8] [13] [18] [19] [20]

plane 64.8 85.5 82.4 83.7 - 83.5

bike 58.7 84.4 80.9 88.0 - 86.2

bird 42.8 66.3 85.9 83.4 - 80.7

boat 59.6 70.8 47.2 58.3 - 72.2

bottle 47.0 57.4 57.8 68.8 - 78.1

bus 42.2 82.7 83.1 90.3 - 87.4

car 61.0 82.3 92.8 92.3 - 91.8

cat 45.6 71.6 86.9 83.7 - 86.9

chair 49.9 54.3 43.8 47.4 - 48.8

cow 52.0 95.8 91.7 91.7 - 87.5

d.table 48.5 55.2 28.1 28.1 - 26.6

dog 49.5 59.5 76.4 76.3 - 78.7

horse 53.2 68.6 70.2 77.0 - 77.9

m.bike 72.7 75.0 76.6 76.0 - 79.9

person 53.0 56.3 68.9 71.4 - 69.5

plant 41.4 60.4 65.7 76.2 - 73.3

sheep 83.3 60.0 80.0 80.0 - 80.0

sofa 49.0 73.7 50.1 59.5 - 51.6

train 73.0 66.5 46.3 62.3 - 59.3

tv 66.0 76.7 60.6 63.9 - 64.4

Average 55.6 72.2 71.9 75.8 78.9 75.9

Table 6: Semantic image alignment performance compari-

son on PF-PASCAL. (∗ indicates the baseline network.)

5. Conclusion

We introduced a novel quality-aware template matching

method, QTAM. QTAM is inspired by the fact of natural

quality differences among different matching cases. It is

also designed in such a way that its matching score accu-

rately reflects the relative matching distinctiveness of the

current matching pair against others. More importantly,

QTAM is differentiable with a learable paramters, and can

easily be implemented with existing common deep learning

layers. QTAM can be directly embedded into a DNN model

to fulfill the template matching goal.

Our extensive experiments show that when used alone, it

outperforms the state-of-the-art template matching methods

and produces more accurate matching performance, fewer

false alarms, and at least 10x speedup with the help of a

GPU. When plugged into existing DNN solutions for tem-

plate matching related tasks, we demonstrated that it could

noticeably improve the scores in both the image semantic

alignment tasks, and the image-to-GPS verification task.
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Figure 7: Qualitative results on PF-PASCAL dataset.

Columns from left to right represent source image, target

image, transform results of QATM, GoeCNN[18] and [19].

Circles and crosses indicate key points on source images

and target images.
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