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Abstract

Weakly Supervised Object Localization (WSOL) tech-

niques learn the object location only using image-level la-

bels, without location annotations. A common limitation for

these techniques is that they cover only the most discrimi-

native part of the object, not the entire object. To address

this problem, we propose an Attention-based Dropout Layer

(ADL), which utilizes the self-attention mechanism to pro-

cess the feature maps of the model. The proposed method

is composed of two key components: 1) hiding the most

discriminative part from the model for capturing the inte-

gral extent of object, and 2) highlighting the informative

region for improving the recognition power of the model.

Based on extensive experiments, we demonstrate that the

proposed method is effective to improve the accuracy of

WSOL, achieving a new state-of-the-art localization accu-

racy in CUB-200-2011 dataset. We also show that the pro-

posed method is much more efficient in terms of both param-

eter and computation overheads than existing techniques.

1. Introduction

Weakly Supervised Object Localization (WSOL) aims

to identify the location of the object in a scene only us-

ing image-level labels, not location annotations. Existing

approaches mine and track discriminative features of each

class for object detection [45, 36, 37, 9, 45, 25, 21, 41, 19,

2, 39, 15, 63, 7, 5, 4, 48, 14, 65, 32, 31, 58, 62, 8, 6] and seg-

mentation [33, 29, 18, 16, 24, 52, 50]. Because the discrim-

inative power of each object part is different from another,

these techniques tend to identify only the most discrimina-

tive part of the target object, incapable of covering entire

extent of the object. For example, in the case of a person,

the face may be more discriminative than the body which

appearance changes dramatically due to clothing. In this

case, existing WSOL techniques can localize only the face,

not the entire region.

This problem can be critical in object localization.

Specifically, Class Activation Mappings (CAM) [63] utilize
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Convolutional Neural Networks (CNN) classifier for learn-

ing the discriminative features. The key idea is that the clas-

sifier with a reasonable accuracy should observe the object

region to decide the class label. In other words, the dis-

criminative features should co-occur with the object region.

From this idea, they perform localization by tracking spatial

distribution of feature responses. Unfortunately, the classi-

fiers tend to focus only on the most discriminative features

to increase their classification accuracy. Therefore, the spa-

tial distribution of feature responses also tends to cover only

the most discriminative part of the object, which leads to lo-

calization accuracy degradation.

Recently, various techniques [49, 35, 17, 59, 20, 52, 51,

60] have been proposed to address this issue. Most of them

[49, 17, 35, 59, 20] erased the most discriminative region

on the input image or feature map by zeroing that region

during the training phase. These techniques are similar to

the dropout [38] in that they deactivate specific nodes of the

feature map by setting them zero during the training phase.

This prevents the model from relying solely on the most

discriminative part for classification, instead encourages it

to learn the less discriminative part as well. To achieve this

goal, Hide-and-Seek (HaS) [35] divides the input image into

grid-like patches and randomly selects the patches to erase.

While the random selection is simple and fast, it cannot ef-

fectively erase the most discriminative part.

For effectively removing only the most discriminative

part, several techniques [49, 17, 59, 20] have been proposed.

These techniques re-train the model multiple times [49, 17],

use additional classifiers [17, 59], or perform two forward-

backward propagations per one iteration [20] for finding

the most discriminative part. Consequently, huge additional

computing resources are required to eliminate the most dis-

criminative part effectively.

From previous methods, we conclude that the idea of

erasing only the most discriminative part is effective to

capture the full extent of object. However, existing meth-

ods require substantial computing resources to remove the

most discriminative part accurately. Our goal is to erase the

most discriminative part in an effective and efficient way.

To this end, we propose an Attention-based Dropout Layer
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Figure 1. ADL block diagram. The self-attention map is generated by channelwise average pooling of the input feature map. Based on the

self-attention map, we produce a drop mask using thresholding and an importance map using a sigmoid activation, respectively. The drop

mask and the importance map are selected stochastically at each iteration and applied to the input feature map. Please note that this figure

illustrates the case when the importance map is selected.

(ADL), a lightweight yet powerful method which utilizes

self-attention mechanism to remove the most discriminative

part of the target object.

Specifically, a self-attention map is obtained by perform-

ing channelwise average pooling on the input feature map.

Based on the self-attention map, we produce two key com-

ponents of ADL, a drop mask and an importance map. The

drop mask is used to hide the most discriminative part dur-

ing training. This induces the model to learn the less dis-

criminative part as well. We obtain this drop mask by

thresholding the self-attention map. The importance map

is used to highlight informative region for improving the

classification power of the model. Owing to the importance

map, the more accurate self-attention map can be produced.

The importance map is computed by applying sigmoid ac-

tivation to the self-attention map. During training, either

one of the drop mask or importance map is stochastically

selected at each iteration, and then the selected one is ap-

plied to the input feature map by spatialwise multiplication.

Figure 1 shows the block diagram of the proposed method.

Compared to existing WSOL techniques, the proposed

method is much more efficient in terms of both compu-

tation and parameter overheads. This is because we can

find and erase the most discriminative region by a single

forward-backward propagation in a single model. In ad-

dition, regardless of the model architecture, ADL can be

easily applied to convolutional feature maps of the model

to improve the localization accuracy. Compared to exist-

ing self-attention techniques [46, 12, 26, 53], the proposed

method is greatly lightweight because there are no addi-

tional trainable parameters for extracting self-attention map.

The proposed method is lightweight and efficient, and

also report excellent accuracy. Quantitatively, the proposed

method achieves superior accuracy, more than 15 percent-

age points of accuracy improvement, over the existing state-

of-the-art techniques [59, 60] on CUB-200-2011 dataset

[44], and comparable accuracy to the current state-of-the-art

technique [60] on ImageNet-1k dataset [30]. We also ob-

serve consistent results in qualitative evaluation; the model

with ADL learns the less discriminative part better than the

vanilla model [63].

2. Related Work

Dropout. Dropout [38] is a regularization technique to al-

leviate overfitting in neural networks. Specifically, dropout

discards information by randomly zeroing each hidden node

of the neural network during the training phase. In this way,

the network can enjoy the ensemble effect of small subnet-

works, thus achieving a good regularization effect. How-

ever, unlike fully connected layers, applying dropout to the

convolutional feature map is not effective. One of the rea-

sons is that spatially adjacent pixels are strongly correlated

on the convolutional feature map; they share redundant con-

textual information. Hence, the conventional pixel-based

dropout cannot completely discard the information on the

convolutional feature map [42].

In order to apply dropout to the convolutional feature

map, Tompson et al. [42] proposed SpatialDropout that ran-

domly drops partial channels of a feature map, rather than

dropping each pixel. Based on this channel-based dropout,

the problem of pixel-level dropout can be resolved. The pro-

posed method differs from SpatialDropout in that we drop

only strongly activated regions, rather than dropping en-

tire region of channel. Owing to this region-based dropout,

we could also bypass the problem of pixel-level dropout.

Meanwhile, Park and Kwak [27] proposed MaxDrop, which

drops the maximally activated pixel through channelwise or

spatialwise on the feature map. Similar to MaxDrop, the

proposed method drops strongly activated part. However,

we differ from MaxDrop in that we use attention mech-

anism to find the maximally activated part. In addition,

the proposed method does not drop the maximally activated

pixel, but maximally activated region.
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Attention mechanism. Humans selectively use an impor-

tant part of the data to make a decision [3, 13]. Similarly,

when a query comes in, the artificial model does not pro-

cess all the data equally, but focuses only on the impor-

tant data. This process is called attention mechanism and

is actively used in various fields such as machine transla-

tion [43], image captioning [55], image inpainting [56, 23],

transfer learning [57], visual question answering [64], and

generative model [28, 60]. When the query is input itself,

such attention is specifically called self-attention, which is

effective to learn the meaningful representation for conduct-

ing the given task. For example, in the case of the classifi-

cation task, the self-attention map appears in a form that

emphasizes informative features for classification (e.g., the

most discriminative part of the target object).

Recently, various methods [46, 47, 12, 26, 53] utilize the

self-attention mechanism to enhance the accuracy of the

CNN classification model. Residual Attention Networks

(RAN) [46] has improved the accuracy of the classifica-

tion model using 3D self-attention map. However, the pa-

rameter overheads are very large because the raw feature

map without any compression is used for attention extrac-

tion. Squeeze-and-Excitation (SE) [12] increases the ac-

curacy of the classification model using only 1D channel

self-attention map. For extracting the self-attention map,

the feature map is first compressed using Global Average

Pooling (GAP) and then passed through 2-layer MLP. In

this way, SE can significantly reduce the parameter over-

heads for attention extraction compared to RAN. However,

the parameter overheads are still not negligible (e.g., 10%

on ResNet50 [10]).

Bottleneck Attention Module (BAM) [26] and Convolu-

tional Block Attention Module (CBAM) [53] increase the

accuracy of the classifier by utilizing both 1D channel and

2D spatial self-attention maps. They compute the spatial

self-attention map using auxiliary convolutional layer(s).

The computed self-attention map is applied to the input fea-

ture map for rewarding the informative region. Likewise,

the proposed method uses the importance map for reward-

ing the informative region. However, the key difference

from them is that we stochastically penalize that region us-

ing the drop mask. Also, unlike these techniques, we do

not require additional trainable parameters for extracting the

self-attention map.

3. ADL: Attention-based Dropout Layer

In this section, we present details of the proposed

method, Attention-based Dropout Layer (ADL). ADL is ap-

plied on each feature map of classification model, and in-

duces the model to learn the entire region of the object.

ADL generates a self-attention map from input feature map,

and produces a drop mask and an importance map. Al-

though both components are computed from self-attention

map, they play the opposite role. The drop mask penalizes

the most discriminative part for inducing the model to cover

the integral extent of the object. Meanwhile, the importance

map rewards the most discriminative part for increasing the

classification power of the model. During training, the drop

mask or importance map is stochastically selected for each

iteration. Then, the selected one is applied to the input fea-

ture map. By applying each component stochastically, we

can enjoy their advantages simultaneously. ADL has two

main hyperparameters: drop rate and γ. The drop rate in-

dicates how frequently the drop mask is applied, and the γ

controls the size of the region to be dropped. The example

of each component is visualized in Figure 2.

Specifically, the input of ADL is a convolutional feature

map F ⊆ RH×W×C . Note that C is the number of channels,

H and W are height and width, respectively. For simplicity,

we omit the mini-batch dimension in this notation. We gen-

erate a self-attention map Matt ⊆ RH×W by compressing

F using channelwise average pooling. Because the model

is trained for classification, the intensity of each pixel in

the self-attention map is proportional to the discriminative

power. In this way, we can approximate the spatial distribu-

tion of the most discriminative part efficiently.

To obtain the drop mask, we first set a drop threshold by

prefixed ratio γ of maximum intensity of the self-attention

map. Then, we produce the drop mask Mdrop ⊆ RH×W

by setting each pixel to 0 if it is larger than drop threshold,

and 1 if it is smaller. That is, the drop mask has 0 for the

most discriminative region and 1 for otherwise. Note that

the size of region to be dropped increases as γ decreases,

and vice versa. The drop mask is applied to the input feature

map by spatialwise multiplication. In this way, we can hide

the most discriminative part from the model; we encourage

the model to learn the less discriminative part for classifica-

tion but meaningful region for localization. However, if the

drop mask is applied at every iteration, the most discrimi-

native part is never observed during the training phase. As

a result, the classification accuracy of the model is signif-

icantly decreased, which adversely affects the localization

accuracy. To remedy this, we stochastically apply the drop

mask according to drop rate. When the drop mask is not

applied, the importance map is applied instead. We gen-

erate the importance map Mimp ⊆ RH×W from the self-

attention map by applying sigmoid activation. That is, the

intensity of each pixel in the importance map is close to 1

for the most discriminative region, and close to 0 for the less

discriminative region. Like the drop mask, the importance

map is applied to the input feature map by spatialwise mul-

tiplication. In this way, we can improve the classification

accuracy of the model.

The proposed method is applied independently to each

convolutional feature map. Therefore, it can be easily

plugged into multiple feature maps of existing classification
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Figure 2. Drop mask and self-attention map at each layer of VGG-GAP [63]. At lower-level layers, the self-attention maps include

general features, while class-specific features are included in the self-attention maps at higher-level layers. The drop masks also erase

most discriminative part more effectively at higher-level layers. Please note that the drop mask is overlaid with input image for better

visualization. Because the importance map has a distribution very similar to that of the self-attention map, we do not visualize it.

models for improving localization accuracy. In addition,

it does not require any trainable parameters. That means,

there is no parameter overheads even when applied to multi-

ple feature maps at the same time. Furthermore, with ADL,

the most discriminative region can be identified and erased

efficiently, without auxiliary classifiers [17, 59], re-training

[49], or additional forward-backward propagation [20].

ADL is an auxiliary module which is applied only during

training. During the testing phase, ADL is deactivated. That

is, our testing phase is identical to that of vanilla model.

Therefore, the object localization can be performed using

various heatmap extraction methods [63, 31, 59, 20] with-

out bells and whistles. Note that we do not compensate the

different distributions between training and testing, as other

dropout-based WSOL techniques [17, 35, 59].

Relation with other attention extraction methods. Our

extraction method does not require trainable parameters,

much lightweight compared to existing methods [46, 12, 26,

53]. Thus, one might wonder how our method can produce

semantically meaningful results despite its simplicity.

Recently, Zagorukyo and Komodakis [57] showed that

the informative region for transfer learning can be identified

by applying the channelwise pooling to the convolutional

feature map. That is, the self-attention map for transfer

learning is obtained by the channelwise pooling. Inspired

by this, CBAM [53] utilized the self-attention map to im-

prove the classification accuracy. Specifically, they refine

the map using auxiliary convolutional layer and sigmoid ac-

tivation. This refined self-attention map is applied to input

feature map by spatialwise multiplication. In this way, the

auxiliary convolutional layers are trained to refine the self-

attention map for improving the classification accuracy.

However, from the empirical study, we observe that the

self-attention map may not need to be refined by auxiliary

layers. We conjecture that it is because existing convolu-

tional layers in CNN model are sufficiently powerful to pro-

duce meaningful self-attention map. Hence, after comput-

ing the self-attention map by channelwise average pooling,

we normalize this map using sigmoid activation and then

multiply it to input feature map. Then, the gradient from

the loss function updates existing convolutional layers so

that the resultant self-attention map is useful for improving

classification accuracy. For example, if the self-attention

map fails to highlight the object region, this may degrade

the classification accuracy. Hence, existing convolutional

layers are trained to produce more accurate self-attention

map. This is equivalent to assigning the role of the auxiliary

convolutional layer used in CBAM to the existing convolu-

tional layers in the model. Note that the similar principle

was introduced by Lin et al. [22]; they replace the fully

connected layers of CNN classifier with the GAP layer.

The improvement of classification accuracy of our atten-

tion method may not be as great as that of CBAM. How-

ever, our method is much more efficient and can produce

sufficiently meaningful results for our application. This is

shown in our experimental results; our self-attention map is

effective to increase classification accuracy and identify the

most discriminative part of the target object.

Relation between drop mask and importance map. In

our model, the drop mask penalizes the most discriminative

part, while the importance map rewards the most discrim-

inative part. One might consider the drop mask and im-

portance map are mutually exclusive. However, our experi-

mental results support that they are not mutually exclusive.

We believe that it is because the drop mask can be accu-

rately produced by the importance map. Specifically, as the

importance map improves the classification accuracy, the

more accurate self-attention map can be produced. Conse-

quently, the drop mask can more effectively erase the most

discriminative region of the object.

Relation between classification and localization. Pre-

vious study [35] has reported that the classification accu-

racy is compromised while the localization accuracy is in-

creased. They conjecture that this is caused by the usage

of a drop mask. Because we also use a drop mask to erase

the most discriminative part, such a trade-off relationship
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Figure 3. Qualitative evaluation results of VGG-GAP [63] on CUB-200-2011 and ImageNet-1k. The left image in each figure is input

image. The red bounding box is ground truth, while the green bounding box is estimates. The middle image is heatmap and the right image

shows the overlap between the input image and the heatmap. We also compared our method and the vanilla model side by side.

between the accuracy of localization and that of classifica-

tion is consistently observed in our experiments. However,

the proposed method can boost the classification power us-

ing the importance map, thus the accuracy degradation of

classification is not as significant as other techniques.

Relation with the current state-of-the-arts. The current

state-of-the-art techniques for WSOL are Adversarial Com-

plementary Learning (ACoL) [59] and Self-Produced Guid-

ance (SPG) [60]. ACoL adds two auxiliary classifiers in

parallel to the backbone feature extractor for finding the

most discriminative part of the target object. The proposed

method differs from ACoL in that we can find the most

discriminative part without the additional classifier, which

is much more efficient. Most recently, SPG has been pro-

posed, a new WSOL technique that utilizes spatial distribu-

tion of the object and background. The classifier can learn

the integral extent of the object using that distribution as

auxiliary supervision. The proposed method differs from

SPG in that SPG does not erase the most discriminative part

of the object. In addition, SPG requires substantial comput-

ing resources for improving the localization accuracy.

4. Experimental Results

Dataset. We evaluate the performance of the proposed

method in CUB-200-2011 [44] and ImageNet-1k [30], re-

spectively. The ImageNet-1k is a large-scale dataset with

1,000 different classes, consisting of approximately 1.3 mil-

lion training images and 50,000 validation images. For this

dataset, we train the model with the training set and evaluate

the performance with the validation set.

The CUB-200-2011 includes 200 species of birds, con-

sisting of 5,994 training images and 5,794 testing images.

For this dataset, we train the model with the training set and

evaluate the performance with the testing set. The intra-

class variation of CUB-200-2011 is smaller than that of

ImageNet-1k, because all classes of this dataset belong to

birds. In this case, the extent of the most discriminative re-

gion might be quite small. For example, in Common Raven

and White-necked Raven, there is no difference in appear-

ance except the color of the neck. That is, the most discrim-

inative part is the neck, which is very small compared to the

entire area of the bird. Consequently, although CUB-200-

2011 is not a large-scale dataset such as ImageNet-1k, this

is a particularly challenging dataset to conduct WSOL.

Implementation details. We use VGG [34], ResNet [10],

MobileNetV1 [11], and InceptionV3 [40] as backbone net-

works. Note that we replace the last pooling layer and two

fully connected layers of VGG16 with a GAP layer, accord-

ing to [63]. We also use the customized InceptionV3 as a

backbone, following the SPG [60]. We plug SE block [12]

into ResNet50 for demonstrating the compatibility of ADL

with other self-attention methods. For ResNet and Mo-

bileNetV1, we set the stride of last strided convolution to

1 for enlarging the spatial resolution of heatmap to 14×14.

ADL is plugged in each feature map of the CNN model

in a sequential way; the output of ADL is the input of the

next layer. We use a pre-trained model which is trained

with ImageNet-1k dataset [30], and then fine-tune the net-

work. We extract the heatmap from classification model

using CAM [63]. Also, the bounding box is extracted from

the heatmap using the same method as presented in [63].

We implement the models using Tensorpack [54] on Ten-

sorflow [1], and train them using NVIDIA Titan Xp GPU.

Based on extensive ablation studies, we find that it is op-

timal to apply ADL to intermediate and higher-level layers

of the network. Especially, for the intermediate layer, it is

preferable to apply it to bottleneck part (e.g., pooling layer

or strided convolution). We set the drop rate as 75%. For

the drop threshold, we set γ to 80% for VGG-GAP and In-

ceptionV3, 90% for ResNet, and 95% for MobileNetV1.

However, the hyperparameters mentioned here are only the

recommended settings. Note that the localization accuracy

can be further improved when the optimal setting is used.

Metrics. We use three evaluation metrics as [35]: Top-1

classification accuracy (Top-1 Clas), Localization accuracy

with known ground-truth class (GT-known Loc), and Top-1

localization accuracy (Top-1 Loc). Top-1 Clas determines

that the answer is correct when the estimated class is equal

to the ground truth class. GT-known Loc judges the answer

as correct when the intersection over union (IoU) between

the ground truth bounding box and estimated box for the

ground truth class is 50% or more. Lastly, Top-1 Loc con-

siders the answer as correct when both Top-1 Clas and GT-
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Drop

mask (%)

Importance

map (%)

GT-known

Acc (%)

Top-1

Clas (%)

Top-1

Loc (%)

100 0 72.43 57.37 44.11

75 25 74.78 62.25 49.69

50 50 71.51 64.93 49.33

25 75 67.29 68.99 47.98

0 100 47.51 67.78 32.24

N/A N/A 51.09 67.55 34.41

75 N/A 73.23 61.55 47.67

N/A 25 50.62 68.50 33.91

75 25 74.78 62.25 49.69

Table 1. Upper: Accuracy according to drop rate. Middle: Base-

line accuracy. Lower: Accuracy when each component has been

deactivated. Bold text refers the best localization accuracy, while

italic text refers the best classification accuracy. N/A indicates that

ADL outputs the raw input feature map instead of applying drop

mask or importance map.

known Loc are correct. Please note that it is considered to be

the most appropriate to use Top-1 Loc for evaluating overall

localization performance, according to [30].

4.1. Ablation Study

In this subsection, we utilize pre-trained VGG-GAP [34,

63] as a backbone network. For training, we plug ADLs in

all the pooling layers and the conv5-3 layer, and then fine-

tune the model using CUB-200-2011 dataset.

First, we visualize the self-attention map and drop mask

in Figure 2. We observe that the self-attention maps of

lower-level layers (i.e., pool1 and pool2) contain class-

agnostic general features. Meanwhile, the self-attention

maps of higher-level layers (i.e., pool4 and conv5-3) contain

the class-specific features. We also observe that the drop

masks from higher-level layers erase the most discrimina-

tive part more accurately than those from lower-level layers.

Next, we investigate the effect of drop rate on accu-

racy. The upper part of Table 1 reports the results. From

these results, we observe that the best localization accu-

racy can be achieved when the drop rate is 75%. Mean-

while, when the drop mask is applied at every iteration (i.e.,

drop rate 100%), the classification (Top-1 Clas) and local-

ization (Top-1 Loc) accuracy are greatly reduced. This is be-

cause, as mentioned in Section 3, the model never observe

the most discriminative part. As a result, the classification

power of the model decreases significantly, which adversely

influences localization accuracy. Given that accuracy degra-

dation in GT-known Acc is relatively less than that of Top-1

Loc and that of Top-1 Clas, we can conclude that this is the

result of the classification accuracy degradation.

We observe that the classification accuracy increases as

the drop rate decreases. However, when the drop rate be-

Applied

feature map

GT-Known

Acc (%)

Top-1

Clas (%)

Top-1

Loc (%)

N/A 51.09 67.55 34.41

conv 5-3 57.99 68.95 41.73

+ pool4 68.22 67.17 48.02

+ pool3 75.41 65.27 52.36

+ pool2 71.85 63.76 48.46

+ pool1 74.78 62.25 49.69

Table 2. Effects in accuracy upon the choice of the feature maps to

employ ADL. Bold text refers the best localization accuracy, while

italic text refers the best classification accuracy.

comes too low (drop rate from 25% to 0%), the classifi-

cation accuracy decreases again (from 68.99% to 67.78%).

We believe this is caused by overfitting. The drop mask

is a dropout-based technique and its rationale is similar to

MaxDrop [27]. Thus, the drop mask with proper drop rate

may prevent overfitting, increasing the classification accu-

racy. We consider that the analysis of regularization effect

of the drop mask is beyond the scope of this paper. Yet, we

plan to analyze this rigorously in future work.

Third, we observe the effect of each component on the

accuracy by deactivating the importance map or drop mask,

respectively. The lower part of Table 1 summarizes the ex-

perimental results. From this, we can confirm that applying

the drop mask and the importance map at the same time has

better localization accuracy than applying only one of them.

This supports the argument that the drop mask and impor-

tance map are not mutually exclusive.

When the importance map is applied alone, the classifi-

cation accuracy increases but the localization accuracy de-

creases. We believe that this is because the classifier focuses

more on the most discriminative part, guided by the impor-

tance map. This result supports our argument that the pro-

posed lightweight attention method is effective to improve

the classification accuracy. On the other hand, when drop

mask is applied alone, the localization accuracy increases

but the classification accuracy decreases. We believe that

this is because the model utilizes less discriminative parts

for classification, guided by the drop mask. These results

also support the observation that the accuracy of localiza-

tion and classification are in a trade-off relationship when

applying the drop mask [35].

Lastly, we investigate the effects in accuracy upon the

choice of feature maps where ADLs are employed and re-

port the results in Table 2. From these results, we can

see that applying ADLs to additional convolutional feature

maps further increases the localization accuracy. We find

that the ADL can improve both localization and classifi-

cation accuracy. However, the best localization accuracy

can be achieved by sacrificing the classification accuracy.

In addition, when the ADLs are applied to lower-level fea-
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Method Backbone
# of

Params

(Mb)

Overheads CUB-200-2011 ImageNet-1k

parameter (%) computation (%)
Top-1

Loc (%)

Top-1

Clas (%)

Top-1

Loc (%)

Top-1

Clas (%)

CAM VGG-GAP [34, 63] 78 0 0 34.41 67.55 42.80* 66.60*

ACoL VGG-GAP [34, 63] 181 132.05 37.63 45.92* 71.90* 45.83* 67.50*

ADL VGG-GAP [34, 63] 78 0 0.00 52.36 65.27 44.92 69.48

CAM MobileNetV1 [11] 16 0 0 43.70 71.94 41.66 68.38

HaS-32 MobileNetV1 [11] 16 0 0 44.67 66.64 41.87 67.48

ADL MobileNetV1 [11] 16 0 0.00 47.74 70.43 43.01 67.77

CAM ResNet50-SE [10, 12] 107 0 0 42.72 80.65 46.19 76.56

ADL ResNet50-SE [10, 12] 107 0 0.00 62.29 80.34 48.53 75.85

CAM InceptionV3 [40, 60] 101 0 0 43.67* - 46.29* -

SPG InceptionV3 [40, 60] 146 44.55 30.05 46.64* - 48.60* -

ADL InceptionV3 [40, 60] 101 0 0.00 53.04 74.55 48.71 72.83

Table 3. Quantitative evaluation results on CUB-200-2011 and ImageNet-1k. Bold text refers the best localization accuracy for each

backbone network. We also underline the best score in each dataset. Overheads are computed based upon their backbone networks. The

accuracy with asterisk* indicates that the score is from the original paper. We leave some Top-1 Clas scores blank, because they are not

reported in the original paper [60]. For reproducing baseline methods, we use hyperparameters suggested by their original papers [63, 35].

Also, we train and test HaS and ADL under the same setting for a fair comparison.

ture maps such as pool2 and pool1, the localization accu-

racy rather decreases. We believe that this is because the

lower-level feature maps include general features that are

not related to the target class. Consequently, the most dis-

criminative part cannot be effectively eliminated in lower-

level feature maps using ADL.

4.2. Comparison with State­of­the­art Methods

We compare the proposed method with various recent

WSOL techniques including the state-of-the-art: CAM

[63], HaS [35], ACoL [59], SPG [60]. We report the ac-

curacy of ACoL and SPG from their original paper. Mean-

while, we train the backbone networks using the same pre-

processing method used in ACoL and SPG. Then, HaS or

ADL are applied on the backbone networks. Considering

the accuracy of vanilla model as baseline, we evaluate the

accuracy gain of HaS and ADL, respectively. Please note

that ACoL and SPG are the current state-of-the-art tech-

niques for WSOL. In addition, among the techniques with-

out parameter overheads, HaS performs the best.

Figure 3 visualizes the localization results on CUB-

200-2011 and ImageNet-1k dataset for qualitative evalua-

tion. From the results, we consistently observe that model

with ADL captures the less discriminative parts better than

vanilla model. For example, as seen from the left-most sam-

ple in the Figure 3, the heatmap and bounding box extracted

from vanilla model only highlight the face of birds. Con-

trarily, the model with ADL covers not only the face, but

also the entire part of the bird, from head to wing. In addi-

tion, from the right-most sample in the Figure 3, the vanilla

model focuses only on the cylinder of revolver, whereas the

model with ADL localizes the entire frame of the revolver.

Next, the quantitative evaluation results on CUB-200-

2011 and ImageNet-1k datasets are summarized in Table

3. To compare the computing resources required by each

technique, we have described the number of parameters

and both computation and parameter overheads along with

Top-1 Loc and Top-1 Clas. ADL has no parameter over-

heads, and the computation overheads are nearly zero (e.g.,

0.003% in ResNet50-SE) upon the backbone network. The

proposed method is much more efficient than the existing

state-of-the-art techniques, ACoL and SPG, in terms of both

parameter and computation overheads.

We push further to maximize the efficiency of WSOL by

employing MobileNetV1 [11] as a backbone network. Due

to the lightweight nature of MobileNetV1, it is inappropri-

ate to employ ACoL or SPG which requires huge additional

computing resources. On the other hand, ADL and HaS can

be successfully employed despite a limited amount of re-

sources. From the experimental results, we can observe that

the accuracy gain of the proposed method is better than that

of HaS. In addition, HaS has reduced classification accu-

racy against the baseline. This is caused by the trade-off re-

lationship between localization and classification accuracy

discussed in Section 3. Fortunately, the importance map of

ADL can subside such a drawback by increasing the clas-

sification power. Consequently, the classification accuracy

degradation of the ADL is not as significant as that of HaS.

In addition to its high efficiency, the proposed method

achieves a new state-of-the-art localization accuracy on

CUB-200-2011 dataset. When ResNet50-SE is employed

as a backbone, the proposed method improves the local-

ization accuracy by more than 15 percentage points over

the state-of-the-art accuracy [59, 60]. Please note that the
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number of parameters of ResNet50-SE with ADL is much

smaller than that of ACoL and SPG. This achievement

is quite impressive, considering that recent techniques are

competing with the accuracy by 2-3 percentage points dif-

ference. Also, when the other three backbone networks are

employed, the proposed method achieves better localization

accuracy than the existing state-of-the-art techniques.

In the ImageNet-1k experiments, when VGG-GAP is

used as a backbone, the accuracy of ADL is better than

that of CAM, but slightly lower than that of ACoL. How-

ever, when ResNet50-SE is used as a backbone, localiza-

tion accuracy of ADL is better than that of ACoL and com-

parable with that of SPG even though the required com-

puting resources are much lower. In addition, when Incep-

tionV3 is used as a backbone, comparable accuracy (0.11

percentage point difference) to SPG is achieved. In sum-

mary, we achieve new state-of-the-art accuracy on CUB-

200-2011 dataset; on ImageNet-1k dataset, ADL achieves

comparable accuracy with the current state-of-the-art tech-

nique [60] despite its superior efficiency.

Discussion. We verified the proposed method on a single-

object detection task, following the current state-of-the-art

methods [59, 60]. However, it should be noted that the pro-

posed method can be also used to improve the weakly super-

vised semantic segmentation accuracy. The classifier with

ADL is the same as its vanilla version during testing, thus it

can be easily combined with the weakly supervised seman-

tic segmentation framework, such as [18, 24].

Next, to analyze the substantial difference in our accu-

racy gain between two datasets, we investigate our failure

examples from ImageNet-1k experiments. From the failure

case, we observe that the classifier extracts the discrimina-

tive features from the background which appears frequently

with the target object. Figure 4 illustrates such examples.

In the case of the snowmobile class, the target object often

co-occurs with snow. The vanilla model only focuses on the

snowmobile, while the model with ADL learns not only the

snowmobile, but also the snow and tree. This is because the

background frequently appearing with the object might be

the less discriminative region.

ImageNet-1k includes a wide variety of classes where

specific types of background co-occur with the target ob-

ject. In this case, the background has a certain level of dis-

criminative power. Therefore, the model is likely to learn

the background features when the most discriminative part

is dropped. Meanwhile, since all classes of CUB-200-2011

belong to birds, similar backgrounds appear regardless of

the classes (e.g. sky, tree). In other words, the background

of this dataset is nearly independent of classes, thus the

background is not a discriminative region [61]. As a result,

the model does not learn the features from the background

although the most discriminative part is hidden.

(a) Input (b) CAM (c) ADL (Ours)

Figure 4. The failure case on ImageNet-1k experiments. The target

class is snowmobile. The model with ADL learns the less discrim-

inative region which is not included in object. Specifically, the

model captures not only the snowmobile, but also snow and tree.

This explains the gap of our accuracy gain for two

datasets; ADL has remarkable performance to induce the

classifier to learn the less discriminative parts, as supported

by CUB-200-2011 evaluations. We believe that this prob-

lem might be critical for all WSOL methods inducing the

classifier to learn the less discriminative part. Currently, it

seems non-trivial to solve this problem, thus we will address

this issue in future work. Lastly, we note that the gap is not

caused by the scale of dataset because ADL rarely fails for

ImageNet-1k classes sharing similar background statistics

(e.g., various breeds of dogs).

5. Conclusion

We presented an Attention-based Dropout Layer (ADL),

a novel weakly supervised object localization method that

induces the CNN classifier to learn entire extent of the ob-

ject. The proposed method is much more efficient and

lightweight than existing state-of-the-art methods. In ad-

dition, the proposed method has achieved excellent perfor-

mance; new state-of-the-art accuracy on CUB-200-2011,

and comparable accuracy with current state-of-the-arts on

ImageNet-1k. We also demonstrate that the proposed

method can be easily applied to various CNN classifiers to

improve the localization accuracy. For the future work, we

will analyze the regularization effect of the drop mask. In

addition, we will address the problem that the model learns

the less discriminative region from outside of the object.
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