
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

Christopher Choy

chrischoy@stanford.edu

JunYoung Gwak

jgwak@stanford.edu

Silvio Savarese

ssilvio@stanford.edu

Abstract

In many robotics and VR/AR applications, 3D-videos

are readily-available input sources (a sequence of depth

images, or LIDAR scans). However, in many cases, the

3D-videos are processed frame-by-frame either through 2D

convnets or 3D perception algorithms. In this work, we

propose 4-dimensional convolutional neural networks for

spatio-temporal perception that can directly process such

3D-videos using high-dimensional convolutions. For this, we

adopt sparse tensors [8, 9] and propose generalized sparse

convolutions that encompass all discrete convolutions. To

implement the generalized sparse convolution, we create an

open-source auto-differentiation library for sparse tensors1

that provides extensive functions for high-dimensional con-

volutional neural networks. We create 4D spatio-temporal

convolutional neural networks using the library and vali-

date them on various 3D semantic segmentation benchmarks

and proposed 4D datasets for 3D-video perception. To over-

come challenges in 4D space, we propose the hybrid kernel,

a special case of the generalized sparse convolution, and

trilateral-stationary conditional random fields that enforce

spatio-temporal consistency in the 7D space-time-chroma

space. Experimentally, we show that a convolutional neural

network with only generalized 3D sparse convolutions can

outperform 2D or 2D-3D hybrid methods by a large margin2.

Also, we show that on 3D-videos, 4D spatio-temporal convo-

lutional neural networks are robust to noise and outperform

the 3D convolutional neural network.

1. Introduction

In this work, we are interested in 3D-video perception.

A 3D-video is a temporal sequence of 3D scans such as a

video from a depth camera, a sequence of LIDAR scans,

or a multiple MRI scans of the same object or a body part

(Fig. 1). As LIDAR scanners and depth cameras become

more affordable and widely used for robotics applications,

3D-vidoes became readily-available sources of input for

1https://github.com/StanfordVL/MinkowskiEngine
2At the time of submission, we achieved the best performance on Scan-

Net [5] with 67.9% mIoU

Figure 1: An example of 3D video: 3D scenes at different

time steps. Best viewed on display.

1D: Line 2D: Square 3D: Cube 4D: Tesseract

Figure 2: 2D projections of hypercubes in various dimen-

sions

robotics systems or AR/VR applications.

However, there are many technical challenges in using 3D-

videos for high-level perception tasks. First, 3D data requires

a heterogeneous representation and processing that either

alienates users or makes it difficult to integrate into larger

systems. Second, the performance of the 3D convolutional

neural networks is worse or on-par with 2D convolutional

neural networks. Third, the limited number of open-source

libraries for fast large-scale 3D data is another factor.

To resolve most, if not all, of the challenges in high-

dimensional perception, we adopt a sparse tensor [8, 9] for

our problem and propose the generalized sparse convolutions

for sparse tensors and publish an open-source auto-diff li-

brary for sparse tensors with comprehensive standard neural

network functions.

We adopt the sparse representation for a few reasons. Cur-

rently, there are various concurrent works for 3D perception:

a dense 3D convolution [5], pointnet-variants [23, 24], con-

tinuous convolutions [12, 16], surface convolutions [21, 30],

and an octree convolution [25]. Out of these representations,

we chose a sparse tensor due to its expressiveness and gen-

eralizability for high-dimensional spaces. Also, it allows

homogeneous data representation within traditional neural

network libraries since most of them support sparse tensors.

Second, the sparse convolution closely resembles the stan-

dard convolution (Sec. 3) which is proven to be successful in

13075

2D perception as well as 3D reconstruction [4], feature learn-

ing [34], and semantic segmentation [5]. As the generalized

sparse convolution is a direct high-dimensional extension

of the standard 2D convolution, we can re-purpose all ar-

chitectural innovations such as residual connections, batch

normalization, and many others with little to no modification

for high-dimensional problems.

Third, the sparse convolution is efficient and fast. It only

computes outputs for predefined coordinates and saves them

into a compact sparse tensor (Sec. 3). It saves both memory

and computation especially for 3D scans or high-dimensional

data where most of the space is empty.

Using the proposed library, we create the first large-scale

3D/4D networks3 and named them Minkowski networks af-

ter the space-time continuum, Minkowski space, in Physics.

However, even with the efficient representation, merely

scaling the 3D convolution to high-dimensional spaces re-

sults in significant computational overhead and memory con-

sumption due to the curse of dimensionality. A 2D convo-

lution with kernel size 5 requires 52 = 25 weights which

increases exponentially to 53 = 125 in 3D, and 625 in 4D

(Fig. 2). This exponential increase, however, does not nec-

essarily translate to better performance and slows down the

network significantly. To overcome this challenge, we pro-

pose custom kernels with non-(hyper)-cubic shapes.

Finally, the 4D spatio-temporal predictions are not neces-

sarily consistent throughout the space and time. To enforce

consistency, we propose the conditional random fields de-

fined in a 7D trilateral space (space-time-color) with a sta-

tionary consistency function. We use variational inference to

convert the conditional random field to differentiable recur-

rent layers which can be implemented in as a 7D Minkowski

network and train both the 4D and 7D networks end-to-end.

Experimentally, we use various 3D benchmarks that cover

both indoor [5, 2] and outdoor spaces [28, 26]. First, we

show that a pure 3D method without a 2D convolutional

neural network can outperform 2D or hybrid deep-learning

algorithms by a large margin.4 Also, we create 4D datasets

from Synthia [28] and Varcity [26] and report ablation stud-

ies of temporal components.

2. Related Work

The 4D spatio-temporal perception fundamentally re-

quires 3D perception as a slice of 4D along the temporal

dimension is a 3D scan. However, as there are no previ-

ous works on 4D perception using neural networks, we will

primarily cover 3D perception, specifically 3D segmenta-

tion using neural networks. We categorized all previous

3At the time of submission, our proposed method was the first very deep

3D convolutional neural networks with more than 20 layers.
4We achieved 67.9% mIoU on the ScanNet benchmark outperforming

all algorithms including the best peer-reviewed work [6] by 19% mIoU at

the time of submission.

works in 3D as either (a) 3D-convolutional neural networks

or (b) neural networks without 3D convolutions. Finally, we

cover early 4D perception methods. Although 2D videos are

spatio-temporal data, we will not cover them in this paper as

3D perception requires radically different data processing,

implementation, and architectures.

3D-convolutional neural networks. The first branch of

3D-convolutional neural networks uses a rectangular grid

and a dense representation [31, 5] where the empty space is

represented either as 0 or the signed distance function. This

straightforward representation is intuitive and is supported

by all major public neural network libraries. However, as

the most space in 3D scans is empty, it suffers from high

memory consumption and slow computation. To resolve this,

OctNet [25] proposed to use the Octree structure to represent

3D space and convolution on it.

The second branch is sparse 3D-convolutional neural net-

works [29, 9]. There are two quantization methods used for

high dimensions: a rectangular grid and a permutohedral

lattice [1]. [29] used a permutohedral lattice whereas [9]

used a rectangular grid for 3D classification and semantic

segmentation.

The last branch is 3D pseudo-continuous convolutional

neural networks [12, 16]. Unlike the previous works, they

define convolutions using continuous kernels in a continuous

space. However, finding neighbors in a continuous space is

expensive, as it requires KD-tree search rather than a hash

table, and are susceptible to uneven distribution of point

clouds.

Neural networks without 3D convolutions. Recently,

we saw a tremendous increase in neural networks without

3D convolutions for 3D perception. Since 3D scans consist

of thin observable surfaces, [21, 30] proposed to use 2D

convolutions on the surface for semantic segmentation.

Another direction is PointNet-based methods [23, 24].

PointNets use a set of input coordinates as features for a

multi-layer perceptron. However, this approach processes

a limited number of points and thus a sliding window for

cropping out a section from an input was used for large

spaces making the receptive field size rather limited. [15]

tried to resolve such shortcomings with a recurrent network

on top of multiple pointnets, and [16] proposed a variant of

3D continuous convolution for lower layers of a PointNet

and got a significant performance boost.

4D perception. The first 4D perception algorithm [19]

proposed a dynamic deformable balloon model for 4D car-

diac image analysis. Later, [17] used a 4D Markov Random

Fields for cardiac segmentation. Recently, [35] combined a

3D-UNet for spatial data with a 1D-AutoEncoder for tempo-

ral data and applied the model for auto-encoding brain fMRI

images.

In this paper, we propose the first convolutional neu-

ral networks for high-dimensional spaces including the 4D

3076

spatio-temporal data, or 3D videos. Compared with other ap-

proaches that combine temporal data with a recurrent neural

network or a shallow model, our networks use a homoge-

neous representation, convolutions, and other neural network

consistently throughout the networks. Specifically, convolu-

tions are proven to be effective in numerous 2D/3D spatial

perception as well as temporal or sequence modeling [3].

3. Sparse Tensor and Convolution

In traditional speech, text, or image data, features are

extracted densely. However, for 3-dimensional scans, such

dense representation is inefficient since most of the space

is empty. Instead, we can save non-empty space as its co-

ordinate and the associated feature. This representation is

an N-dimensional extension of a sparse matrix. In partic-

ular, we follow the COO format [32] as it is efficient for

neighborhood queries (Sec. 3.1). The last axis is reserved for

the batch indices to dissociate points at the same location in

different batch [9]. Concisely, we can represent a set of 4D

coordinates as C = {(xi, yi, zi, ti)}i or as a matrix C and

the associated features F = {fi}i or as a matrix F . Then, a

sparse tensor can be written as

C =

x1 y1 z1 t1 b1
...

xN yN zN tN bN

, F =

f
T
1
...

f
T
N

(1)

where bi is the batch indices of i the coordinate and fi is

a vector. In Sec. 6, we augment the 4D space with the

chromatic space and create a 7D sparse tensor for trilateral

filtering.

3.1. Generalized Sparse Convolution

In this section, we generalize sparse convolutions pro-

posed in [8, 9] for generic input and output coordinates and

for arbitrary kernel shapes. The generalized sparse convolu-

tion encompasses not only all sparse convolutions but also

conventional dense convolutions. Let xin
u
∈ R

N in

be an N in-

dimensional input feature-vector in a D-dimensional space

at u ∈ R
D (a D-dimensional coordinate), and convolution

kernel weights be W ∈ R
KD×N out×N in

. We break down

the weights into spatial weights with KD matrices of size

N out ×N in as Wi for |{i}i| = KD. Then, the conventional

dense convolution in D-dimension is

x
out
u

=
∑

i∈VD(K)

Wix
in
u+i

for u ∈ Z
D, (2)

where VD(K) is the list of offsets in D-dimensional hyper-

cube centered at the origin. e.g. V1(3) = {−1, 0, 1}. The

generalized sparse convolution in Eq. 3 relaxes Eq. 2.

x
out
u

=
∑

i∈ND(u,Cin)

Wix
in
u+i

for u ∈ Cout (3)

whereND is a set of offsets that define the shape of a kernel

and ND(u, C in) = {i|u + i ∈ C in, i ∈ ND} as the set of

offsets from the current center, u, that exist in C in. C in and

Cout are predefined input and output coordinates of sparse

tensors. First, note that the input coordinates and output co-

ordinates are not necessarily equivalent. Second, we define

the convolution kernel shape arbitrarily with ND. This gen-

eralization encompasses many special cases such as dilated

convolution kernels and hypercubic kernels. Another inter-

esting special case is when Cout = C in and ND = VD(K),
we have the "sparse submanifold convolution" [9]. If we

have C in = Cout = Z
D and ND = VD(K), the generalized

sparse convolution is equivalent to the dense convolution

(Eq. 2). For strided convolutions, Cout 6= C in.

4. Minkowski Engine

In this section, we propose an open-source auto-

differentiation library for sparse tensors and the generalized

sparse convolution (Sec. 3). As it is an extensive library with

many functions, we will only cover some functions that are

essential. In particular, forward GPU functions that require

non-trivial engineering.

4.1. Sparse Tensor Quantization

The first step in the sparse convolutional neural network

is the data processing to generate a sparse tensor, which

converts an input into unique coordinates and associated

features. In Alg. 1, we list the GPU function for this pro-

cess. Specifically, for semantic segmentation, we want to

generate a label for each input coordinate-feature pair. If

there are more than one different semantic labels within a

voxel, we ignore this voxel during training by marking it

with the IGNORE_LABEL. First, we convert all coordinates

into hash keys and find the unique hashkey-label pairs to

remove collision. Note that SortByKey, UniqueByKey,

and ReduceByKey are all standard Thrust library func-

tions [20]. The reduction function f((lx, ix), (ly, iy)) =>

Algorithm 1 GPU Sparse Tensor Quantization

Inputs: coordinates Cp ∈ R
N×D, features Fp ∈ R

N×Nf ,

target labels l ∈ Z
N
+ , quantization step size vl

C ′
p ← floor(Cp / vl)

k← hash(C ′
p), i← sequence(N)

((i′, l′), k′)← SortByKey((i, l), key=k)

(i′′, (k′′, l′′))← UniqueByKey(i′, key=(k′, l′))
(l′′′, i′′′)← ReduceByKey((l′′, i′′), key=k′′, fn=f)

return C ′
p[i

′′′, :], Fp[i
′′′, :], l′′′

(IGNORE_LABEL, ix) takes label-key pairs and returns the

ignore label since at least two label-key pairs in the same

key means there is a label collision. A CPU-version works

similarly except that all reduction and sorting are processed

serially.

3077

4.2. Generalized Sparse Convolution

The next step in the pipeline is generating the output co-

ordinates Cout given the input coordinates C in (Eq. 3). When

used in conventional neural networks, this process requires

only the convolution (or pooling) layer stride size, the in-

put coordinates, and the input sparse tensor stride size (the

minimum distance between coordinates). The algorithm is

presented in the supplementary material. In addition, we also

support dynamically setting an arbitrary output coordinates

Cout for the generalized sparse convolution.

Next, to convolve inputs with a kernel, we need a mapping

to identify which inputs affect which outputs. We call this

mapping the kernel maps and define them as pairs of lists

of input indices and output indices, M = {(Ii, Oi)}i for

i ∈ ND. Finally, given the input and output coordinates, the

kernel map, and the kernel weights Wi, we can compute the

generalized sparse convolution by iterating through each of

the offset i ∈ ND (Alg. 2) where I[n] and O[n] indicate

Algorithm 2 Generalized Sparse Convolution

Require: Kernel weights W, input features F i, output fea-

ture placeholder F o, convolution mapping M,

1: F o ← 0 // set to 0

2: for all Wi, (Ii, Oi) ∈ (W,M) do

3: Ftmp ←Wi[F
i
Ii[1]

, F i
Ii[2]

, ..., F i
Ii[n]

] // (cu)BLAS

4: Ftmp ← Ftmp + [F o
Oi[1]

, F o
Oi[2]

, ..., F o
Oi[n]

]

5: [F o
Oi[1]

, F o
Oi[2]

, ..., F o
Oi[n]

]← Ftmp

6: end for

the n-th element of the list of indices I and O respectively

and F i
n and F o

n are also n-th input and output feature vectors

respectively. The transposed generalized sparse convolution

(deconvolution) works similarly except that the role of input

and output coordinates is reversed.

4.3. Max Pooling

Unlike dense tensors, on sparse tensors, the number of

input features varies per output. Thus, this creates non-

trivial implementation for pooling. Let I and O be the vector

that concatenated all {Ii}i and {Oi}i for i ∈ ND respec-

tively. We first find the number of inputs per each output

coordinate and indices of the those inputs. Alg. 3 reduces

the the input features that map to the same output coordi-

nate. Sequence(n) generates a sequence of integers from

0 to n - 1 and the reduction function f((k1, v1), (k2, v2)) =
min(v1, v2) which returns the minimum value given two key-

value pairs. MaxPoolKernel is a custom CUDA kernel

that reduces features using S
′, which contains the beginning

index of I, and the corresponding output indices O”.

4.4. Global / Average Pooling, Sum Pooling

Average pooling and global pooling computes average of

the input features for each output coordinate. This can be

Algorithm 3 GPU Sparse Tensor MaxPooling

Input: input feature F , output mapping O

(I′,O′)← SortByKey(I, key=O)

S← Sequence(length(O′))

S
′,O”← ReduceByKey(S, key=O′, fn=f)

return MaxPoolKernel(S′, I′, O”, F)

implemented in multiple ways. One way is to create a sparse

tensor that defines the kernel map for sparse matrix multi-

plication. If we do not divide the number of inputs for each

output coordinate, this information can encode the density of

the region, so we propose a variation that do not divide the

number of inputs as the sum pooling. We use the cuSparse

library for sparse matrix-matrix (cusparse_csrmm) and

matrix-vector multiplication (cusparse_csrmv) to im-

plement these layers. Same as the max pooling, M is the

(I,O) input-to-output kernel map. For global pooling, we

create the kernel map as all input coordinates to the origin

for each batch and use the same Alg. 4. The transposed

pooling (unpooling) works similarly. For sum pooling, we

Algorithm 4 GPU Sparse Tensor AvgPooling

Input: mapping M = (I,O), features F , one vector 1

SM = coo2csr(row=O, col=I, val=1)

F ′ = cusparse_csrmm(SM , F)

N = cusparse_csrmv(SM , 1)

return F ′/N

do not compute N and do not divide the final features by N .

4.5. Nonspatial Functions

For functions that do not require spatial information (co-

ordinates), we can apply the functions directly to the features

F . For example, non-linearities do not require spatial infor-

mation such as ReLU. Also, for batch normalization, as each

row of F represents a feature, we could use the 1D batch

normalization function directly on F .

5. Minkowski Convolutional Neural Networks

In this section, we introduce the 4-dimensional spatio-

temporal convolutional neural network. We treat the time

dimension as an extra spatial dimension and create a neural

network with 4-dimensional convolutions. However, there

are unique problems arising from such high-dimensional

convolutions. First, the computational cost and the number

of parameters in a network increases exponentially as we

increase the dimension. However, we experimentally show

that these increases do not necessarily lead to better perfor-

mance. Second, the network does not have an incentive to

make the prediction consistent throughout the space and time

with conventional cross-entropy loss alone. To resolve the

3078

first problem, we make use of a special property of the gen-

eralized sparse convolution and propose non-conventional

kernel shapes that save memory and computation with better

generalization. Second, for spatio-temporal consistency, we

propose a high-dimensional conditional random field (in 7D

space-time-color space) that can enforce consistency and

train both the base network and the conditional random field

end-to-end.

5.1. Tesseract Kernel and Hybrid Kernel

The surface area of 3D data increases linearly to time

and quadratically to the spatial resolution. However, if we

use a 4D hypercube, or a tesseract (Fig. 2), for convolution

kernels, the exponential increase in number of parameters

most likely leads to over-parametrization, overfitting, as

well as high computational-cost and memory consumption.

Instead, we propose a hybrid kernel (non-hypercubic, non-

permutohedral) that makes use of the arbitrary kernel shape

of the generalized sparse convolution, ND.

Specifically, we define cross-shaped kernels and cubic

kernels (Fig. 3) as well as hybrid kernels. For spatial di-

mensions, we use a cubic kernel to capture the spatial ge-

ometry accurately. And for the temporal dimension, we use

the cross-shaped kernel to connect the same point in space

across time. We call this kernel the hybrid kernel and is

visualized in Fig. 3. We experimentally show that the hybrid

kernel outperforms the tesseract kernel while being much

faster.

Cross Hypercross Cube Hypercube Hybrid

Figure 3: Various kernels in space-time. The red arrow

indicates the temporal dimension and the other two axes are

the spatial dimensions. The third spatial axis is hidden for

visualization.

5.2. Residual Minkowski Networks

The generalized sparse convolution allows us to define

strides and kernel shapes arbitrarily. Thus, we can create a

high-dimensional network using the same generalized sparse

convolutions homogeneously throughout the network, mak-

ing the implementation easier and generic. In addition, as

the building block of the network is convolutions, it allows

us to mimic recent architectural innovations in 2D directly to

high-dimensional networks. Thus, we adopt one of the most

successful network architectures for our problem directly

and create multiple instances of high-dimensional networks

that closely resembles the original residual networks [11].

For the first layer, instead of a 7× 7 2D convolution, we

Sparse Conv 3×3×3+3, 256

Sparse Conv 3×3×3+3, 64

Sparse Conv 3×3×3+3, 64

Sparse Conv 3×3×3+3, 64

Sparse Conv 3×3×3+3, 64

Sparse Conv 3×3×3+3, 128

Sparse Conv 3×3×3+3, 128

Sparse Conv 3×3×3+3, 128

Sparse Conv 3×3×3+3, 128

Sparse Conv 5×5×5×1, 64

pool

Sparse Conv 3×3×3+3, 256

Sparse Conv 3×3×3+3, 256

Sparse Conv 3×3×3+3, 256

Sparse Conv 3×3×3+3, 512

Sparse Conv 3×3×3+3, 512

Sparse Conv 3×3×3+3, 512

Sparse Conv 3×3×3+3, 512

Linear

Conv 3×3, 256

Conv 3×3, 64

Conv 3×3, 64

Conv 3×3, 64

Conv 3×3, 64

Conv 3×3, 128

Conv 3×3, 128

Conv 3×3, 128

Conv 3×3, 128

Conv 7×7, 64

pool

Conv 3×3, 256

Conv 3×3, 256

Conv 3×3, 256

Conv 3×3, 512

Conv 3×3, 512

Conv 3×3, 512

Conv 3×3, 512

Linear

Figure 4: Architecture of ResNet18 (left) and MinkowskiNet18

(right). Note the structural similarity. × indicates a hypercubic

kernel, + indicates a hypercross kernel. (best viewed on display)

use 5× 5× 5× 1 generalized sparse convolution. However,

for the rest of the networks, we follow the original design

and visualize the final 4D variant of ResNet18 on Fig. 4.

For the u-shaped variants, we create multiple strided

sparse convolutions and strided sparse transpose convolu-

tions with skip connections connecting the layers with the

same stride size (Fig. 5). We use the variants of this archi-

tecture for semantic segmentation experiments.

6. Trilateral Stationary-CRF

The predictions from the MinkowskiNet for different time

steps are not necessarily consistent throughout the temporal

axis. To make such consistency more explicit and to im-

prove predictions, we propose a conditional random field

with a stationary kernel defined in a trilateral space. The

trilateral space consists of 3D space, 1D time, and 3D chro-

matic space; it is an extension of a bilaterl space in image

processing. The color space allows points with different

colors that are spatially adjacent (e.g. on a boundary) to be

far apart in the color space. Unlike conventional CRFs with

Gaussian edge potentials and dense connections [14, 36], we

do not enforce the function family of compatibility function

except for the stationarity constraint.

We use the variational inference and approximate the dis-

tribtuion with the meanfield approximation [13] and convert

the fixed point update similar to [36]. We make use of the

arbitrary kernel shape of the generalized sparse convolution

and convert the fixed point update into the generalized sparse

convolution in the 7D space. During the training, we jointly

optimize both a base network that generates unary potentials

3079

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
2

5
6

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
6

4

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
6

4

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
6

4

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
6

4

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
1

2
8

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
1

2
8

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
1

2
8

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
1

2
8

S
p

ar
se

 C
o

n
v

 5
×5
×5
×1

,
6

4

p
o

o
l

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
2

5
6

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
2

5
6

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
2

5
6

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 1
×1
×1
×1

,
L

A
B

E
L

S

S
p

ar
se

 C
o

n
v

 2
×2
×2
×1

,
/2

S
p

ar
se

 C
o

n
v

 2
×2
×2
×1

,
/2

S
p

ar
se

 C
o

n
v

 2
×2
×2
×1

,
/2

S
p

ar
se

 C
o

n
v

 T
r

2
×2
×2
×1

,
×2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 T
r

2
×2
×2
×1

,
×2

S
p

ar
se

 C
o

n
v

 T
r

2
×2
×2
×1

,
×2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

S
p

ar
se

 C
o

n
v

 3
×3
×3

+
3

,
5

1
2

Figure 5: Architecture of MinkowskiUNet32. × indicates a hypercubic kernel, + indicates a hypercross kernel. (best viewed on display)

and the compatibility function in the CRF end-to-end.

6.1. Definition

Let a CRF node in the 7D (space-time-chroma) space

be xi. We use the camera extrinsics to convert the spatial

coordinates of a node xi to be defined in the world coordinate

system so that static points stay at the same coordinate even

when the observer moves.

For each node xi, we define the unary potential as φu(xi)
and the pairwise potential as φp(xi, xj) where xj is a neigh-

bor of xi, N
7(xi). The final conditional random field is

defined as

P (X) =
1

Z
exp

∑

i

φu(xi) +
∑

j∈N 7(xi)

φp(xi, xj)

where Z is the partition function; X is the set of all nodes;

and φp must satisfy the stationarity condition φp(u,v) =
φp(u+ τu,v + τv) for τu, τv ∈ R

D.

6.2. Variational Inference

The optimization problem argmaxX P (X) is intractable.

So, we use the variational inference to minimize a divergence

between the optimal P (X) and an approximated distribution

Q(X). Specifically, we use the meanfield approximation,

Q =
∏

i Qi(xi) as the closed form solution exists. From the

Theorem 11.9 in [13], Q is a local maximum if and only if

Qi(xi) =
1

Zi

exp E
X

−i∼Q
−i

φu(xi) +
∑

j∈N 7(xi)

φp(xi, xj)

 .

X−i and Q−i indicate all nodes or variables except for the i-
th one. The final fixed-point equation is Eq. 4. The derivation

is in the supplementary material.

Q+
i (xi) =

1

Zi

exp

φu(xi) +
∑

j∈N 7(xi)

∑

xj

φp(xi, xj)Qj(xj)

(4)

6.3. Learning with 7D Sparse Convolution

Interestingly, the weighted sum φp(xi, xj)Qj(xj) in

Eq. 4 is equivalent to a generalized sparse convolution in the

7D space since φp is stationary and the edges can be defined

using N 7. The final algorithm is on Alg. 5.

Algorithm 5 Variational Inference of TS-CRF

Require: Input: Logit scores φu for all xi; associated coor-

dinate Ci, color Fi, time Ti

Q0(X) = expφu(X), Ccrf = [C,F, T]
for n from 1 to N do

Q̃n = SparseConvolution((Ccrf, Q
n−1), kernel=φp)

Qn = Softmax(φu + Q̃n)

end for

return QN

Finally, we use φu as the logit predictions of a 4D

Minkowski network and train both φu and φp end-to-end

using one 4D and one 7D Minkowski Network using Eq. 5.

∂L

∂φp

=
N
∑

n

∂L

∂Qn+

∂Qn+

∂φp

,
∂L

∂φu

=
N
∑

n

∂L

∂Qn+

∂Qn+

∂φu

(5)

7. Experiments

To validate the proposed Minkowski networks, we first

use multiple standard 3D benchmarks for 3D semantic seg-

mentation. Next, we create multiple 4D datasets from 3D

datasets with temporal information and perform ablation

study.

7.1. Implementation

We implemented the Minkowski Engine using

C++/CUDA and wrap it with PyTorch [22]. Data is prepared

in parallel data processes that load point clouds, apply data

augmentation, and quantize them with Alg. 1 on the fly. For

non-spatial functions, we use the PyTorch functions directly

(Sec. 4).

7.2. Training and Evaluation

We use Momentum SGD with the Poly scheduler to train

networks from learning rate 1e-1 and apply data augmenta-

tion including random scaling, rotation around the gravity

axis, spatial translation, spatial elastic distortion, and chro-

matic translation and jitter.

For evaluation, we use the standard mean Intersection

over Union (mIoU) and mean Accuracy (mAcc) for metrics

following previous works. To convert voxel-level predictions

3080

Figure 6: Visualizations of 3D (top), and 4D networks (bottom) on

Synthia. A road (blue) far away from the car is often confused as

sidewalks (green) with a 3D network, which persists after temporal

averaging. However, 4D networks accurately captured it.

to point-level predictions, we simply propagated predictions

from the nearest voxel center.

7.3. Datasets

ScanNet. The ScanNet [5] 3D segmentation benchmark

consists of 3D reconstructions of real rooms. It contains 1.5k

rooms, some repeated rooms with captured with different

sensors. We feed an entire room to a MinkowskiNet fully

convolutionally without cropping.

Stanford 3D Indoor Spaces (S3DIS). The dataset [2]

contains 3D scans of six floors of three different buildings.

We use the Fold #1 split following many previous works. We

also use 5cm voxel and do not use rotation averaging.

RueMonge 2014 (Varcity). The RueMonge 2014

dataset [26] provides semantic labels for a multi-view 3D re-

construction of the Rue Mongue. To create a 4D dataset, we

crop the 3D reconstruction on-the-fly to generate a temporal

sequence. We use the official split for all experiments.

Synthia 4D. We use the Synthia dataset [28] to create 3D

video sequences. We use 6 sequences of driving scenarios

in 9 different weather conditions. Each sequence consists of

4 stereo RGB-D images taken from the top of a moving car.

We back-project the depth images to the 3D space to create

3D videos. We visualized a part of a sequence in Fig. 1.

We use the sequence 1-4 except for sunset, spring, and

fog for the train split; the sequence 5 foggy weather for

validation; and the sequence 6 sunset and spring for test. In

total, the train/val/test set contain 20k/815/1886 3D scenes

respectively.

Since the dataset is purely synthetic, we added various

noise to the input pointclouds to simulate noisy observations.

We used elastic distortion, Gaussian noise, and chromatic

shift in the color for the noisy 4D Synthia experiments.

7.4. Results and Analysis

ScanNet & Stanford 3D Indoor The ScanNet and the

Stanford Indoor datasets are one of the largest non-synthetic

datasets, which make the datasets ideal test beds for 3D seg-

mentation. We were able to achieve +19% mIOU on Scan-

Net, and +7% on Stanford compared to the best-published

works by the CVPR deadline. This is due to the depth of the

networks and the fine resolution of the space. We trained

Table 1: 3D Semantic Label Benchmark on ScanNet† [5]

Method mIOU

ScanNet [5] 30.6

SSC-UNet [10] 30.8

PointNet++ [24] 33.9

ScanNet-FTSDF 38.3

SPLATNet [29] 39.3

TangetConv [30] 43.8

SurfaceConv [21] 44.2

3DMV‡ [6] 48.4

3DMV-FTSDF‡ 50.1

PointNet++SW 52.3

MinkowskiNet42 (5cm) 67.9

MinkowskiNet42 (2cm)† 72.1

SparseConvNet [10]† 72.5

†: post-CVPR submissions. ‡: uses 2D images additionally. Per

class IoU in the supplementary material. The parenthesis next to

our methods indicate the voxel size.

Table 2: Segmentation results on the 4D Synthia dataset

Method mIOU mAcc

3D MinkNet20 76.24 89.31

3D MinkNet20 + TA 77.03 89.20

4D Tesseract MinkNet20 75.34 89.27

4D MinkNet20 77.46 88.013

4D MinkNet20 + TS-CRF 78.30 90.23

4D MinkNet32 + TS-CRF 78.67 90.51

TA denotes temporal averaging. Per class IoU in the supplementary

material.

Figure 7: Visualization of Scannet predictions. From the top, a

3D input pointcloud, a network prediction, and the ground-truth.

the same network for 60k iterations with 2cm voxel and

achieved 72.1% mIoU on ScanNet after the deadline. For all

evaluation, we feed an entire room to a network and process

it fully convolutionally.

3081

Table 3: Segmentation results on the noisy Synthia 4D dataset

IoU Building Road Sidewalk Fence Vegetation Pole Car Traffic Sign Pedestrian Lanemarking Traffic Light mIoU

3D MinkNet42 87.954 97.511 78.346 84.307 96.225 94.785 87.370 42.705 66.666 52.665 55.353 76.717

3D MinkNet42 + TA 87.796 97.068 78.500 83.938 96.290 94.764 85.248 43.723 62.048 50.319 54.825 75.865

4D Tesseract MinkNet42 89.957 96.917 81.755 82.841 96.556 96.042 91.196 52.149 51.824 70.388 57.960 78.871

4D MinkNet42 88.890 97.720 85.206 84.855 97.325 96.147 92.209 61.794 61.647 55.673 56.735 79.836

TA denotes temporal averaging. As the input pointcloud coordinates are noisy, averaging along the temporal dimension introduces noise.

Table 4: Stanford Area 5 Test (Fold #1) (S3DIS) [2]

Method mIOU mAcc

PointNet [23] 41.09 48.98

SparseUNet [9] 41.72 64.62

SegCloud [31] 48.92 57.35

TangentConv [30] 52.8 60.7

3D RNN [33] 53.4 71.3

PointCNN [16] 57.26 63.86

SuperpointGraph [15] 58.04 66.5

MinkowskiNet20 62.60 69.62

MinkowskiNet32 65.35 71.71

Per class IoU in the supplementary material.

Figure 8: Visualization of Stanford dataset Area 5 test results.

From the top, RGB input, prediction, ground truth.

4D analysis The RueMongue dataset is a small dataset

that ranges one section of a street, so with the smallest net-

work, we were able to achieve the best result (Tab. 5). How-

ever, the results quickly saturate. On the other hand, the

Synthia 4D dataset has an order of magnitude more 3D scans

than any other datasets, so it is more suitable for the ablation

study.

In Tab. 2 and Tab. 3, we can see the effectiveness of 4D

networks and the TS-CRF. Specifically, when we simulate

Table 5: RueMonge 2014 dataset (Varcity) TASK3 [26]

Method mIOU

MV-CRF [27] 42.3

Gradde et al. [7] 54.4

RF+3D CRF [18] 56.4

OctNet (2563) [25] 59.2

SPLATNet (3D) [29] 65.4

3D MinkNet20 66.46

4D MinkNet20 66.56

4D MinkNet20 + TS-CRF 66.59

The performance saturates quickly due to the small training set. Per

class IoU in the supplementary material.

noise in sensory inputs on the 4D Synthia dataset, we can

observe that the 4D networks are more robust to noise. Note

that the number of parameters added to the 4D network

compared with the 3D network is less than 6.4 % and 6e-3
% for the TS-CRF. Thus, we small increase in computation,

we could achive more robust algorithm with higher accuracy.

In addition, when we process temporal sequence using the

4D networks, we could even get speed gain as we process

data in a batch mode. On Tab. 6, we vary the voxel size and

the sequence length and measured the runtime of the 3D and

4D networks, as well as the 4D networks with TS-CRF.

Table 6: Time (s) to process 3D videos with 3D and 4D MinkNet,

the volume of a scan at each time step is 50m× 50m × 50m

Voxel Size 0.6m 0.45m 0.3m

Video Length (s) 3D 4D 4D-CRF 3D 4D 4D-CRF 3D 4D 4D-CRF

3 0.18 0.14 0.17 0.25 0.22 0.27 0.43 0.49 0.59

5 0.31 0.23 0.27 0.41 0.39 0.47 0.71 0.94 1.13

7 0.43 0.31 0.38 0.58 0.61 0.74 0.99 1.59 2.02

8. Conclusion

In this paper, we propose a generalized sparse convolu-

tion and an auto-differentiation library for sparse tensors.

Using these, we create a 4D convolutional neural network

for spatio-temporal perception. Experimentally, we show

that 3D convolutional neural networks can outperform 2D

networks and 4D perception can be more robust to noise.

3082

References

[1] Andrew Adams, Jongmin Baek, and Myers Abraham Davis.

Fast high-dimensional filtering using the permutohedral lat-

tice. In Computer Graphics Forum, volume 29, pages 753–

762. Wiley Online Library, 2010. 2

[2] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic

parsing of large-scale indoor spaces. In Proceedings of the

IEEE International Conference on Computer Vision and Pat-

tern Recognition, 2016. 2, 7, 8

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical

evaluation of generic convolutional and recurrent networks

for sequence modeling. arXiv preprint arXiv:1803.01271,

2018. 3

[4] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3d-r2n2: A unified approach for

single and multi-view 3d object reconstruction. In Proceed-

ings of the European Conference on Computer Vision (ECCV),

2016. 2

[5] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,

Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-

annotated 3d reconstructions of indoor scenes. In Proc. Com-

puter Vision and Pattern Recognition (CVPR), IEEE, 2017. 1,

2, 7

[6] Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-view

prediction for 3d semantic scene segmentation. In Proceed-

ings of the European Conference on Computer Vision (ECCV),

2018. 2, 7

[7] Raghudeep Gadde, Varun Jampani, Renaud Marlet, and Peter

Gehler. Efficient 2d and 3d facade segmentation using auto-

context. IEEE transactions on pattern analysis and machine

intelligence, 2017. 8

[8] Benjamin Graham. Spatially-sparse convolutional neural

networks. arXiv preprint arXiv:1409.6070, 2014. 1, 3

[9] Ben Graham. Sparse 3d convolutional neural networks.

British Machine Vision Conference, 2015. 1, 2, 3, 8

[10] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3D semantic segmentation with submanifold sparse

convolutional networks. CVPR, 2018. 7

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016. 5

[12] P. Hermosilla, T. Ritschel, P-P Vazquez, A. Vinacua, and

T. Ropinski. Monte carlo convolution for learning on non-

uniformly sampled point clouds. ACM Transactions on

Graphics (Proceedings of SIGGRAPH Asia 2018), 2018. 1, 2

[13] Daphne Koller and Nir Friedman. Probabilistic Graphical

Models: Principles and Techniques - Adaptive Computation

and Machine Learning. The MIT Press, 2009. 5, 6

[14] Philipp Krähenbühl and Vladlen Koltun. Efficient inference

in fully connected crfs with gaussian edge potentials. In

Advances in Neural Information Processing Systems 24, 2011.

5

[15] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. arXiv

preprint arXiv:1711.09869, 2017. 2, 8

[16] Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen.

Pointcnn. arXiv preprint arXiv:1801.07791, 2018. 1, 2, 8

[17] Maria Lorenzo-Valdés, Gerardo I Sanchez-Ortiz, Andrew G

Elkington, Raad H Mohiaddin, and Daniel Rueckert. Segmen-

tation of 4d cardiac mr images using a probabilistic atlas and

the em algorithm. Medical Image Analysis, 8(3):255–265,

2004. 2

[18] Andelo Martinovic, Jan Knopp, Hayko Riemenschneider, and

Luc Van Gool. 3d all the way: Semantic segmentation of

urban scenes from start to end in 3d. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2015. 8

[19] Tim McInerney and Demetri Terzopoulos. A dynamic fi-

nite element surface model for segmentation and tracking

in multidimensional medical images with application to car-

diac 4d image analysis. Computerized Medical Imaging and

Graphics, 19(1):69–83, 1995. 2

[20] Nvidia. Thrust: Parallel algorithm library. 3

[21] Hao Pan, Shilin Liu, Yang Liu, and Xin Tong. Convolutional

neural networks on 3d surfaces using parallel frames. arXiv

preprint arXiv:1808.04952, 2018. 1, 2, 7

[22] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 6

[23] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J.

Guibas. Pointnet: Deep learning on point sets for 3d classifi-

cation and segmentation. arXiv preprint arXiv:1612.00593,

2016. 1, 2, 8

[24] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in Neural Informa-

tion Processing Systems, 2017. 1, 2, 7

[25] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Oct-

net: Learning deep 3d representations at high resolutions. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017. 1, 2, 8

[26] Hayko Riemenschneider, András Bódis-Szomorú, Julien

Weissenberg, and Luc Van Gool. Learning where to classify in

multi-view semantic segmentation. In European Conference

on Computer Vision. Springer, 2014. 2, 7, 8

[27] Hayko Riemenschneider, András Bódis-Szomorú, Julien

Weissenberg, and Luc Van Gool. Learning where to classify in

multi-view semantic segmentation. In European Conference

on Computer Vision, 2014. 8

[28] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M. Lopez. The synthia dataset: A

large collection of synthetic images for semantic segmenta-

tion of urban scenes. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. 2, 7

[29] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Van-

gelis Kalogerakis, Ming-Hsuan Yang, and Jan Kautz. Splat-

net: Sparse lattice networks for point cloud processing. arXiv

preprint arXiv:1802.08275, 2018. 2, 7, 8

[30] Maxim Tatarchenko*, Jaesik Park*, Vladlen Koltun, and

Qian-Yi Zhou. Tangent convolutions for dense prediction

in 3D. CVPR, 2018. 1, 2, 7, 8

3083

[31] Lyne P Tchapmi, Christopher B Choy, Iro Armeni, JunYoung

Gwak, and Silvio Savarese. Segcloud: Semantic segmentation

of 3d point clouds. International Conference on 3D Vision

(3DV), 2017. 2, 8

[32] Parker Allen Tew. An investigation of sparse tensor formats

for tensor libraries. PhD thesis, Massachusetts Institute of

Technology, 2016. 3

[33] Xiaoqing Ye, Jiamao Li, Hexiao Huang, Liang Du, and Xi-

aolin Zhang. 3d recurrent neural networks with context fusion

for point cloud semantic segmentation. In The European Con-

ference on Computer Vision (ECCV), September 2018. 8

[34] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T.

Funkhouser. 3dmatch: Learning the matching of local 3d

geometry in range scans. In CVPR, 2017. 2

[35] Yu Zhao, Xiang Li, Wei Zhang, Shijie Zhao, Milad Makkie,

Mo Zhang, Quanzheng Li, and Tianming Liu. Modeling 4d

fmri data via spatio-temporal convolutional neural networks

(st-cnn). arXiv preprint arXiv:1805.12564, 2018. 2

[36] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-

Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang

Huang, and Philip H. S. Torr. Conditional random fields as

recurrent neural networks. In Proceedings of the 2015 IEEE

International Conference on Computer Vision (ICCV), 2015.

5

3084

