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Abstract

Few-shot learning (FSL) requires one to learn from ob-

ject categories with a small amount of training data (as

novel classes), while the remaining categories (as base

classes) contain a sufficient amount of data for training. It is

often desirable to transfer knowledge from the base classes

and derive dominant features efficiently for the novel sam-

ples. In this work, we propose a sampling method that de-

correlates an image based on maximum entropy reinforce-

ment learning, and extracts varying sequences of patches

on every forward-pass with discriminative information ob-

served. This can be viewed as a form of “learned” data

augmentation in the sense that we search for different se-

quences of patches within an image and performs classifi-

cation with aggregation of the extracted features, resulting

in improved FSL performances. In addition, our positive

and negative sampling policies along with a newly defined

reward function would favorably improve the effectiveness

of our model. Our experiments on two benchmark datasets

confirm the effectiveness of our framework and its superior-

ity over recent FSL approaches.

1. Introduction

Deep neural networks have achieved extraordinary per-

formance in supervised visual learning tasks [13, 23, 10]

in recent years. However, these supervised learning meth-

ods often require a large amount of training data and an-

notations to achieve such performance. This significantly

limits the problems they can be applied to, as it may be

expensive to acquire enough annotations for the training

data, or worse, the training data may be difficult to ac-

quire themselves. In comparison, humans are surprisingly

good at learning new concepts using very little supervised

∗Work done while at National Taiwan University.

Figure 1: Illustration of our proposed patch sampling strat-

egy for FSL. If varying glimpse trajectories can be obtained

on each forward-pass, one can create a variety of input patch

sequences for training from the same input image.

information. For example, humans (both adult and chil-

dren) can learn to recognize a new animal just from a

couple of pictures in books or from online sources. On

the other hand, neural networks would suffer from the is-

sue of severe data over-fitting, resulting in poor general-

ization results during inference. This has motivated re-

searchers to propose different methods for few-shot learn-

ing [12, 27, 20, 1, 21, 24, 5, 9, 25, 6, 29, 7, 19, 28]. Few-shot

learning aims to classify novel visual classes from very few

labeled samples. Contemporary methods usually tackle this

challenge using meta-learning approaches [5, 20] or metric-

learning approaches [27, 24]. Another branch of algorithms

focus on data hallucination to generate more training sam-

ples [9, 29, 32]. There has also been some works on using

soft attention for Few-Shot Learning using attention gener-

ated from semantic information [28, 3]. Current “attention”

mechanisms are largely inspired by the human visual sys-

tems, where we only focus on small regions located at the

center of our view or gaze, while the areas further away

from the center are in fact very “blurry”. As a result, we

build our understanding of a scene by aggregating infor-
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mation from different regions of the scene as needed over

time. It is believed that this behaviour allows us to ignore

the “clutter” that is outside of the salient regions of inter-

est [17], hence the name of “attention”.

Inspired by the aforementioned concept, we present an

alternative view to why humans exhibit this behaviour: in

addition to being able to ignore “clutter” during inference,

decomposing or de-correlating an image or a scene into se-

quences of patches can allow us to increase the input variety

for any given image during training. For example, when we

stare at the same image or scene twice, our gazes would

likely follow any possible trajectory that allows us to un-

derstand the image or the scene. This motivates us to make

one crucial observation: if we use the whole image or scene

as the input, we only get one possible input variety for train-

ing; on the contrary, if we could model a more human-like

behavior and sample randomly from any possible regions

of interest for training, we would increase the input variety,

which may lead to better generalization results (see Fig. 1).

In this paper, we propose an end-to-end trainable frame-

work to model this novel interpretation of the human vi-

sual system. Our model aims to produce possible patch

sequences from an input that would lead to correct classi-

fication by applying the maximum entropy reinforcement

learning objective [26]. Moreover, we utilize a negative

trajectory sampler for non-interesting regions. Combined

with the proposed positive trajectory sampler enforcing cor-

rect classifications, this positive/negative sampling strategy

would further help regularize the network. Finally, the ex-

periments on two open datasets demonstrate the effective-

ness of our proposed model. We note that, to the best of

our knowledge, we are among the first to advance reinforce-

ment learning for few-shot learning as a form of “learned”

data augmentation, which is orthogonal to many of the other

contemporary few-shot learning methods.

The contributions of this paper are highlighted below:

• We propose a novel deep reinforcement learning based

approach for few-shot learning.

• During training, our model samples varying candidate

patch sequences from an input image, which would

satisfy FSL and result in improved performances.

• Our proposed sampling mechanism jointly utilizes

both positive and negative sampling policies, which

are able to determine “patches of interests” and “back-

ground”.

• Experimental results on two open datasets confirm that

our method performs favorably against other existing

few-shot learning approaches.

2. Related Works

Few-Shot Learning Given abundant labeled training

samples from some “base” classes, few-shot learning aims

to learn to classify samples from “novel” classes using only

a small amount of labeled samples from the novel classes.

One category of algorithms tackle this using meta-learning

approaches by learning to learn, such as learning to initial-

ize [5] or optimize [20] for few-shot learning settings. An-

other category of algorithms explore metric-learning based

approaches, which can be viewed as learning to compare.

For examples, siamese networks [12], cosine similiarity

[27], Euclidean distance to the mean [24], CNN-based rela-

tion modules [25], or Graph Neural Networks [6] have all

been explored in literature. Approaches that learn to “hal-

lucinate” or generate new data samples for novel classes

[9, 29, 32] have also been explored recently. We note that

this is different from our work as we’re not explicitly gener-

ating any new data. Finally, there has also been works that

predict weights [1] or the novel class classifier [7] directly,

or uses novel class features as weights [19].

Attention Models Visual attention has been studied ex-

tensively and can be broadly categorized into two cate-

gories. The first category is referred to as hard attention,

where cropped patches of the original image is returned

[17, 30]. The second category is referred to as soft atten-

tion, where an “attention map” corresponding to the entire

image is returned [30]. Soft attention models have the ad-

vantage of being fully differentiable, which makes it eas-

ier to train, while hard attention models have some form of

stochasticity in them, and has to be trained using reinforce-

ment learning methods (like policy gradients) due to the

non-differentiability in cropping. Spatial Transformer Net-

works [11], while designed for general image transforma-

tions, can also be used for “cropping” images and therefore,

a form of attention. The work with the closest motivation

to ours is [31], in which they employ a soft attention model

that aims to extract all the important regions of an image by

minimizing the correlation between multiple attention maps

and restricts the overlap across attention maps to be lower

than some threshold. While their method also wishes to

find all areas of interest in an image, they imposed strong

constraints and there is no stochasticity between different

forward passes. In contrast, we explicitly maximize the va-

riety of patches extracted from a given input image in dif-

ferent forward passes, allowing us to deal with the scarcity

of data in FSL settings. While soft attention schemes have

also been applied in few-shot learning very recently [28, 3],

they typically require semantic information and the lack of

stochatiscity would be a concern.

3. Preliminaries

To make our paper more self-contained, we briefly re-

view reinforcement learning (RL) algorithms related to our

work. This section will serve as a theoretical basis to our

framework in the following section.
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Reinforcement Learning. To favorably sample a se-

quence of patches for an image through RL, we would like

to find a sequence of actions, (a1, a2, ..., aN ) given an im-

age x. These actions indicate the location of the patch that

will be extracted from the image, specifically, they corre-

spond to a normalized 2D coordinate in the image x. These

taken actions aim to maximize the total amount of RL dis-

counted rewards
∑N

t=1
γt−1rt, where the discount factor

γ ≤ 1 is a constant. In the classification tasks, a common

choice for the reward function is often set as rN = 1 if the

classification is correct after the Nth time-step and 0 oth-

erwise [17]. In addition, these actions are often sampled

from a learned policy π, i.e. ai ∼ πθ(a|s), where the policy

is parameterized by θ, which could be modeled as neural

networks. Our objective in reinforcement learning can be

written as:

argmax
π

N
∑

t=1

E[γt−1rt]. (1)

Standard ways to solve for the policy π include Policy Gra-

dient [22] and Q-Learning [18] methods. Policy Gradient

based methods aim at learning desirable policies directly,

and have been explored in attention models [17], where a

family of distributions is considered for the policy π (e.g. a

Gaussian policy). On the other hand, Q-Learning methods

learn a Q-function corresponding to the “value” of an action

(Q-value) given some state s, and the best scoring action

is then chosen at every time step. However, Policy Gradi-

ent methods require one to pre-define a form for the policy

(e.g., Gaussian) which implies that the optimal behavior is

unimodal. As for Q-Learning, one only takes the action

with the maximum Q-value, resulting a single “good” be-

havior [9] without any stochasticity. This would cause the

sampling policy to collapse into a single mode, i.e., loca-

tions near the peak of the Gaussian or the highest Q-value,

neither of which would be satisfactory in FSL settings.

Maximum Entropy Reinforcement Learning. To ad-

dress the aforementioned issue, a maximum entropy rein-

forcement learning objective can be employed, which ad-

ditionally maximizes the entropy of the action distribution

H(π(·|s)) given the state s we are in. Intuitively speaking,

we would like to maximize the variety of our actions while

also obtaining a high reward (i.e. making the correct classi-

fication). The objective of maximum entropy reinforcement

learning can be written as:

argmax
πMaxEnt

N
∑

t=1

E[γt−1rt + αH(π(·|s))], (2)

where α is a constant that balances the importance of the

entropy term relative to the rewards. Soft Q-Learning [8]

has recently been proposed to solve this objective function

by using an fixed-point iteration method:

Qsoft(st, at)← rt + E[Vsoft(st+1)] (3)

Vsoft(st)← α log

∫

A

exp(
1

α
Qsoft(st, a

′

))da
′

, (4)

where Qsoft(s, a) is the Q-function and Vsoft(s) represents

the value function, a measure of how high a state’s value is.

The maximum entropy policy then can be calculated as a

softmax over the advantage function, which is a measure of

how good an action is relative to the other actions:

πMaxEnt(at|st) ∝ exp(
1

α
Qsoft(st, at)− Vsoft(st)). (5)

Thus, we are able to derive a multimodal policy without

pre-defining its form from particular distributions that maxi-

mize the total reward (i.e., correct classifications), while ex-

hibitng varying behaviours during sampling. Please see [8]

for thorough derivations of how the algorithm could be ap-

proximated using deep neural networks.

4. Proposed Framework

Given a set of K input images X = {xj}
K
j=1 and its cor-

responding label set Y = {yj}
K
j=1, where xj ∈ R

H×W×3

and yj ∈ R are the jth image and its label respectively, our

goal is to correctly predict the labels given these input im-

ages, especially in few-shot scenarios. To achieve this, we

propose a Maximum Entropy RL-based framework which

learns to sample sequences of patches from the input image

xj , denoted as P j = {pji}
N
i=1. In this section, we first de-

scribe our model architecture and provide details for each

component. We then further explain the sampling mech-

anism governed by the designed reward function, which

helps enhance and regulate our model. Finally, we pro-

vide the details about the training objective and the infer-

ence process of our model.

4.1. Architecture Overview

As depicted in Fig. 2, our model consists of five com-

ponents: feature extractor, action context encoder, state en-

coder, maximum entropy sampler, and a final classifier. We

now describe the details of each component.

Feature Extractor fe. To encode the patches pi
1 of the

input image x, we introduce the feature extractor fe to ex-

tract the feature embedding ei of the patch pi at every time

step using a CNN. The feature extractor only has access to

the local patches given by the maximum entropy sampler

(described in later subsections) in the form of cropped win-

dows of the original image x.
1For simplicity, we omit the subscript j, and represent their correspond-

ing input image as x and label as y
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Figure 2: Our framework mainly comprises of five components: feature extractor, action context encoder, state encoder,

maximum entropy sampler, and a final classifier. The feature extractor fe takes an input patch pi to derive the feature ei,

which is used by the state encoder fs to produce current state si. Next, the maximum entropy sampler (with the Q-function

fQ and the actual policy πθ) takes the input image x with si to sample an action ai, that produces the next patch pi+1. The

action context encoder fa then encodes the context ci of the current action using ai and the features of the image g (extracted

by πθ). Finally, the state encoder fs takes the newly extracted feature ei+1 (extracted from pi+1 by fe) and action context

ci to produce the next state si+1 (not depicted in figure). The final state sN is fed into the classifier to determine its output

vector l and the predicted label ŷ. We note that N is selected as a hyperparameter.

State Encoder fs. To aggregate the features of prior ex-

tracted patches for the input image x, a recurrent neural net-

work (RNN) is used as the state encoder fs to encode the

state si from the previous state si−1 and the sampled patch

pi. The state encoder fs also takes the current action context

ci−1 (produced by the module fa in the Fig. 2 and will be

detailed later when introducing fa) and derives the current

state si.

More specifically, we implement this RNN with a GRU

[2]. On each forward-pass, we initialize the GRU with the

features extracted from a random patch and the initial action

context c0 set to a zero vector.

Maximum Entropy Sampler fQ & πθ. Since our goal

is to generate varying patch trajectories from the input im-

age x, we employ a maximum entropy sampler to sam-

ple the next candidate patch pi+1. The Maximum Entropy

Sampler is built based on the Soft Q-Learning algorithm in

[8]. Generally, the sampler takes the whole image x and

utilizes the current state si (aggregated information from

all prior patches) to produce a 2D action vector ai, which

corresponds to the coordinates of the center of the next

patch pi+1. More specifically, the sampler itself contains

two components: the Q-function fQ and the actual sam-

pling policy πθ, which are related by (5). The architectures

of both components are identical, containing a small CNN

with fully connected layers. The Q-function fQ evaluates

how “good” actions are, while the sampling policy πθ out-

puts the actual 2D action ai and the features of the image

x, denoted by g. We note that only the sampling policy πθ

is used during inference. More details about the sampling

mechanism can be found in Sect. 4.2.

Action Context Encoder fa. The action context encoder

fa in Fig. 2 takes the output features g of the image x from

the convolution layers in the aforementioned policy πθ and

the sampled 2D action ai to produce a context ci. Intuitively

speaking, the action context encoder aims to account for the

global information produced by πθ, which is utilized by fs.

Classifier fc. Since our goal is to correctly classify the

input image x as its corresponding label y, we introduce the

classifier fc which takes the final state sN and produces the

output vector l and the label prediction ŷ.

4.2. Sampling Mechanism

In this section, we present the sampling mechanism for

our maximum entropy sampler (fQ and πθ), which is based

on the Maximum Entropy RL algorithm in Sect. 3. While

the maximum entropy sampler alone would sample patches

that is beneficial for classification, we choose to further reg-

ulate both the maximum entropy sampler and the feature

extractor for performance guarantees. To achieve this, we

introduce the concept of negative sampling into our model.

For example, a negative sequence sample may be a se-

quence of patches that land outside of the object or regions
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Figure 3: Illustration of the relationship between the Q-

function Qsoft (blue), the positive policy π+ (green) and

the negative policy π− (red) satisfying (5) and (6), respec-

tively. The Q-function is expected to output higher values

for patches within the regions of interest, and lower values

for irrelevant regions like the background. If the traditional

RL objective is applied, one would only sample from one of

the peaks. Note that the two overlapping policies are shown

in different scales.

of interest, like the background. To be more precise, we

define the negative sampling policy π− as:

π−(at|st) = exp(−
1

α
Qsoft(st, at) + Vsoft(st)) (6)

This allows us to derive a policy that samples from unde-

sirable points given a Q-function (see Fig. 3). Intuitively,

we train the positive policy π+ to match the Q-function

Qsoft(st, at), which has a higher value in the regions of

interest, and train the negative policy to match the nega-

tive of the Q-function −Qsoft(st, at), which now outputs

a higher value in non-relevant regions. Note that the two

policies are both conditioned on the same Q-function, and

can be viewed as the “inverse” of the other policy.

To jointly apply both policies, we create an artificial

“background” class and randomly select one policy on each

forward-pass, i.e., the positive policy π+ or the negative

policy π−. We encourage the classifier to regress to the

ground truth y if the positive policy is chosen and the back-

ground class if the negative policy is selected. This moti-

vates us to assign a reward value of −1 if the predicted la-

bel corresponds to the background class. Thus, the reward

function is defined as:

Ri =











1, if i = N and ŷ = y

−1, if i = N and ŷ = background

0, otherwise

(7)

The reward function Ri can be interpreted as a ranking

of the three possible outcomes: for the positive policy π+

(corresponding to the normal Q-function fQ), an action se-

quence that results in the correct label will be preferred,

followed by an action sequence that results in a wrong la-

bel, and an action sequence that causes the predicted label

to be “background” class would generally be avoided. For

the negative policy π− (corresponding to the inverted Q-

function −fQ), this ranking is inverted, and the best action

sequences for π− would result in a predicted label of the

“background” class.

It is worth noting that, the benefits of this joint sampling

policy is two-fold. First, it allows the encoders to “see” and

learn to encode poorly chosen patches. Second, this helps

pull the values of different actions apart, which avoids ex-

treme scenarios like when all action scores are about the

same, which might occur when the model overfits and clas-

sifies everything correctly regardless of the quality of the

sampled patches.

4.3. Training Objective and Evaluation

Training In the training stage, we first randomly select

the policy “mode” of our network: the positive policy π+,

regressing towards the ground truth label y, or the negative

policy π−, regressing towards the artificial “background”

class yb. We then obtain the predicted label ŷ and use the re-

ward function in (7) to update the Maximum Entropy Sam-

pler. This is done by updating the Q-function fQ based on

the equations (3) and (4), and the two policies (π+ and π−)

such that they follow the formulas in (5) and (6) by applying

Soft Q-Learning [8] with a Replay Buffer [15]. To better

optimize the framework, we incorporate the classification

loss, i.e. negative log-likelihood, into our training objective

along with RL-based training following [17]. The classifi-

cation loss Lclass is calculated to jointly update feature ex-

tractor fe, the action context encoder fa, the state encoder

fs, and the classifier fc:

Lclass =
1

|M1|

∑

j⊂M1

yTj log ŷj + α
1

|M2|

∑

j⊂M2

yTj log ŷj

(8)

where yTj and ŷj denotes the (transposed) ground truth la-

bel (augmented with the “background” class) and the pre-

dicted label at the final time step N for the j-th image in the

sampled batch, respectively. M1 and M2 denotes the set of

indexes in the batch that were selected by the two “modes”,

i.e. the positive policy π+ or the negative policy π−. In the

same equation, α is a scaling constant to balance the im-

portance of the two loss terms. We summarize our training

algorithm in the pseudo-code in Algorithm 1.

Inference During inference, we only select the positive

policy π+ to extract patches for a given test image because

we aim to produce the correct label for the input image in-

stead of the background label.
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Algorithm 1 Training algorithm

Input: Data, label tuples {(xj , yj)}; Replay Buffer D; pa-

rameter β

Output: Network modules fe, fs, fa, fc, fQ, π+, π−

for number of training iterations do

Sample k from uniform distribution between [0, 1]

if k < β then

Sample action sequences (a1, a2, ...., aN ) us-

ing the positive policy π+, extract the patches

(p1, p2, ...., pN ) and compute the predicted

label ŷj
else

Sample action sequences (a1, a2, ...., aN ) us-

ing the negative policy π−, extract the patches

(p1, p2, ...., pN ) and compute the predicted

label ŷj
end if

Store all transitions (xj , si, si+1, ai, ri, i) in replay

buffer D

Calculate the classification loss Lclass with yj and

ŷj according to (8)

Update fe, fs, fa, fc using Lclass

Sample transition batch (xj , si, si+1, ai, ri, i) from

replay buffer D

Update fs, fQ, π+, π− using Soft Q-Learning [8]

end for

5. Experiments

We first highlight the experimental datasets and provide

our experimental settings in the first two subsections. Af-

terwards, the evaluation results are presented in the third

subsection followed by the ablation studies with respects to

different voting strategies in the fourth subsection. Finally,

we present the sampling trajectory analysis on our trained

sampling policy. More experiments are provided in the sup-

plementary materials.

5.1. Datasets

We tested our model on two widely adopted datasets for

few-shot learning: the Omniglot [14] and the miniImagenet

[27]. We describe the two datasets below.

Omniglot Omniglot [14] contains 1623 different charac-

ters from 50 different alphabets. Each character contains

images of hand-drawn characters by 20 different people.

We follow the same evaluation strategy in [27, 24, 5, 21],

where 1200 random character classes are sampled (inde-

pendent of alphabet) as “base” classes, and the remaining

423 character classes are considered the “novel” classes, i.e.

only a small amount of labeled samples per class is avail-

able. The images are all resized to 28× 28, and we perform

the common practice of class augmentation using rotations

of 90, 180, and 270 degrees randomly, which results in a

total of 1200 + 3600 base classes and 423 + 1269 novel

classes.

miniImagenet miniImagenet was first proposed by [27],

with 80 base classes and 20 novel classes sampled from the

original Imagenet dataset [4], but recent work uses the splits

proposed by [20], where there are 64 base classes, 16 vali-

dation classes, and 20 novel classes. We follow this split so

our results can be compared to other work. Each class con-

tains 600 images. The images are resized to 84 × 84, and

we perform standard data augmentation techniques: color

jittering, random left-right flips, and random crops. Only

the 64 base classes were used for training and the 16 valida-

tion classes were used for modeling generalization perfor-

mance and for choosing hyperparameters (e.g. number of

finetuning iterations).

5.2. Experimental Setting

Implementation for few-shot setting. To ensure a fair

comparison with other proposed methods, we employ a

Conv-4 backbone structure for our feature extractor fe,

which is identical to the one used by [24]. For baselines, we

experiment with two different kinds of classifiers following

the same Conv-4 backbone. The first one, which we de-

note as Baseline-FC, uses a standard fully connected layer

followed by a softmax activation to output the label predic-

tion. The second one, which we denote as Baseline-CS,

applies a cosine similarity measure instead of a dot product

in standard fully connected layers. We would like to clarify

that using cosine similarity as an alternative classifier for

few-shot learning is not our contribution. Cosine similarity

layers has been recently explored in [16] and has been ap-

plied to few-shot learning in [7, 19]. We set the number of

extracted patches to be 4 (i.e. N = 4), with an additional

patch that is randomly sampled independent of the sampling

policies π+ and π− to initialize the state encoder GRU (fs)

for all experiments.

Inference. During inference, we apply a Best-of-N Voting

method to obtain the final prediction label ŷnway . We note

that due to the stochastic properties of the policy π+, there

is a chance (albeit small) that it will select an “irrelevant”

region at any time-step. A simple workaround for this is to

repeat the classification a number of times, i.e. N times, and

aggregate the prediction results before outputting the class

with the highest prediction probability/score. We first ex-

plain two ways of performing this aggregation: Hard Vot-

ing and Soft Voting as follows, while the study of the voting

behavior can be found in our ablation studies in Section 5.4.

For hard voting, we take the argmax of the N predicted

labels before aggregating them and see which label has the

most votes. This can be seen as a form of “discrete” vot-
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Table 1: Results on Omniglot. FC denotes a fully-connected

classifier and CS denotes a cosine similiarity classifier. The

number in bold indicates the best result.

5-Way

1-Shot 5-Shot

Baseline-FC 91.95±0.48 98.97±0.10

Baseline-CS 93.30±0.44 99.33±0.09

Ours-FC 97.43±0.28 99.51±0.07

Ours-CS 97.56±0.31 99.65±0.06

ing and it discards the “uncertainty” information in the pre-

dicted labels. For example, if we had a binary label, the

prediction (0.6, 0.4) and (0.99, 0.01) would both reduce to

(1, 0). For soft voting, we aggregate the N predicted labels

without performing the argmax and see which label has the

highest accumulated probability.

Evaluation protocol. We evaluate using a K-Shot 5-Way

evaluation protocol with Best-of-7 Soft Voting, where K is

the number of labeled samples we have per novel class. For

each testing episode, we randomly select 5 classes from all

the novel classes, and out of these 5 classes, we sample 5K
labeled examples and 15 testing samples. The 5K labeled

sample are first used for finetuning our model, then we

perform inference by calculating the predicted label ŷnway

based on the distance of the output vector l of the query im-

age to the output vectors of the 5K labeled samples ls. This

is akin to a nearest neighbor method.

ŷnway =
exp(−dist(l − ls))

∑

s∈5K exp(−dist(l − ls)))
(9)

We perform 600 test episodes and report the mean and 95%
confidence interval for all evaluation settings.

5.3. Evaluation Results and Comparisons

Omniglot For Omniglot, we select the sampling patch

size to be 16 × 16 during experiments. We perform 1-shot

and 5-shot 5-Way experiments on the novel classes, and

then compare with the two baseline methods: Baseline-FC

and Baseline-CS. The results on Omniglot are presented in

Table 1. For 1-shot, the performance gain over Baseline-FC

is 5.5% while the gain over Baseline-CS is 4.2%. For 5-

shot, the performance gain over Baseline-FC is 0.5%, while

the gain over Baseline-CS is 0.3%. Here we observed that

our model shows effectiveness in few-shot settings even if

it’s presented one image per class (one-shot setting) com-

pared to the baseline methods. We also find that simply

replacing the fully connected classifier with a cosine simi-

larity based one yields a noticeable improvement.

We note that, the images in Omniglot consist of a sin-

gle character occupying a big portion of the image, and the

Table 2: Results on miniImagenet. FC denotes a fully-

connected classifier and CS denotes a cosine similiarity

classifier. ProtoNet# denotes the training method (30-Way

for 1-shot and 20-Way for 5-shot) in the original paper. Pro-

toNet denotes a 5-Way training strategy (as other methods

do). The results of Matching Network is cited from [24]

(denoted with a star). Bold and underlined numbers indi-

cate top two scores, respectively.

5-Way

1-Shot 5-Shot

Baseline-FC 42.02±0.73 61.54±0.68

Baseline-CS 46.84±0.77 64.13±0.69

Matching Network* [27] 46.61±0.78 60.97±0.67

ProtoNet [24] 46.14±0.77 65.77±0.70

ProtoNet# [24] 49.42±0.78 68.20±0.66

MAML [5] 48.07±1.75 63.15±0.91

RelationNet [25] 50.44±0.82 65.32±0.70

Ours-FC 47.18±0.83 66.41±0.67

Ours-CS 51.03±0.78 67.96±0.71

“local” feature in patches simply reduces to oriented lines,

which is why we select a larger patch size (16× 16 to input

image size 28×28), thereby allowing some global informa-

tion to be captured and encoded.

miniImagenet Compare with Omniglot, miniImagenet is

more realistic dataset. We select the patch size as 24 × 24
where the input size is 64 × 64 (after performing data aug-

mentation). We compare our proposed model with existing

methods [27, 24, 5, 25] which also fairly applies the sim-

ilar setup with the same Conv-4 backbone. The compari-

son results can be obtained in Table 2. Similar to the re-

sults reported in Omniglot, we see a cosine similarity clas-

sifier provides better results compared to a fully connected

layer. For 1-shot, the performance gain over Baseline-FC is

5.1% while the gain over Baseline-CS is 4.2%. For 5-shot,

the performance gain over Baseline-FC is 4.9%, while the

gain over Baseline-CS is 3.8%. Our proposed method per-

forms favorably against the state-of-the-art methods in 1-

shot learning. For 5-shot, our proposed model outperforms

the best competitor ProtoNet [24] under fair comparisons

(equal training and evaluation schemes).

We note that ProtoNet# [24] used a slightly more dif-

ferent training scheme, where they performed training us-

ing 30-way episodes (i.e. 30 training classes) for 1-shot

and 20-way episodes (i.e. 20 training classes) for 5-shot

during meta-training, which they reported that resulted in

better performance than just training from samples from 5

classes. Compared to this, we fall slightly behind by 0.28%,

but there is a high overlapping of the confidence intervals.

We thereby include the performance of their model under

5-way meta-training episodes for completeness.
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(a) One-shot (b) Five-shot

Figure 4: Effects of hard and soft voting and the number of votes N on miniImagenet on (a) 1-shot and (b) 5-shot classifica-

tion. FC denotes a fully connected classifier, and CS denotes a cosine similarity classifier.

Base

Novel

Figure 5: Sampling trajectories on miniImagenet. The top

two rows are from base classes and the bottom row is from

a novel class. The order of sampled patches is: blue, green,

red, and white. Note that the sampled patch trajectories dif-

fer in every feed-forward pass.

Our performance gain can be ascribed to incorporating

maximum entropy samplers and our unique design of model

for aggregating features from patches.

5.4. Ablation Studies

To explore the effects of voting strategies, we experiment

the hard and soft voting strategies during inference with N

as 1, 3, 5, and 7, using both the fully connected classifier

and the cosine similarity classifier. We evaluate on mini-

Imagenet and compare the results in Fig. 4. For soft vot-

ing, the increase in performance comes from the addition

of voting (N=1 to N=3), with an accuracy increase of 3%

to 4% for 5-shot settings and 2% to 3% for 1-shot settings.

We observe the same trend for hard voting with 1-shot set-

tings. However, for the 5-shot settings with hard voting,

the highest increase in accuracy is achieved at going from

3 to 5 votes, with an increase of 2%. The preserved uncer-

tainty information also seems preferable, as the soft voting

scheme outperforms to hard voting scheme (1% to 2% for

5-shot settings, around 1% for 1-shot settings).

5.5. Sampling Trajectory Analysis

Here we plot some of the sampling trajectories from

the base classes and novel classes from the miniImagenet

dataset in Fig. 5. Note that the sampling policies were not

finetuned on the novel classes, thus the policies must be able

to generalize beyond the seen classes.

At first glance, we can see that the sampling policy learns

to sample on the regions of interest and may also sometimes

choose to sample on background patches. We would like

to clarify that this is, in fact, the intended behavior, and is

the results of our main objective function in (2), where we

aim to maximize the action variety of the sampling policy.

Consider the scenario where, after seeing the first couple of

patches, we are already certain of the object present in the

image. In this case, we can sample anywhere on the image

to maximize the entropy term in the objective function (2).

6. Conclusion

We presented a deep learning framework employing the

maximum entropy reinforcement learning objective. The

novelty of our model lies in the incorporation of maximum

entropy reinforcement learning and soft Q-Learning for the

sampling policies, with applications to few-shot learning.

We utilize both positive and negative sampling policies to

determine the favorable regions in an image and regular-

ize the learning process. Thus, our approach is able to in-

crease the input variety for the feature extractors (CNN)

during training, which can be seen as a form of “learned”

data augmentation. Moreover, during inference, the sam-

pling policies would be able to “attend” to the relevant re-

gions of the test images, which allows us to elegantly deal

with any potential clutter in test images. Experiments on

two FSL datasets demonstrated that our model is able to

improve FSL performances and performs favorably against

the state-of-the-art methods.
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